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We have recently developed absorbing boundary conditions for the three-dimensional scalar wave
equation in full-space. Their applicability has been extended to half-space scattering problems
where the scatterer is located near a pressure-free surface. A variational scheme was also proposed
for coupling the structural acoustics equations with the absorbing boundary conditions. It was
shown that the application of a Galerkin method on the variational form results in an attractive
finite element scheme that, in a natural way, gives rise to a surface-only absorbing boundary element
on the truncation boundary. The element — the finite element embodiment of a second-order
absorbing boundary condition — is completely characterized by a pair of symmetrie, frequency-
independent damping and stiffness matrices, and is equally applicable to the transient and harmonic
steady-state regimes. Previously, we had applied the methodology to problems involving scatterers
of arbitrary geometry. In this paper, we validate our approach by comparing numerical results
for rigid spherical scatterers submerged in a half-space, against a recently developed analytic
solution.

1. Introduction

A primary difficulty associated with the numerical modeling of exterior wave propagation
problems stems from the need to satisfy a boundary condition at infinity. In structural
acoustics, i.e. in problems that, over the unbounded exterior region, are governed by the
scalar wave equation (transient regime) or Helmholtz’s equation (steady-state regime), the
pertinent radiation condition is that of Sommerfeld.! The success of the many different tech-
niques developed for tackling the exterior structural acoustics problem hinges, in essence,
on their ability to accurately model this radiation condition (at infinity, or closer, in some
other form). Comprehensive reviews of the various methodologies can be found in Refs. 2-6
amongst others. These methods can be generally classified into one of two types: (a) those
based on boundary integral representations, which allow one to completely eliminate the
exterior region at the expense of non-locality, and (b) those that truncate the infinite region
by introducing an artificial boundary on which one specifies some conditions (absorbing,
non-reflecting, etc.) to preclude the occurrence of spurious reflections.
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Boundary integral methods and their variants have long been dominant for problems
in the frequency domain, as the satisfaction of the radiation condition is guaranteed
a priors through the use of the Green’s functions employed in the formulation. However,
and despite the much celebrated dimensionality reduction associated with boundary inte-
gral approaches, the resulting dense matrices render three-dimensional applications com-
putationally very expensive (if not infeasible at high frequencies, given present means). A
detailed cost comparison of boundary element against finite element methods for frequency-
domain problems can be found in Ref. 7; it clearly places the computational advantage
in favor of finite elements for both interior and exterior problems. Attempts to reduce
the computational cost entailed by boundary integral methods via approaches resulting in
block dense matrices have also been reported. For example, the hybrid method presented
in Refs. 8-9 uses a boundary integral method in conjunction with domain decomposition
and the idea of mapped elements. However, numerical results have, thus far, been reported
only for two-dimensional problems. The computational ramifications of the non-local char-
acter of the boundary integral methods are exacerbated in the transient regime. While a
boundary integral formulation is straightforward in the time-domain in terms of retarded
potentials,’0-13 the resulting numerical scheme is non-local in both time and space, and
thus computationally unattractive.

By contrast, a domain-based method, such as finite differences or, more commonly, fi-
nite elements, might be more desirable for discretizing the continuous problem, for the
discretization will result in sparse matrices. But then, there arises a need for a finite com-
putational domain which, in turn, forces the prescription of a condition, typically termed
as absorbing, artificial, etc., on the truncation boundary in order to ensure a well-posed
problem. There is an exact condition on that truncation boundary,!* usually referred to as
the DtN (Dirichlet-to-Neumann) map,'*~17 which is however non-local in time and space
and ig similar to a boundary integral representation. Even if the spatial non-locality might
be computationally-acceptable for the steady-state problem, the cost associated with the
implementation of the condition in the transient regime still necessitates some form of a
local approximation of the DtN map (see also Ref. 18). The construction of such local
approximants — the absorbing boundary conditions — has been the subject of much re-
search, starting with the pioneering and systematic work of Engquist and Majda.!?-?9 They
approximated the irrational dispersion relation by rational Padé approximations, thus ob-
taining a sequence of absorbing boundary conditions in two dimensions. Later, Bayliss and
Turkel?12? also obtained a family of absorbing boundary conditions through asymptotic

" expansions of the radial distance for circular and spherical geometries. Various implemen-

tations of their conditions in both the time- and frequency-domain within the context of
finite elements have also appeared,?® usually resulting in unsymmetric formulations?4-27 for
full-space problems. :

It is worth noting that it is difficult for the local approximants to the non-local DtN to be
well-behaved at both ends of the frequency spectrum; by construction, many among them
are well-behaved at the high-frequency end. Alternatives to absorbing boundary conditions,
which are exact at both the low- and high-frequency limits and local in time, are the
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well-known doubly asymptotic approximations (DAAs).?®2% The price one pays for this
benefit is having to deal with a spatially non-local boundary, since, at each instant, DAAs
couple the response at each point of the artificial boundary with that at every other point.

We remark that within the context of domain-based methods, and in particular of the
finite element method, devising absorbing boundary conditions at the continuous level and
later coupling them with the domain discretization scheme of choice (e.g. finite elements) is
only one of possible paths for tackling the appropriate treatment of the radiation condition
(see, for example, Ref. 30 where special elements were devised in order to couple truncated
DtN conditions with finite elements). An alternative approach is realized via mapped infinite
elements, an idea pioneered by Zienkiewicz and Bettess.?! In this approach, decay functions
that describe the asymptotic behavior of the exact solutions are used at the truncation
boundary and special elements, appropriately called infinite, are devised on which the decay
functions are mapped.*?** The advantage of the infinite elements is their natural coupling
to the interior finite elements. One of their disadvantages is that they are derived based on
ad-hoc processes that do not necessarily guarantee convergence in all cases; but by far, their
primary drawback is that they are limited to frequency-domain formulations. Burnett®* has
recently developed an infinite element based on a prolate spheroidal multipole expansion
alleviating many of the shortcomings of past developments. It too, however, cannot be used
in the time-domain.

An interesting variant, or enhancement, of the infinite element approach is provided
by the so-called wave envelope elements.?*% While in standard Galerkin infinite element
formulations one uses identical test and trial functions, in the wave element variant the
two functions are the complex conjugates of each other. This allows for the ready Fourier
inversion of the resulting discrete equations from the frequency- to the time-domain; the
resulting semi-discretized form is second-order in time. The development of the wave en-
velope elements is also predicated on ad-hoc considerations and the resulting formulation
is unsymmetric. Nevertheless, they are attractive as they can be equally applied to both
steady-state and transient problems — an exception to the rule. The latter is also true of
the elements developed herein.

In this paper, we too adopt the idea of absorbing boundaries and favor finite elements
for the discretization. Earlier work®—40 has resulted in a sequence of local approximants to
the non-local condition valid for general geometries (smooth) in a full-space. Here we show
via the method of images how their use can result in symmetric formulations for half-space
problems in either the steady-state or transient regimes. Specifically, we consider a three-
dimensional rigid structure submerged in an-acoustic fluid at a near-surface location; the free
surface is assumed to be a horizontal plane [Fig. 1(a)] (extensions to elastic structures are
straightforward and have been included elsewhere'!). We introduce an artificial boundary
of general convex shape [Fig. 1(b)| and prescribe on it a second-order, three-dimensional
absorbing boundary condition. We seek to determine the pressure distribution in the fluid
within the finite volume bounded by the free surface and the artificial boundary [Fig. 1(b)]
given an incident wave impinging upon the structure. We show that the application of
a Galerkin process on the variational form gives rise to a simple surface-only absorbing
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Fig. 1. (a) Model of fluid-structure interaction problem in a semi-infinite acoustic medium £ bounded by
a planar free surface of infinite extent; and (b) reduced model with finite fluid region @y and artificial
boundary I,.

boundary element. We validate the method by comparing numerical results for a rigid
spherical scatterer against analytical solutions?? for the case of an obliquely-incident plane
wave.

2. The Continuous Problem
2.1. Variational formulation

Let us first consider the following problem in full-space; the formulation for the half-space
case follows. The development herein parallels earlier work in two and three dimensiong.37-40
Let T' be a closed surface with exterior @ ¢ R3; Q is occupied by a compressible, inviscid,
linear and homogeneous fluid. We consider the scattering problem in which a traveling plane
wave ¥° impinges upon a rigid structure [Fig. 2(a)], and seek to determine the scattered
(or total) pressure field in Q. Let us state the strong form of the problem: Given ¥%(x, )
with x €  find ¥(x, ) such that

P(x, 1) = EAp(x, 1), xeQ, >0, (2.1)

hu(x, ) +9p(x, 1) =0, x€T, t>0, (2.2)
. 1.

rlggo r (e,br + Ew) =0, (2.3)

P(x, 00 =0, P(x,00=0, xe. (2.4)

In these equations, v denotes scattered pressure; x is the position vector; ¢ is time; v is
the outward unit normal on I'; ¢ is the velocity of wave propagation; A is the Laplace
operator, an overdot denotes derivative with respect to time; and ¢, denotes the normal
derivative of the scattered pressure . Condition (2.3), in which r is radial distance and
¥, the derivative of the pressure along the radial direction, is the Sommerfeld radiation
condition. As indicated by (2.4), the system is taken to be initially at rest.
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v I,  Absorbing
Boundary

Fig. 2. (a) Model of fluid-structure interaction problem in an infinite acoustic medium £2; and {b) reduced
model with finite fluid region £y and artificial boundary T',.

Next, we truncate the unbounded region £ by introducing an artificial boundary T,
that contains I' in its interior; this gives rise to the bounded sub-domain €, as shown in
Fig. 2(b). Then, in order for the solution ¥ to coincide with that of the original problem (the
one defined over §2) within the truncated region (¥, it is necessary to specify a boundary
condition on I'; that, at a minimum, will ensure that the outgoing waves crossing I, are
undisturbed by its presence. This boundary condition, which can be determined in terms
of the actual solution % on I'y is of the form

P, (x, t) = Fi(, )] (x), xe€l,, (2.5)

in which the dots following ¢! indicate dummy variables, and JF is an integral operator that
depends on ¥*; and ¥ denotes the time history of ¢, i.e.

P =p(t—7), ¥r:0<7 <t (2.6)

F is non-local in time and space, that is to say, the motion at any given instant ¢ at
every point on the artificial boundary I'; is coupled with the time histories of all other points
on I';. The non-local character of the exact F makes it unsuitable for implementation in
the context of the finite element method. . Herein, as shown later, we employ a localized
approximant of F — a second-order absorbing boundary condition — that is particularly
stuitable for numerical implementation using finite elements.

With the introduction of the artificial boundary ', and the boundary condition (2.5),
one can write a strong statement for the truncated domain Q¢ analogous to (2.1)-(2.4). The
variational form of that statement can be easily shown to be

1 . 3 o
c_zfgf 6¢1/)d§2f+/ﬂfV51/J~V¢de—fra ww,,dra_fréww,,dr. (2.7)
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Equation (2.7) must hold true for arbitrary &'. It is important to observe that, upon
spatial discretization, (2.7) will lead to a symmetric system of ordinary differential equations
provided one can ensure the symmetry of the term in (2.7) containing v,. If one were to
substitute the exact condition (2.5) for 4, in (2.7), a highly non-local formulation in both
time and space would result. We seek to reduce the non-locality by suitable approximants.
Our process for obtaining the localized approximants gives rise to a family of absorbing
boundary conditions; some details are provided in the next section. Notice also from (2.7)
that in order to maintain the symmetry of the resulting formulation, one need also cast the
approximants in a symmetric form. As it was shown elsewhere,37-%0 the latter is achievable
through a decomposition scheme local to the boundary.

2.2. The absorbing boundary

A systematic procedure for constructing local approximants to the non-local operator of
(2.5) of increasing order and complexity, and for arbitrary convex artificial boundaries
in three dimensions has been presented elsewhere.>"40 Here, we repeat the steps that are
essential for the remainder. To this end, let I';, be smooth and convex and let it be described
by the parametric representation X(u, w)}, where X denotes the position vector on Iy, and
u, and w are the surface parameters (Fig. 3). Then, the second-order absorbing boundary
condition is given by37-40:

TZ’V""Y"!’V:_%'@L"' (H— %)@*‘H”NL’*‘%{%{ [%(hzz't/)u—hmww) )

+ (%(—hw Whu + huww)) ] +(H? - K)w}, (2.8)

w

where < is an arbitrary non-negative parameter, H and K are the mean and Gaussian
curvatures of T'y, respectively, and h;; are the components of the Euclidean metric tensor

Fig. 3. Surface parameterization of artificial boundary T',.
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on I, ie.

hy=E=X, -X,, (2.9)
hiy = hyy = F = X, - X, (2.10)
hor = G =Xy Xy, (2.11)
h=EG - F?, (2.12)

The constant v above has been introduced for stability. In Refs. 38 and 40 we derived
(2.8) by using asymptotic expansions in the Laplace transform domain of the solution to
the problem exterior to I'y. The parameter «v is introduced into these expansions to ensure
the stability of the solution when the expansions are transformed back to the time-domain.
From a physical point of view, + represents a certain amount of damping introduced through
the boundary I'y. Its value should be greater than, or equal to, a critical value 7. for the
particular case of a spherical absorbing boundary?® .. = 0.

From Eq. (2.8), it is obvious that the second-order absorbing boundary condition cannot
be readily incorporated into the variational statement (2.7} as it contains both the normal
derivative of 4, 1, as well as its first time derivative, i.e. ¢,. To do this efficiently, we
introduce two auxiliary variables en the artificial boundary, q(l) and q(Q), and decompose
(2.8) into the following set of three equations:

1. c c
= b Hy— L7 - S K@
Yo=Y -Hy-2Je - o (H - K¢, (2.13)
T - T4 - 2748 =0, (2.14)
and
v—q? - %q-m) —0, (2.15)

where 7 is a differential operator defined by

1

g = f{[ f(hgg()u e w)]- +[5 Z=(=hia(h+ b () )]w}. (2.16)

Next, in order to incorporate (2.13)—(2.15) into the variational statement (2.7), we mul-
tiply (2.13) by 6¢; (2.14) by 6¢'1; and (2.15) by 6¢(2), where 6¢(1) and 6¢(2) are appro-
priate test functions, and integrate the resulting equations over I',. After integrating by
parts the terms containing tangential derivatives, there results the following enhanced form
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of (2.7):
lgf 5¢1}jdﬂf+/ V&JwV¢dQ;+lf b dla ~ [ Hopwdr,
oIy ] CJr, T,
< s W5 () _if 2 _ (2)
+27/m vy Vialdr, - - [ (i - K)spgar,
+if v35q(1)-v3¢dra_-9-f vesqt) . wegllgr,
27 Jr. 2vJr,

C C
—— | wisgV . wegldr, — —f H? — K)6¢Dy dT,
292 Lu I 1 2y Fa.( J6a™

C
2y Jr,

= /F Syl dr, (2.17)

(H? - K)6¢¥¢Pdr, + 2—;2 / (H? - K)é¢D¢@dr,
Ia

in which W* is the surface gradient. In addition, ¢!V, ¢{?), ¢ and ¢® are required to
vanish at ¢ = 0. It is noteworthy that (2.17) will lead, upon spatial discretization, to a
symmetric system of ordinary differential equations. In other words, the contributions from
the absorbing boundary maintain both the symmetric structure of the interior problem
and the sparsity of the associated system matrices. Clearly, the decomposition process
(2.13)—(2.15) results in the tripling of the degrees-of-freedom on the absorbing boundary
I';. However, the benefits derived by the decomposition in terms of accuracy, economy
and ease of use outweigh by far the computational cost entailed by the introduction of the
additional degrees-of-freedom on T',.

2.3. Propagation in a half-space

We consider next the scattering problem that arises when a traveling wave impinges upon
a submerged near-surface obstacle (Fig. 1). Typically, in full-space problems, one need
only be concerned with the motion within the finite fluid domain; it is expected that the
artificial boundary will resolve any outgoing motion to the degree allowed by the order of
the approximant (second-order here) to the exact condition on the truncation boundary. By
contrast, in half-space scattering problems where full-space absorbing boundary conditions

- are used, the introduction of an artificial boundary might give rise to additional errors,

particularly in regions close to the intérsection of the artificial boundary with the free
surface. This is especially true if one were to solve for the scattered wavefield in a manner
identical to that of the preceding section (the scattered wavefield on the free surface is non-
zero). The peculiarity of the half-space problem stems from the presence of a free surface
which the absorbing boundary conditions, developed originally for full-space problems, do
not readily account for.

To overcome the difficulties imposed by the use of full-space conditions in half-space
problems, we resort to the method of images in order to (a) ensure the appropriateness of
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the use of full-space conditions such as (2.8), and (b) ensure that the wavefield one needs
to solve for remains at zero at all times on the free surface; the use of the method of images
will also ensure that the wavefield on the semi-infinite portion of the free surface (exterior
to I'y) that is excluded from the computational domain, is zero. To this end, we consider
the half-space problem depicted in Fig. 1(b) and its adjoint full-space problem depicted in
Fig. 4. In Fig. 4, v,.q represents the image source of the incident pressure field ¥in. in the
positive half-plane (z > 0). We remark that we require the free surface to be a plane of
symmetry of the convex hull bounded by the artificial boundary I, (as in Fig. 4).
Let us define the image source pressure field as

'd}reﬂ(wa Y,z t) = _TpinC(x? ¥ —% t)a Vz. (218)
On account of symmetry, the total pressure field is
T/Jtot(wa Y, =, t) = —Tj)tot(m': 'ya —Zz, t) ) z 2 0’ (219)

and therefore, on the free surface (z = 0), one has

U‘)tot(ﬂ'), Y, 0, t) = 0, (220)
and
Yrea(x, ¥, 0, 1) + Yine(x, ¥, 0, £) = 0. (2.21)
Let us further define
wtot(«’ra Y, 2, t) = ’l,bo(ﬂ’,‘, U, 2, t) +’¢($= ¥z t)a VZ, (222)
where
wo@, ¥,z t) = "Pinc(ma U 2 t) + wreﬁ(xa Yy, 2, t)a Vz. (2-23)

¢ in (2.22) denotes a scattered pressure wavefield; in physical terms, ¢ is equal to the sum
of the scattered fields generated by the real and image scatterers when they are insonified

Fig. 4. Full-space problem adjoint to the half-space problem shown in Fig. 1(b).
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by tine and ren, respectively. With these definitions, ¥ is equal to the part of the scattered
field understood as the total wavefield less the free-field wave 0.
Notice that by virtue of (2.18), (2.20), (2.22) and (2.23), there holds

Wiz, ¥, 0,t) =0, (2.24)

It can be easily seen now that the adjoint problems (Fig. 1(b) and Fig. 4) are equivalent,
provided that in the half-space case one solves for the scattered wavefield ¥, prescribes (2.24)
on the free surface, and uses ¥® (2.23) as the excitation. We remark that ¥,eq, as defined
in {2.18), represents the free-field reflected wavefield, or in other words, the pressure field
that would have been generated in the half-space in the absence of the scatterer. These
observations, together with the fact that the right-hand side of the absorbing boundary
condition {2.8) is an odd function with respect to the z coordinate, allow for the ready use
of the full-space condition (2.8) in the half-space problem without any modification, i.e. one
needs to pose the problem for ¢ only over the lower half-space in Fig. 1, while prescribing
(2.8) on the restriction of the artificial boundary on this half-space. Then, a variational
statement similar to (2.17), yet written for a half-space (i.e. Q ! and Iy, need to be replaced
in (2.17) by their corresponding restrictions on the half-space, s and Ty, respectively), can
be readily used to yield solutions for the scattered field 1.

3. The Discrete Problem
3.1. Finite elements

The semi-discretized equations corresponding to the variational form (2.17) can be obtained
readily by using standard piecewise polynomials to represent the test and trial functions
in (2.17). Details of the procedure can be found in Ref. 37 for the similar two-dimensional
case. The resulting ordinary differential equations have the following structure:

MU+ CU+KU=F, (3.1)
where
er‘ﬂl’r Mv')r"bnf 0
M = M’J‘Jﬂf%’br‘ Mwﬂf‘djﬂf Mwﬂf 1/»"1"3 b) (3‘2)
0 . er‘a fl)n_f M’l’ra YT,
0 0 0
‘C =0 0 0|, (3.3)
0 0 cC*
K‘#)r'br Klbmbnf 0
K= | Kyqyr Hygan, Kyq, vr, : (3.4)

0 Ky, o,  Byp,yr, + K
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U is the vector of the unknown nodal quantities, i.e.
U7 = [yf, oh, 9L, (3.5)

and

FT =[], 0T, 0T]. (3.6)

o [ T @ , S -~ :
In the above, ¥; = |¥1 ,qr, ,4qr, |, fyr is the discretized form of the right-hand side

of (2.17), and ¢r, ¥q, and 4¥r, denote partitions of ¢ over I, Qf and Ty, respectively.

The subscripts in the matrices and vectors (3.2)—(3.6) are used in order to identify the
parts of the domain and the particular variable that contribute to the individual matrices.
The matrices M (3.2} and K (3.4) consist of two sets of block-diagonal matrices; the top left
blocks are the standard mass and stiffness matrices associated with the fluid; the bottom
right blocks in C (3.3) and in K (3.4) represent the effective damping and stiffness of the
absorbing boundary. Notice that the only coupling in the mass and stiffness matrices occurs
between the fluid and the absorbing boundary; indeed only through the stiffness matrix.
The only damping in the actual, unbounded, system comes from the radiated energy, which,
in our formulation, is modeled through the bottom right block of C associated with the
absorbing boundary.

3.2. Absorbing boundary elements

From (3.2)-(3.4), it is seen that the absorbing boundary is completely characterized by the
damping and stiffness matrices C* and K¢, defined by

C%abra Pr, 0 0
0 c” 0
ce — NP , (3.7)
0 0 c
o]

@ a a
K",bl“a",br'a le"a (1) K’J‘«’r‘a (2)

ar, Ir,
a a
K¢ = K 1 - K 1) (1 0 . .
v allef) (3:8)
@ 0 K
2 2 b
Q§‘a?¢ra q(ra)q{-a)

Since C® and K¢ are local and symmetric, they can be constructed element by element
and incorporated into the equations of motion by standard assembly techniques using exist-
ing finite element software. All that is necessary is to incorporate the element matrices ¢®
and k® corresponding to the global C* and K* into the finite element library of an existing
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software package for interior problems. The element matrices are given as®%:40

2

—z—ku ks —kis

k® = — k?g . PO 0 y (39)
k7, 0 K33

9 2
e |men 0 o
C ='2'? 0 —C9 0 , (310)
0 0 C33

with the following definitions for the individual matrices in (3.9)-(3.10):

ki =— g HNeNeTJre (3.11)
kg = FCVSNel"ﬁsNETdFE, (3.12)
ks = /P 5(H2 — K)NeNeTqre (3.13)
kyp = Fg‘v‘ﬁ\re -VNeTdre (3.14)
ks = fr (H? — K)NNTdr;, (3.15)

e = FZNSNETdI“;, (3.16)
c22‘I= ko2, (3.17)
c33 = kas . (3.18)

In the above, dT'¢ and the operator ¥V* denote the area differential and the approximation of
the surface gradient V* on an element 'S of ', respectively. N® denotes the usual element
approximations, e.g. linear isoparametric approximations.

The element matrices (3.9)-(3.10) essentially give rise to a new absorbing boundary

- element — transient or time-harmonic — which is capable of approximately absorbing the

waves that reach the artificial boundary while simulating the effect of the truncated infinite
domain. Notice that the new absorbing element is a surface-only element (Fig. 5). One need
only mesh the finite region § s and simply attach the absorbing element on the boundary
T, without any further discretization within the semi-infinite exterior region. Standard
quadrature rules can be used to evaluate the entries in the element matrices.

We remark that while the discussion here has been limited to scattering problems per-
taining to a rigid structure, the modifications needed to accommodate radiation problems
and/or penetrable scatterers are straightforward (e.g. see Ref. 41).
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Regular Fluid

Element Absorbing

Boundary
Element

Interior Fluid Region
Qf

Fig. 5. Typical geometry of absorbing transient/time-harmonic boundary element.

4. The Exact Problem

In order to validate the methodology outlined thus far, we sought to compare our numerical
results with existing analytical solutions. Gaunaurd and Huang*? have recently provided a
series solution for the scattering problem of a spherical rigid scatterer near a plane boundary
when insonified by a plane wave. The geometry of the problem is depicted in Fig. 6.

The authors in Ref. 42 obtained the total and scattered wavefields by using the method of
images in conjunction with an addition theorem for spherical wave functions. The addition
theorem used exhibits two distinct branches, one valid for the near-field, i.e. for radial
distances less than that between the centers of the real and image scatterer (d in Fig. 6),
and one valid outside this region. Herein, we repeat, as per Ref. 42, the expressions we used
in order to calculate the analytical solution. To this end, we consider a traveling plane wave
of the form:

1k(x cos az+y cos ay+zcosa, ) ,—iwt (4 1)

winc(ma Y, z, t) =e € 5

Zim image sphere

freesurface/
P

Fig. 6. Geometry of a rigid spherical scatterer in a half-space; real and image spheres.
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where a,, oy, and a, are the angles formed between the normal to the plane of the traveling
front and the three coordinate axes (x, y, 2); w denotes frequency; k = w/c is the wavenum-
ber; and ¢ is the imaginary unit. Using spherical coordinates (r, 8, ¢) for the system that
has origin at O (Fig. 6), (4.1) can be rewritten as

Vine (1", 8, ¢) — eikr(cos(rf;—ﬂo) sin # sin ag+cos 6 cos ao)e—ik% €os o

= 4rre—k§ cosao Z i4jq(kr) Z »(C0, Bo)Yep(8, 0). (4.2)
q=0 p=-—q
r i3 the radial distance and 6, ¢ denote the polar and meridional angles, respectively; Jq
is the spherical Bessel function; (k, ap, Bp) is the incident wavevector and an asterisk (*)
denotes complex conjugate. In deriving (4.2), use was made of a spherical representation
for plane waves*3 and of the following relations that connect the propagation angles in the
cartesian and spherical systems:

cos o, = cos Jpsin ag, (4.3)
Cos ay = sin Fpsin ap , (4.4)
COS vy = COS . (4.5)

In Ref. 42, three additional wavefields are defined, namely, the one reflected from the free
surface (4ren), the scattered one due to the real sphere (1/SP1) (if it alone was occupying the
full-space and was insonified by #inc), and the scattered field due to the image sphere (3/im2)
(again if the image sphere alone was occupying the full-space and was insonified by %rq).
The sum of all four fields is equal to the total pressure field for the half-space problem, i.e.

d}tot d’mc + ¢reﬂ + ¢ inbmc + T.Dreﬂ + ,d}sph + wlma, (46)
where
T/)reﬂ('r 4 ¢) — _eikr(cos(qb—ﬁg)sinﬂsinao—cos()cos ao)eik% COS 0l
) o0 p=q
= —dmeitieonm0 3™ it (kr) T (~1)TPY (a0, B)Ypl6 9),  (4.7)
¢=0 p==q
oo p=q¢
F0(r, 6, ¢) =dm 3 D7 byphl (kr)Yep(8, ), (4.8)
=0 p=—¢q
yima(p @' 4y = —4r Z Z (—1)"Pbaph D (kr' )Y (€, ¢') . (4.9)
¢=0 p=—¢

(r, 0, ¢) and (+', §', ¢’} are the coordinate systems with centers at O and O’ as per Fig. 6;
hg is the spherical Hankel function of the first kind (a time factor of e ~** has been assumed
throughout) and Y,,(8, ¢) is a spherical harmonic that is given as*3:

Yop(0, ¢) = \/(2(14—; Y Eg;gin(cos 8)e? . (4.10)
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It can be easily verified that ¢, in (4.6} satisfies the pressure-free boundary condition on
the free surface (¥, = 0). To satisfy the zero Neumann condition (d¢t/0r = 0) on the
surface of the real scatterer, the authors in Ref. 42 used an addition theorem for spherical
wave functions** in order to express (4.9) in the unprimed system (Fig. 6). The resulting
form for the total pressure is:

o0 P=4
Gio(r, 0, ) = 4w 3" Y i%g(kr)Y (a0, o) [eHE om0 — (—q)rireittcosan]

=0 p=—q

Sk = 3 (~1)"™ by @ynpe(d) { Jalkr), 1< d}

Y, (8, 6).
Rt Y (kr), r>d wlf) 9)

(4.11)

where

Qpgon(d) = \/(2??, + 1)(2¢ + 1)im =1y

g+n (1)
o0 ¢ n oY{g n o)]|h'kd, r<d
x 3 (-1)% (20+1)(0 0 O) (p _p 0){%(%’ :>d}.

o=lq—n|
(4.12)

In the above, the terms in large parentheses in the series of (4.12) denote Wigner 3-j
symbols.4®

Next, using the Neumann condition on the real scatterer, it is possible to proceed in the
way described in Ref. 42 in order to obtain an infinite system of algebraic equations for the
determination of the unknown coefficients by, involved in the series (4.11).

Fig. 7. Model geometry of a rigid, spherical scatterer in a half-space with a surrounding semi-spherical
artificial boundary.
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5. Numerical Results

We consider a rigid spherical scatterer submerged in a half-space at two different depths
of immersion, namely at d/a = 2 and d/a = 3 (Fig. 7). The scatterer is insonified by a
traveling plane wave ,.; in this paper, we consider only time-harmonic response.

Results are obtained by using both the absorbing boundary elements described in Sec. 3
and the analytical solutions described in Sec. 4. We compare the two sets for a small

5.0 , T r . r — . r r .
45| () 0p=00Br=0° + () ag=00, =00
a0l (tha=1,0=0,¢=0) A (tfa=1,8=180° ¢ =0

35 —e— FEM (Absorbing Elemen
30| —— Analytical (Bq. (4.11)

25¢
204
151
1.0}
051t

0.0 } } + } } ' ! ' ¥ '
545 ! (111) =00, By =00 1 (iv) oy =450, By = 90°
| (tfa= 15 = 180°, ¢ = 0°) | (fa=15,0=180°,¢=0°)

P

3 1.5 ,\/\/v |
S10l 1 -
[=% .

451 (V)ao=45° ﬁo=90° | oy -45° [30=90o
| (t/a=2.5,8=90°,¢=90° | @as= 1 0=90°, ¢ = 27

e

.0 " " i : " . " ' ' N
00 05 10 15 20 25 3.0 35 00 05 10 15 20 25 30 35 490
Frequency ka

Fig. 8. Scattered pressure amplitude; depth of immersion d/a = 3; artificial boundary radius Rap/e = 3.
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frequency range (ka = 0 to 4) in order to assess the performance of the numerical method.
In all cases where absorbing elements were used, those were described on a semi-spherical
artificial boundary of radius Rap. With this particular choice of geometry for the artificial
boundary, the term H? — K in (3.13), (3.15) and (3.18) vanishes identically. Consequently,
with our particular choice of isoparametric approximations for the shape functions N¢, the

45| @ ag=09By=00 L (i) oy =00,
| (afa=1, 0 =900, ¢ =900 i (rla=1,0=

3.5 —+—— FEM (Absorbing Element)
| ——  Analytical (Eq, (4.11))

4.5 | (iii) ot = 45°, B0= 90° 1 (iv) oy =430, Bo=90°
540 | (r]a=1,9=180°,¢=0°) 1 (rla=1.5,6=18 ,¢=0°)

45 ] (V) 0y =45 $,=90° L (vi) oy = 450, B, = 900
i (rfa=2.29, 6 =900, ¢ = 90°) I (rfa=2.29, 8 = 900, § = 270°)

00" — —
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35 40

Frequency ka

Fig. 9. Total pressure amplitude; depth of immersion d/e = 2; artificial boundary radius Bagfa = 2.5.
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resulting absorbing element stiffness and damping matrices are only 8 x 8, as there are only
two degrees of freedom per surface node on the boundary — one for the pressure ¢ and
one for the auxiliary variable ¢(1), Furthermore, in all cases, we used v = Rug /¢; for this
particular value of the stability parameter and for a spherical artificial boundary, it can be
shown®40 that the second-order condition (2.8) is identical to one derived by Bayliss and
Turkel.?! While we have not yet tried other artificial boundary shapes, e.g. an ellipsoid,
such boundaries can be obtained directly by using the present formulation and applied in
cases of highly elongated scatterers.

For the excitation, we considered two cases of incidence, namely at (ag = 0°, Gy = 0°)
and (ag = 45°, By = 90°). The radius of the artificial boundary was chosen tobe Rap/a = 3
when d/a = 3, and R4ap/a = 2.5 when d/a = 2. The implication of these choices is that for
the highest frequency considered in our examples (ka = 4), the absorbing boundary is placed
as close to the scatterer as one third of the shortest acoustic wavelength {7/2). We used
linear tetrahedra for meshing the fluid region and linear triangles as the absorbing elements
on the artificial boundary (naturally, only the half-space region needs to be meshed). In
order for our mesh to resolve the shortest wavelengths accurately, the resulting discretization
comprised 45,996 linear tetrahedra and 2,592 absorbing elements for an immersion depth
of d/a = 2; the total number of degrees of freedom was 9,546.

We used (4.11) to obtain analytic solutions. Usually, 15 to 20 terms were sufficient for
convergence of the series in (4.11) (the relative tolerance used was 107%).

Figures 8 and 9 depict scattered and total pressure amplitudes for both analytic and
finite element solutions at various points, depths of immersion, and angles of incidence. As
can be seen, there is close agreement between the two sets in all cases.

6. Concluding Remarks

The primary objective of this paper was to illustrate the application of recently devel-
oped absorbing boundary elements to half-space problems. We provided the theoretical
foundation for the use, in halfspace problems, of a second-order absorbing boundary con-
dition and its associated absorbing element, developed originally for a full-space. We pro-
vided illustrative results using the absorbing elements for a rigid spherical scatterer in the
frequency-domain and compared them against an exact solution. The attractiveness of the
new elements presented here lies in the fact that they can be used in either transient or
harmonic steady-state problems with conventional finite elements while placed at a small

- distance from the scatterer — only a fraction of the dominant acoustic wavelength.
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