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An energy-based infinite boundary element integral equation method is developed for the 
solution of two- or three-dimensional time harmonic fluid scattering problems. This method is 
essentially based on a domain decomposition that insures the validity for all frequencies, and 
uses a hypersingular operator that can be integrated readily by standard procedures for single 
layers. It leads to a set of sparse, symmetric discretized equations. Numerical experiments for a 
rigid circular cylindrical scatterer subjected to a plane incident wave confirm the stability of 
the new procedure, and serve to assess its accuracy for wave numbers ranging from 0 to 30, 
both directly on the scatterer and in the far field. 

PACS numbers: 43.20.Fn 

INTRODUCTION 

Boundary integral equation methods 1-5 have been wide- 
ly used for studying the problem of wave scattering by rigid 
or deformable bodies submerged in a compressible inviscid 
fluid. 6 Their main features are that they automatically satis- 
fy the radiation condition and that they allow one to obtain a 
reduced problem defined only over the boundary of the scat- 
terer, if the obstacle is rigid or made up of linear elastic, 
isotropic, homogeneous material. 1ø If the scatterer is inho- 
mogeneous one includes, in addition to the boundary, the 
interior region occupied by the body and uses a discretiza- 
tion technique as the finite element method to treat the cor- 
responding field equations within the body. 4']1']2 These 
equations are coupled to the boundary integral equation for 
the fluid by the requirement that the tractions and the nor- 
mal displacement be continuous across the interface. While 
such boundary integral equation methods are extremely at- 
tractive, there have been several obstacles that have made 
their general application impractical. 

One well-known difficulty with standard integral for- 
mulations for exterior regions is that there is a discrete set of 
frequencies for which these methods fail. Several techniques 
have been developed for overcoming this deficiency. A pio- 
neering work in this direction involves a combination of the 
surface and internal integral representations, 13 in which at 
least one field point in the interior does not lie on a nodal line 
of the eigenmodes associated with the critical eigenfrequen- 
cies. This is easy to achieve for low wave numbers but some 
ill-conditioning may result at higher ones as the number of 
nodal lines increases with frequency. A second technique 
combines linearly the surface Helmholtz integral formula- 
tion and its normal gradient, derived from Green's second 
theorem. TM This method always leads to unique solutions 
provided the coupling constant has a nonvanishing imagi- 
nary part. Perhaps the earliest procedure, complementary to 
that of Ref. 14 but used far less frequently, is one that repre- 
sents the solution in the exterior region as a linear combina- 
tion of a single- and a double-layer potential 15']6 with the 

coupling constant again required to have a nonvanishing 
imaginary part. Until recently, the major drawback with the 
latter two procedures had been that these formulations con- 
tain hypersingular integrals involving the second partial 
normal derivative of the Green's function which exists only 
as a Hadamard finite part. Special integration techniques, 
however, have now been developed to remedy this situa- 
tion. 17-•9 In fact, by using variational techniques rather than 
the usual collocation procedures for solving the integral 
equations, the hypersingular operator may be rewritten in 
terms of single-layer potentials that can be integrated readily 
by standard methods. • 1,20-22 An alternative procedure for 
circumventing the problem of critical frequencies is to use 
exclusively the interior Helmholtz integral representation 
with interior field points. 23'24 A difficulty with this approach 
is that the optimal location of the field points is not well- 
defined, and that the discretized equations are prone to be- 
come ill-conditioned as the grid is refined for dealing with 
higher frequencies. 

Another objectionable feature of integral equation 
methods is that the reduction in problem size is obtained at 
the expense of coupling every unknown with all the other 
ones throughout the boundary, thus making the method 
nonlocal, and the corresponding discretized equations full. 
This situation is generally acceptable for two-dimensional 
scattering problems, as well as for three-dimensional ones as 
long as the wave number remains small, but becomes over- 
whelming even for the largest computers now available as 
the frequency increases. This difficulty has been addressed in 
the domain finite element community by the development of 
finite elements. 2• There has also been some effort to develop 
comparable infinite elements based on integral equation for- 
mulations, 26'27 but due perhaps to the somewhat ad-hoc pro- 
cedures used until now in their derivation, and because the 
resulting discretized equations are nonsymmetric, such infi- 
nite elements have not received much attention for wave 

scattering problems. 
The main objective of this paper is to present a new sys- 
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tematic methodology for the solution of scattering problems 
based on a variational formulation and integral equation 
methods with infinite elements that result in localized sym- 
metric systems of discretized equations. The degree of spar- 
sity can be controlled by the user by adding a few additional 
unknowns within the fluid, and may be selected so as to take 
full advantage of the particular architecture of a given com- 
puter. Subdividing the fluid region into subregions (thus 
constituting, in essence, a domain decomposition method 
similar to that developed in Ref. 28 for frequency indepen- 
dent problems in bounded domains) also achieves the addi- 
tional goal of precluding the occurrence of critical frequen- 
cies, thus rendering a method that is valid for all frequencies. 
In the following section we present a new methodology as it 
applies to rigid scatterers. The extension to deformable bo- 
dies is straightforward and will be presented in a future com- 
munication. We describe the two-dimensional problem but 
will illustrate the applicability and accuracy of our new tech- 
nique with numerical examples in two dimensions for wave 
numbers in the range of 0 to 30. 

I. STATEMENT OF PROBLEM AND VARIATIONAL 

FORMULATION 

Let 12 represent the region in R 3 occupied by a rigid 
scatterer, with smooth boundary F and exterior 12 +, filled 
with a homogeneous, compressible, inviscid fluid with 
density p and speed of sound c. We assume that there is an 
incident steady-state harmonic fluid motion given by a pres- 
sure Pø(x,t) = Re [pø(x)exp(iwt) ], where co is the frequen- 
cy of excitation, as shown in Fig. 1. Then we seek the corre- 
sponding steady-state scattered pressure P(x,t) 
= Re[p(x)exp(iwt) ] in 12 + such that 

Ap+k:p=O, k:=co:/c •, in 12 + , (la) 

p, = _pO, on F, (lb) 

p satisfies a radiation condition in 12 +. 
Here, n is the outward unit normal to F; (la) is the 

standard Helmholtz equation that governs the pressure in 
the fluid; and (lb) is the Neumann condition that requires 
the normal velocity of the fluid to vanish at the interface F 
with the scatterer; the normal derivative of the pressure on 
F, p,, appears in this equation since the velocity v of the fluid 
is related to the total pressureP t= p o + p in the fluid by 

vt = -- (1/p)VP T. (2) 

n 12+ 

In order to solve subsequently this problem using infi- 
nite elements we subdivide the exterior region 12 + into M 
subdomains 12% with F'" denoting the boundary of 12% and 
F• the part of the interface F common to F'", as shown on 
Fig. 2. By renaming p within 12'" as p'", (1) may then be 
reformulated as follows: 

Apm+k2p'"=O, in 12'", m= 1,2,...,M, 

pi=pj, on FiC•F• id= 1,2,...,M, 

pi., = _/d•,,, on Fi• r• i; = 1,2,...,M, 
P.•=P2, on m=l,2,...,M, 
pm satisfies a radiation condition, m = 1,2,...,M. 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

To derive a variational principle corresponding to (3) 
we first construct an appropriate functional and then pro- 
ceed to show that the vanishing of its variation yields (3). 
We start with the generalized Lagrangian functional: 

fi= 1 •, f• 1 [(vpm) 2 k2(pm)2]dx 2 m:l ,,, pco2 

+ m• pO. pm dS. (4) : • ;7, pco2 
The first two terms on the right side represent the kinetic and 
potential energy within the fluid while the last term is the 
work of the pressure over the free-field normal displacement 
on F. The last term is positive because n points into 12 +. 

By integrating by parts the first term using the diver- 
gence theorem, (4) reduces to 

= -- P,,"'mP"' dS' + Z po, p'" ds`. 
(5) 

In writing (5) we have assumed that prn satisfies the 
governing equation (3a) and the radiation condition (3e), 

which ensures that the integral ofp,m.J• m over an outer sphere 
of radius R tends to zero as R goes to infinity. 

• 12 m nm_l nm•+•/ 
n m [lm • 17m 17m •_,m /• rim 

FIG. 1. Rigid scatterer immersed in a compressible, inviscid fluid. FIG. 2. Scatterer and fluid, showing partitioning into macroelements. 
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To actually insure that (3a) and (3e) are satisfied by pm, 
we make use of Helmholtz representation formula. By using 
the symbols •b m and ½m to denote the values of pro and its 
normal derivative on F m, pnmm , this representation formula 
may be written as 

pm = '•m [• bm] -- •'•m [½m] in •-•m, (6) 
where f m and '•m are the single- and double-layers, 

d•m [Z] (X) = frmX(Y)G( I x -- Yl )dSy, (7a) 
'•m [,•'] (X) -- m'•'(Y) 

and G(z) is the fundamental singularity, or Green's func- 
tion, for ( 1 a) and ( 1 c),•-9 

G(z) = - (1/4rrz)exp(ikz) in R 3. (8) 

Thus, p m in (6) automatically satisfies (3a) and (3e) for 
arbitrary •b m and •pm. For smooth X and F one has the jump 
relations: 3ø 

fm [.•'] -- = Sm [.•'], (9a) 

ø'•m [X] -- --- •X •- am [J•], (9b) 

• fm [X] -- = -- --X '-• Nm [X], (9c) 
0/'/m 2 

--•0 •m[,¾ ]- =Mm[,¾], (9d) 
c)n m 

where the minus sign denotes the limit on r TM from l'I m. We 
note that Nm and D m are adjoints while Sm and M m are self- 
adjoint. Here, M m is the hypersingular operator. 

From (6) and (9) it follows that 

pm•.«•bmnt-Om[•bm ] --Sm[½m], on F m, (10a) 

pnrn m --Mm[•b m] -{- • ½m--Sm[½m], on r m. (lOb) 
Recalling that •b m and ½m are meant to represent pm and 

p nmm , respectively, (10) may be rewritten as 
«•m--Dm[•m ] -•-Sm[½ m] =0, on F m, (11a) 

•½m-•-Nm[½m ] --Mm[• m] --0, on r m. (11b) 

We now modify the functional 11 in (5) by introducing 
( 11 ) as side conditions, using 1 / (pw 2) •b m and 1/(pw 2) ½m 
themselves as Lagrange multipliers. After canceling the 
common factor 1 / (pw •-) this results in 

I-[ [ {•m},{½m} ] 

1 • fI" •mcmdS•- • fI' Pøn•mdS •Tm_=l m m=l m m 

+Ttrl•l mT 

1 • ;F (1 ½m ½m ) dS. 2m=• m • +Nm[ ]--Mm[4m] 4m 
(12) 

This equation will serve as the basis for our variational 
principle for the scattering problem defined by (3). The first 
variation of the functional II can be written as follows, after 

making use of the adjointness of D m and Nm, and the self- 
adjointness of $m and M m: 

m• fI• ( l 4m--Dm[4 m ) dS = =1 m T ]+Sm[•m] a•m 

M f• • 1 •m ) + • • --Sm[•m] +Mm[• m] •mdS m=l m 

+ • p•m aS. (13) 
•=• • 

So far, no requirements have been imposed on the ad- 
missible functions •m and •m. We will now require that the 
continuity of 4 throughout • + be imposed as an essential 
condition. This means that by construction 4• will be equal to 
• (and hence 6• i = 6•) at the intersection of F i with F. On 
the other hand, •i will remain unconstrained, and thus, • 
and • can be varied independently. Hence, by setting 6H to 
zero for arbitrary 6• m, and 6• m subject to the constraint 
6•i= 6• on FieF, (13) yields 

•m--Om[•m ] +Sm[• m] =0, on •m, m= 1,2,...,M• 
(14a) 

«½i-Ni[½i ] •-Mi[• i] -• i •/J-- Nj [•. j] 
+ M• [4/] = 0, on Fin P s, id = 1,2,...,M, 

« ½m -- Nm [ ½m] -•- Mm [ • m] 
+pO, = 0, on Fm m, m = 1,2,...,M. 

that 

(14b) 

(14c) 

Then, by adding ( 10a ) and (14a) it immediately follows 

pm __ •bm, on r TM, m = 1,2,...,M, (15) 

i.e., •b m gives the value of pm on r TM, and since •bi= 4J on 
FiCI r 'j, this implies that (3b) holds. That (3d) also holds 
can be seen by subtracting (14c) from (10b). Recall that 
(3a) and (3e) are satisfied automatically from representa- 
tion (6). To show that (3c) is satisfied as well, one need only 
substitute (10b) into (14b). There remains only to prove 
that ½m actually is equal to pnmm on r TM. To this end we use 
( 15 ) and rewrite (14a) as 
1 m m lp Om[•b m] -•-Sm[½ m] ---0, on F m, 

(16) 

On the other hand, sincep m, as given by ( 6 ), is a solution 
of (3a) and (3e) for any pair •b m, •pm, it must satisfy the 
representation formula: 
I m m IP --Dm[p m] -1LSm[Pnm] •-0, on F m, m= 1,2,...,M. 

(17) 

Subtracting (16) from (17), and using ( 15 ), gives 

Sm [pnmm -- •b m ] --0, on F m, m -- 1,2,...,M. (18) 
Now, the operator Sm is nonsingular as it does not admit 

any eigenfrequencies in f•m since f•m is unbounded. This im- 
plies that 

p nmm = ½m, on r TM, m = 1,2,...,M. (19) 
We have shown that the vanishing of the first variation 

611 of 11 insures that Eqs. (3), which define completely the 
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fluid scattering problem by a rigid scatterer, all are satisfied. 
That the converse is also true can be shown from (13) using 
the integral representation (6). Thus we have the following. 

Variational principle: pro, given by (6), is a solution of 
the scattering problem (3) [ and therefore also of ( 1 ) ] if and 
only if •m and •b m are such that the variations 6II of the 
functional defined by (12) vanishes for arbitrary variations 
6• m, and 6• m subjected to 6• i = •ff on FiN 1 "j. The pressure 
pm and the normal derivative p,m m, on F m, are given, respec- 
tively, by •m and •b r•. The scattered pressurepm in •-•m can be 
obtained directly from (6), or from the corresponding 
expression over the boundary F, once •m and •m have been 
determined. 

Remarks: (i) The variational principle is valid for all 
frequencies. This follows directly from the fact that $m has 
no critical frequencies since •-•m is unbounded. It is, thus, 
clear that the idea of decomposing l• + into two or more 
unbounded subdomains is what frees this method from the 

usual defect associated with standard integral formulations. 
(ii) The boundary condition (3c) is satisfied naturally by 
the variational principle. This means that when we approxi- 
mate, as below, with finite elements on 1TM, m = 1,2,...,M, 
there are no restrictions across boundaries. This implies that 
each •b m is coupled only to •m within each element, and 
therefore, may be condensed, leaving •m as the only un- 
known. (iii) The corresponding system of discretized alge- 
braic equations will be automatically symmetric upon dis- 
cretization of (13). (iv) The functional II includes an 
integral that contains the hypersingular operator M m . For 
performing computations this may be readily evaluated in 
terms of the weakly singular operator $m as31 

f1• /•Mm [z]dS = k 2 fr Sm [•/11m ]'(/•nm )as m m 

-- fi•mSm In m X•7•']'(n m 
(20) 

(v) Extensions are possible. If the obstacle is a shell or a 
general elastic body the procedure is essentially the same, as 
one need only include in (12) the potential energy of the 
deformable body. This extended procedure for interface 
problems is related to the methods presented in Refs. 20 and 
21 in that all three procedures are variational and use (16) 
and (17). There are two crucial differences, however, be- 
tween our approach and that in these two references. First, 
by subdividing 1• + into subregions not only can one obtain 
sparse, rather than full, systems of equations, but also pre- 
clude any critical frequencies as discussed in (i). Second, by 
using bothp" andp•mm as independent unknowns, as opposed 
to using only one of them, the displacements within the de- 
formable body do not enter into the formulation as argu- 
ments of any integral operator that contains the Green's 
function. This means that the coupling between the bound- 
ary displacement will be strictly local, thus resulting in a 
more efficient numerical model. This point will be illustrated 
in a future communication. (vi) A rigorous proof of the exis- 
tence and uniqueness of the solutions •m and •b m can be de- 

veloped by using the coercivity property of the operators Sm 
and M m in (12). 

II. FINITE ELEMENT DISCRETIZATION 

We consider here the numerical solution of the vari- 

ational problem using finite element methodology. To solve 
for [ (•m),(•m) ] using (13) we first divide the boundary 1TM 
of each subregion •-•m into finite elements. We will denote the 
set of all the individual elements on 1TM as a macroelement. 

Since •i and & must be continuous at the interface FiN 1 "j we 
select a single mesh for this interface and approximate 4i and 
• on l"i• 1 "j by identical interpolating functions defined by 
their modal values. This ensures that 4 will be continuous 
across the interfaces. 0 i and •, on the other hand, will be 
approximated by separate approximating functions on each 
side of the interface, and the condition that 0 i d- • vanish 
across Fir3 F • will be left to be satisfied by the variational 
principle, since it is a natural transition condition. 

On Fmm both 4m and 0 m are approximated, in general, by 
standard finite elements. The shape functions for 4m must be 
such that 4 is at least continuous since the gradients V4 m are 
needed in (20) for evaluating the duality pairing 
frm6•mMm [q•m]dS. Here, •b m can be piecewise discontin- 
uous. Special treatment, however, is required to represent 
both •m and •m on l"i• 1 '¾ due to the infinite extent of these 
interfaces. The procedure that we follow here is to introduce 
a strip of standard elements on each interface Fff3 F j up to a 
certain distance away from F, and then use the mapped infi- 
nite elements developed originally for field equations in Ref. 
25 to extend the solution to infinity. A detailed description of 
these elements is given therein. In brief, within each inter- 
face, along the radial direction one uses the mapping 

• = 1 -- (B/r), B is a constant, (21 ) 

between the local coordinate • and the global coordinate r. 
Thus, the semi-infinite line in the global system can be 
mapped into the interval [ - 1,1 ). This mapping is also used 
for the function variation over an element, so that a polyno- 
mial variation in local coordinates 

(22) 

will map to 

P =/7o + (/?, Ir) + (/?•IP) +'". (23) 

At large distances away from the scatterer (kr>> 1 ) it is 
well-known that the pressure p decays asymptotically as 

exp(ikr)( •'1 •'2 ) R 3 •'o + + + ... in kr •rr ( kr) 2 

P• exp(ikr)(6o+6• 62 ) R 2 (24) x• •rr+ (kr)2 + '" in 
where Yo, Y•,...,6o,6•,... may be functions of the tangential co- 
ordinate. Also, •i exhibit this behavior on FiCI F• and so will 
•pi and g/. Thus, along a mapped infinite element we use 
shape functions of the form 

N(•,•I ) = EM(•,•I ) ( B exp in R 3, (25a) 
1 --• 1 --•'! 
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B - exp in R 2, (25b) N(•') = CM(•') 1'-- •' 1 -- •'! 
where C and E are constants and M(•) and M(•,•7) are 
standard finite element shape functions in R 1 and R 2, respec- 
tively. 

From this point on, the finite element procedure can be 
carried out over the boundaries F m as usual, provided the 
necessary numerical integrations are done with care. That is, 
one can derive a system of algebraic equations for the nodal 
values of •m and •b m on F m by generating the coefficient ma- 
trices and nodal loads element by element for each subregion 
fl m using (13), followed by general assembly over all Fm's, if 
desired. (This is unnecessary if one uses element by element 
iterative solution procedures. ) Since the nodal values of •b • 
on ['• within a given subregion F m are coupled only to the 
nodal values of •m within the same subregion, it is conve- 
nient to condense the former so that one solves initially only 
for •m. •b m may be obtained by backsubstitution once • has 
been determined. 

To examine the structure of the resulting system of alge- 
braic equations it is convenient to consider two-dimensional 
scattering problems. (The three-dimensional case is similar 
but the numbering scheme is more cumbersome.) Let the 
various branches of the boundaries F "• be numbered as fol- 

lows. The radial branches will be assigned odd numbers 
while the portions F• of F m will be given even numbers. 
Thus, for instance, the branches of F • are 2rn -- 1, 2rn, and 
2rn d- 1; since the last branch of F M coincides with the first 
one of F • there is a total of 2M distinct branches. It is then 

easy to verify the final system of algebraic equations has the 
following structure: 

A•=d, (26) 

where 

and 

A • 

All A12 A13 0 0 0 ' 0 

A21 A22 A23 0 0 0 ' 0 

A31 A32 A33 A34 A35 0 ' 0 

0 0 A43 A44 A45 0 ' 0 

A2M- 1,1 0 0 0 0 0 ' A2M- 1,2M-- 3 

A2vt, • 0 0 0 0 0 ß 0 

ß 

0 A •,2vt- • A 
0 0 0 

0 0 0 

0 0 0 

ß ß o 

A2M- •,2M--2 A2M- •,2M-- • A2M-- •,2M 

0 A 2st,2st- • A 2st,2• . 

(27) 

where •bi is the vector of nodal pressures corresponding to 
the ith branch and di represent effective nodal displacements 
on the scatterer's surface calculated from po•. Corner points 
on Fi that also belong to a radial branch are odd-numbered, 
and in (26), (27) are regarded as part of the radial branch. 
Observe that A, the system compliance matrix, is complex 
and symmetric but not Hermitian, i.e., A = A r, and that 
each nonvanishing block matrix A• is full. Most important- 
ly, A contains a number of zero submatrices since global 
coupling occurs only through the nodes along the rays. In 
addition, since in each element the nodes within F• are cou- 
pled only to the nodes on F m, it is possible to condense the 
even-numbered vectors •bi element by element, leading to a 
final algebraic system of equations that involves only the 
odd-numbered nodes, along the radial branches. In general, 
if the total number of nodes lying along the rays is signifi- 
cantly smaller than that corresponding to the nodes placed 
directly on F m, especially if the number of zero block matri- 
ces is large relative to that of the nonzero ones, solving (26) 
or its condensed version just described will be much more 
efficient than solving the full system that would result from a 
regular boundary integral procedure, which couples all the 
nodal pressures on the surface of the scatterer. This is the 
main potential advantage of the present localized, or domain 
decomposition, method. 

III. NUMERICAL EXAMPLES 

In order to assess the accuracy of our procedure and to 
verify that it is valid for critical frequencies, we consider the 
two-dimensional scattering problem for a fixed rigid circular 
cylinder of radius a to an incident plane wave of amplitude 
po. We will consider initially the case with four angular parti- 
tions, for varying numbers of elements directly on the scat- 
terer. Three regular elements will be placed along each ray, 
in addition to the infinite element, as shown on Fig. 3. The 
effect of increasing the number of angular partitions, or 
macroelements, and decreasing the number of radial ele- 
ments linking the scatterer to the infinite element will be 
explored subsequently. Since the infinite element approxi- 
mations are based on large-distance asymptotic expansions, 
the purpose of the regular finite elements along radial lines is 
to represent the solution within the transition region be- 
tween the scatterer and the region where the asymptotic so- 
lution becomes applicable. The size of this region obviously 
depends also on the wave number. 

In all our calculations, three-noded quadratic isopara- 
metric elements are used to represent the boundary F, the 
pressure •b m, and the normal derivative of the pressure •pm. 
With these shape functions, all the entries of the individual 
submatrices in (12) are evaluated by ordinary Gauss-Le- 
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Infinite 

i element 

Regular 
elements 

• * end node ß middle node 

p0 

FIG. 3. Boundary element mesh for a circular cylindrical scatterer (four 
macroelements each comprised of three regular elements and an infinite 
element on each ray and four regular elements on the arc). 

TABLE I. Normalized scattered pressure (r/a)•/2 p(r,O)/pO at different 
locations (four angular partitions; three standard radial elements in each 
radial line). 

Locations of test points 
Backscatter (0 = 270*) Forward scatter (0 = 90*) 

Radius No. of 

r/a elements Real Imaginary Real Imaginary 

ka = 2.404 825 6 

1 8 - 0.8226 0.3483 0.5842 1.3693 
16 - 0.8105 0.3440 0.5737 1.3405 
32 - 0.8096 0.3443 0.5726 1.3380 

Exact - 0.8074 0.3430 0.5728 1.3363 

100 8 - 0.6531 - 0.0635 -- 0.8270 0.4959 
16 - 0.6550 - 0.0647 - 0.8308 0.4970 
32 --0.6551 -0.0638 -0.8311 0.4975 

Exact - 0.6551 -- 0.0645 - 0.8310 0.4972 

ka = 8.653 727 9 

1 16 -- 0.8653 0.6669 0.5567 0.5032 
32 -- 0.7925 0.6094 0.5072 0.4477 
64 - 0.7764 0.6029 0.5050 0.4332 

Exact -- 0.7735 0.6031 0.5058 0.4339 

100 16 - 0.6806 0.1419 1.9064 -- 0.9721 
32 - 0.6717 0.1697 1.8807 -- 0.9995 
64 -- 0.6709 0.1692 1.8824 - 0.9999 

Exact - 0.6710 0.1697 1.8825 -- 1.0000 

gendre numerical integration using only three Gaussian 
points per standard element, except f6r the diagonal terms of 
the submatrices containing the weakly singular operator Sm 
defined by (7a) and (9a), and the hypersingular operator 
M m given by (7b) and (9d), which are integrated after sub- 
tracting off singularities. Recall that the terms containing 
M m are evaluated by first smoothening the corresponding 
hypersingular kernels with the aid of (20). In this first verifi- 
cation of the proposed localized integral equation method 
the integration over the infinite elements is performed only 
approximately by neglecting contributions beyond a radius 
of 100/k, and by subdividing the interval of integration into 
16 subintervals, each of which is integrated by a 4-point 
Gauss-Legendre integration. More accurate and efficient 
integration techniques will be explored in future studies. 
From the numerical results it will be seen, however, that 
neglecting the tail end of the rays does not affect significantly 
the accuracy of the method. 

Table I gives the forward-scattered and backscattered 
normalized pressure in the fluid, both directly on the scat- 
terer (r/a = 1) and in the far field (r/a = 100), for two 
different normalized frequencies ka, calculated for different 
numbers of elements on the periphery of the scatterer. No- 
tice that the scattered pressure has been normalized by the 
amplitude of the incident wave and by the dimensionless 
radius at the observation point. The two particular wave 
numbers considered were selected to illustrate how the new 

localized boundary integral method performs for critical 
wave numbers for which ordinary integral methods fail. The 
tabulated results clearly show convergence to the corre- 
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FIG. 4. Normalized amplitude of scattered pressure at various locations as 
a function of wave number [(a) r/a--1, 0--270ø; (b) r/a= 100, 
0--270ø; (c) r/a--1, 0--0', 180ø; (d) r/a--100, 0=0 ø, 180ø; (e) 
r/a = 1, 0 = 90*; (f) r/a = 100, 0 = 90ø]. 

2515 J. Acoust. Soc. Am., Vol. 91, No. 5, May 1992 Zeng eta/.' Integral equation method for scattering 2515 



sponding exact solutions. Naturally, the number of elements 
required to attain a prescribed accuracy increases with the 
wave number, due to the reduced wave length. In general, 
for a fixed number of elements, the accuracy is greater in the 
far field than directly on the scatterer. 

Figure 4 shows the amplitude of the scattered pressure 
at various locations, both on and outside the scatterer, for a 
wide range of frequencies. Exact solutions are represented by 
solid lines while dashed lines denote the approximate solu- 
tions. The calculations were performed for wave numbers 
from 0.1 and 30 with a step size of 0.1, using a varying num- 
ber of elements on the boundary I' as needed. Thus, while 
only 16 elements were sufficient at low frequencies, 128 ele- 
ments were used for ka = 30. Up to this frequency the ap- 
proximate and the exact solutions are essentially indistin- 
guishable. 

To illustrate how the approximations for the scattered 
pressure compare with the exact solutions over the entire 
periphery of the scatterer, Figs. 5 and 6 depict their normal- 
ized amplitudes as a function of the angular coordinate 0, 
both for r/a = 1 and r/a = 100, for several wave numbers. 
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FIG. 5. Normalized amplitude of scattered pressure at various locations for 
different wave numbers as a function of angular position [ (a) r/a = 1, 
ka= 1; (b) r/a= 100, ka= 1; (c) r/a=l, ka=2.4048256; (d) 
r/a = 100, ka = 2.4048256; (e) r/a = 1, ka = 8.6537279; (f) r/a = 100, 
ka -- 8.6537279 ]. 
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FIG. 6. Normalized amplitude of scattered pressure at various locations for 
different wave numbers as a function of angular position [(a) r/a = 1, 
ka = 15; (b) r/a = 100, ka = 15; (c) r/a = 1, ka = 20; (d) r/a = 100, 
ka = 20; (e) r/a = 1, ka = 30; (f) r/a = 100, ka = 30]. 

Again, the two solutions practically coincide, for all values 
of 0. It is interesting to observe how the amplitude of the 
scattered pressure directly on the scatterer tends to unity 
within the bulk of the illuminated and shadow regions. On 
the illuminated side the pressure approaches the limit 
smoothly, whereas it oscillates on the shadow side. In the far 
field the same general oscillatory and smooth behaviors oc- 
cur, except that the largest scattering occurs, of course, in 
front of the scatterer. 

Tables II and III serve to examine how changing the 
number of angular partitions and the number of regular radi- 
al elements affects the accuracy of the solution for a given 
wave number and for a fixed number of elements on the 

boundary of the scatterer. These results show that the solu- 
tion is basically insensitive to the number of angular parti- 
tions, and that even one regular radial element may provide 
sufficient accuracy. While decreasing the number of radial 
elements reduces the total number of unknowns, increasing 
the number of partitions has the opposite effect. The main 
advantage of introducing a larger number of angular parti- 
tions is that one can thus obtain a sparse global compliance 
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TABLE II. Effect of number ofmacroelements (angular partitions) on nor- 
malized scattered pressure (r/a) 1/2 [p(r, 0)I/p ø (ka = 8.653 727 9, three 
standard radial elements in each radial line, 32 elements on r = a). 

Surface Far field 

(r/a= 1) (r/a= 100) 
Angular No. of 
position Partitions Real Imaginary Real Imaginary 

Forward 8 0.5081 0.4475 1.8810 -- 0.9995 
scatter 4 0.5072 0.4477 1.8807 -- 0.9996 

(0 = 90 ø) Exact 0.5058 0.4339 1.8825 -- 1.0000 

Side 8 0.3653 0.0777 0.0798 0.5182 
scatter 4 0.3646 0.0775 0.0796 0.5181 

( 0 -- 0ø, 180 ø) Exact 0.3675 0.0779 0.0802 0.5174 

Backscatter 8 -- 0.7918 0.6097 0.6717 0.1701 

(0= 270 ø) 4 --0.7925 0.6094 0.6717 0.1697 
Exact -- 0.7735 0.6031 0.6710 0.1697 

IV. CONCLUDING REMARKS 

In light of the excellent agreement between the approxi- 
mate and exact solutions obtained for the test problem, it 
appears that the new localized symmetric boundary integral 
equation method provides a practical and accurate means 
for solving time-harmonic scattering problems for all fre- 
quencies. It combines the accuracy and reduced size stem- 
ming from integral equation formulations, with the sparsity 
of algebraic systems usually associated only with finite ele- 
ment grids that cover the entire computational domain. It 
also offers the possibility of selecting the optimum sparsity 
that will best exploit the main features of particular ad- 
vanced architecture computers, as well as the most appropri- 
ate direct and indirect methods for solving the resulting sys- 
tems of algebraic equations. Two- and three-dimensional 
scatterers of more general shape will be considered in future 
studies. 

matrix which might simplify significantly the computational 
effort. Moreover, while the method, as presented, is valid 
without modification for scatterers of arbitrary shape in two 
or three dimensions, it may be convenient, in practice, to 
subdivide the fluid region into two distinct parts and to com- 
bine finite elements within a bounded region with boundary 
elements over an unbounded region. Finite elements would 
be used in the finite region contained between the scatterer 
and a convenient external boundary of simple convex geom- 
etry such as a prism or a sphere. One would then use the 
proposed localized boundary element method for the exteri- 
or region surrounding the external boundary of the first 
bounded, domain. Due to the simple geometry of the exteri- 
or region only one or two different types of boundary ele- 
ments would be required, and then copied to all the subre- 
gions tl m . This is the procedure followed in our numerical 
examples, for which one macroelement was constructed 
over a single quadrant or octant, depending on the problem, 
and then copied to the other three or seven wedges. 

TABLE III. Effect of number of standard radial elements on normalized 

scattered pressure (r/a)i/2 p(r,O) /pO (ka = 8.653 727 9; four macro-ele- 
ments; 32 elements on r = a). 

Surface Far field 

(r/a = 1) (r/a = 100) 
Angular No. of 
position elements Real Imaginary Real Imaginary 

Forward 1 0.4960 0.4443 1.8793 -- 1.0006 
scatter 2 0.5021 0.4493 1.8882 -- 0.9986 
(0 = 90 ø) 3 0.5072 0.4477 1.8807 -- 0.9996 

Exact 0.5058 0.4339 1.8825 - 1.0000 

Side 1 0.3675 0.0728 0.0812 0.5198 
scatter 2 0.3639 0.0779 0.0806 0.5169 

(0=0 ø, 180 ø) 3 0.3646 0.0775 0.0796 0.5181 
Exact 0.3575 0.0779 0.0802 0.5174 

Backscatter 1 -- 0.7925 0.6069 0.6707 0.1677 

(0= 270 ø) 2 --0.7942 0.6079 0.6702 0.1670 
3 -- 0.7925 0.6094 0.6717 0.1697 

Exact -- 0.7735 0.6031 0.6710 0.1697 
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