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PLATES ON BiPARAMETRIC ELASTIC FOUNDATION
BY BDIE MgETHOD

By J. T. Katsikadelis! and L. F. Kallivokas?

Asstract:  An efficient boundary differential integral equation (BDIE)

-method is presented for the analysis-of thin elastic plates with free
boundaries of any shape resting on biparametric elastic foundation. The
plate, which may have holes, is subjected to concentrated loads, line
loads, or distributed surface loads. The solution is achieved by convert-
ing the governing boundary value problem to an equivalent problem
consisting of five coupled boundary equations, two of which are
differential and three of which are integral. The boundary differential
equations are derived from the boundary conditions, while the boundary
integral equations are derived from the integral representations for the
deflections of the plate and of the foundation region. A numerical
technique based on the discretization of the boundary is developed for
the solution of the boundary equations. The computational efficiency of
the method is increased by converting the domain integrals attributable
to loading into boundary line integrals. Numerical results for several
plates are obtained to attest to and demonstrate the accuracy and the
efficiency of the presented BDIE method.

INTRODUCTION

The Pasternak-type biparametric elastic foundation model is the most
natural extension of the Winkler model for homogeneous soil deposit and
the next-highest approximation to the foundation response (Kerr 1964),
The biparametric elastic foundation models are derived either as an
extension of the Winkler model by imposing interaction between spring
elements (Filonenko-Bodorich 1940; Hetenyi 1946; Paternak 1954; Kerr
1964) or by simplifying the three-dimensional continuum (Reissner 1958;
Vlasov and Leontiev 1966). Although this foundation model can ade-
quately approximate the soil-structure interaction, an analytical solution to
the governing boundary value problem is obtained only when the plate has
a simple geometry (e.g. circular plate or rectangular plate). Thus, the use
of approximate or numerical methods is inevitable. To this end, the
boundary element method can be used efficiently to obtain an accurate
solution to the problem. Balas et al. (1984) have given a boundary integral
formulation for the problem at hand and they have obtained results for a
circular plate subjected to a centered concentrated force. More recently,
Katsikadelis and Kallivokas (1986) have used the boundary element
method for plates on a Pasternak-type elastic foundation with a clamped
boundary and have obtained numerical results for plates with various
shapes, including plates with composite shapes. In this investigation, the
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plate with free edges resting on a biparametric foundation model is treated.
In contrast to the clamped boundary, the free boundary allows interaction
between the deflections of the foundation area under the plate and those
outside it. Thus, the boundary value problem is much more difficult than
that of the clamped plate. The boundary method developed herein is a new
one, since it reduces the boundary value problem to an equivalent one
involving five coupled boundary equations, two of which are differential
and three of which are integral. The differential equations are solved using
the finite difference method, while the integral equations are solved using
the boundary element method. The presented, which in the following will
be referred to as the boundary differential integral equation method
(BDIEM), proves to be very efficient. It is worth mentioning that the
present formulation avoids hypersingularities in the kernels of the bound-
ary integral equations, since the line integrals are limited to single- or
double-layer potentials. This fact facilitates the numerical solution of the
boundary integral equations and, thus, from the computational point of
view, the proposed method seems to have an advantage over a pure
boundary integral equation method. Moreover, in the case of linearly
varying loading, the efficiency of the method is improved by converting the
domain integral into line integrals on the boundary of the plate. Numerical
results are obtained for circular plates, annular plates, rectangular plates,
and plates of complex shape. The accuracy of the method is attested to by
comparing the results with those existing from analytical or other numer-
ical solutions,

FORMULATION OF THE BouNDARY VALUE PROBLEM

Consider a thin elastic plate of thickness 4, occupying the two-dimen-
sional multiply connected region R of the plate, bounded by the M + 1

curves Cy, C;, Cy, ..., Cy and resting on a Pasternak-type elastic
foundation with subgrade reaction modulus k and shear modulus G. The
curves C; (i = 0, 1, 2, ..., M) may be piecewise smooth; that is, the

boundary of the plate may have a finite number of corners (Fig. 1).

Assuming that the plate maintains contact with the subgrade and that
there are no friction forces at the interface, its deflection w(P) at any pomt
P € R satisfies the followmg differential equatlon (Kerr 1964): '

_AP)
w="p"
where f(P) = the transverse loading; D = ER*/12(1 — v*) = the flexural
rigidity of the plate; and L = an operator defined as

G k 3t
L=v¢i_Twve 2. v . Ud = (U2
\% DV+D’ v W+ay,v (V5% o 2
The interaction presksure p, between plate and subgrade is given as
=kw—-GVw ........ e e N C))
If the region exterior to the boundary Cj is denoted by R, while the
region inside the boundary curves C; (i = 1, 2, , M) are denoted by R;
i=12,..., M, respectively, the deﬂectlon wF of the subgrade in the
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0 X

FIG. 1. Two-Dimensional Region of Foundation Area Occupied by Plate

foundation regions R, ( = 0, 1, 2, ..., M) satisfies the following
differential equation:

P
L*wF=%Z, E Ry o 4)

where g(P) = the transverse loading directly applied to the foundation
region R;, and L* = an operator defined as

k 2
L= == V2 )

The boundary conditions for the free boundaries C; of the plate are
derived from the following physical considerations:

1. The deflection is continuous across C;.

2. The bending moment M,, of the plate vanishes on C;.

3. The jump of the shear force in the shear layer on C;, which is due to
the discontinuity of slope of the shear layer on the boundary, is equal to the
effective shear force of the plate along C;.

Using intrinsic coordinates (Katsikadelis 1982) the aforementioned condi-

tions in terms of the deflections w of the plate and wj of the foundation
region R; are expressed as
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2
- D[Vzw + (v — 1)(% + K(s) 3—:)] S0 e (6b)

3 o [ &w ow owp oW
— —_— U2y — — — —_ - = —
D[an V'w—(@wv—-1 P <6s > K(s) 8s>] G( 7 an> ... (60)

where 8/0n = the directional derivative along the outward normatl to the
boundary C; of the plate; 4/ds = the derivative with respect to the arc
length s; K(s) = the curvature of the boundary; and v is Poisson’s ratio.

INTEGRAL REPRESENTATION OF THE SOLUTION

The integral representation of the solution can be obtained using the
Green identity for the operator L and the fundamental solution to Eq. 1.
The Green identity for the self-adjoint operator L is

0 0
jf (vLw — wLv) do = f(v——-Vzw——vV2 —w— V%
on on

where C = UM, C;. Eq. 7 is readily obtained by combining the Rayleigh-
Green identity for the biharmonic operator (Katsikadelis and Armenakas
1984b) with the classical Green identity for the harmonic operator.

The fundamental solution to Eq. 1 is a singular particular solution of the
following differential equation:

Lyv=

in which 8(Q — P) = the Dirac 8-function, Q = the field point; and P = the
source point. The nature of the solution to Eq. 8 depends on the quantity
p. = G*/4kD. In this investigation, only the case w < 1 is considered, and
it seems to be valid for usual foundation materials (Kerr 1964). For these
values of p the solution to'Eq. 8 is given as (Vlasov and Leontiev 1966)

12

v=uP, Q) = uQ, P) = 7555 Re [If‘ Bo] o ©
where | |
o= ; .............................................. (10a)
I = 4\/§ ‘ (10b)

R R LR TR TR UULURUUU
B=cosS O+ i8N0 ... ... (10¢)
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/1
20 = arctan (— E - 1) .............................. (104d)

r = IP — Ql is the distance between the points (P, Q and Re[H{" (Bp)]
denotes the real part of the zero order Hankel function of the first kind.
Notice that when G approaches 0, it can be shown that v(P, Q) reduces to
(- 2/2wD)kei(p) which is the fundamental solution to the equation govern-
ing the plate resting on a Winkler-type elastic foundation (Katsikadelis and
Armenéakas 1984b).

Applying Eq. 7 for the deflection of the plate w, and the fundamental
solution v, which satisfy Eqgs. I and 8, respectively, and using Eqs. 54a—c
Appendix 1, the integral representation for the defiection of the plate is
obtained as

w(P) = j f oP, QAQ) dog =D f [v(P, 2%
R C

— 5)1_q (P, q)®(q) —- 51‘; V2(P, ¢)Uq) + V2u(P, q)X(q)

G | G 9
-5 (P, q)X(q) + ) a_nq v(P, q)Q(q)] dsg ... B R (11

or

12 ‘ . .
W) = 7o {F(P) - fc A 1(pr)2a) + Axlpp)X(@)

+ As(pp)®(q) + Adlppy) ¥(q)] dsq} ...................... Lo (12

where the following notation has been introduced for conciseness:

UG =W(G) oo e e e e (13a)

X(g) = P W) e e e e (13b)

D(G) = VW) o o et e (13¢)
% wm

¥(g) anq R 07 ) (13d)
= l—)' jf pr)f(Q) dO'Q ........... R I T T T S (14)

A](ppq) I:l D \4 (qu) ‘g U (ppq) Cos ¢ ................... (15(1)
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Az(ppq) '2 U(ppq) V(ppq) ............................ (15b)

As(pp,) V(PPg) €OS B v v vvvvene e (15¢)
Apr) =V(Prg) oo (15d)
N . PP (15¢)
Lo o 1 T TN (151)

The functions V(p), V'(p), U(p), U'(p) are given by Eqgs. 55a—d in Appendix
I. In the aforementioned equations, points inside the region R are denoted
by upper case letters, while points on the boundary C are denoted by lower
case letters. Moreover, the subscripts of the elements do and ds indicate
the point that varies during integration. Furthermore, 8/dn, denotes the
normal derivative taken with respect to point g.

Similarly, using the Green identity for the harmonic operator, the
following Green identity is obtained for the operator L* in the region R;:

a d
fj (wL*v — vL*w) do = J (v 5—::; —-w 5:—1-> ds ... . o (16)
R; i

where 6/dm = the outward normal to the boundary C; of the region R; ; that
is, 8/am = —od/an (Fig. 1). ‘
The fundamental solution to Eq. 4 is a singular partlcular solution to the
equation
30 - P)

Lo = = an

The solution to Eq. 17 (Vlasov and Leontiev 1966) is given as

u=ulP, Q) =u(Q, P) =55 KoP) oo (18)

where

BT (19a)

L | (196)
k

PP = Ol (19¢)

and Ky(p) = the zero-order modified Bessel function of the second kind.
Applying Eq. 16 for the functions w = wg and v = u, which satisfy Egs.
4 and 17, respectively, and using the boundary condition of Eq. 6a, the
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following integral xepresentatlon for the deflection w(P), P € R, (i = 0, 1,

2, ..., M) of the subgrade is obtained:
welP) = f j u(Fr0g(Q) dog + f [u(ﬁpq)@(q)
R; G
oo | |
- E)—mq ll(PPq) (q) dsq .................................. (20)
or
1] | o
wiP) = 5 {H(P) + f [As(pr)O(a) + Ag(pr)2a)] dsq} ......... @
C.
where
1 _
=5 ff Ko(f)pQ')g(Q) dO'Q‘ .......................... (22)
Ri v
AS(F_)Pq) = Ko(f)pq) ..................................... (23(1)
1 -
As(ppy) = 7 Kipppcosd ..o.oooviiiiii, P (23b)
5
O(q) = WF(q) ...................................... (24)
1P — gl

By = @5a)
D= EIM ot (25b)

e 1 LTS (25¢)

K,(p) is the first-order modified Bessel function of the second kind.

DerivaTioN oF THE BounpaRy DIFFERENTIAL AND INTEGRAL EQUATIONS

The loading functions f(Q) and g(Q) in Eqgs. 11 and 20 are given at every
pointQinRand QinR;(i=0,1,2,...,M),respectively. Moreover, the
function v(P, Q) and its derivatives (Eqs. 54 and 55 of Appendix 1) as well
as the function u(P, Q) (Eq. 18) and its derivative are known. However, the
functions O, X, ®, ¥, 0 are not known on the points of the boundary.
These five unknown boundary functions can be established by solving a
system of five coupled boundary equations, two of which are differential
and three of which are integral.

The boundary differential equations are established from the boundary
conditions of Egs. 6b and 6¢, which, by virtue of Eqs 13a~d and 24, are
written as
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320 I o '
P+ w-D{gz+KX)=0 ... e (26)

X 9K 90 Q) G
‘I’-(v-l)(gf—Tsa— W>=B(®+X) ........ PR 27

Two boundary integral equations are derived from the integral represen-
tation of Eq. 12 using the procedure presented in Katsikadelis and
Armenakas (1984a). Thus, by letting point P in Eq. 12 approach a point p
on C and by taking into account that in the limiting process the line integral
with kernel 9V2v/on exhibits a discontinuity jump equal to

9 d ' 1 |

: 2 _ 2 ——

;lm fc o, VEu(P, q)QX(q) ds, fc an, Vip, @)q) dsq =55 M) (28)
-p

we obtain the first boundary integral equation as

2 sin 26
2R ap)+ f [A1Bp ) + AslppX(@ + Ao, )2(0)
C

+ Ai(pp) @@ dsg=FP) oo U (29)

The second integral equation is obtained by applying the operator V* on
both sides of Eq. 12 and subsequently by letting point P approach a point
p on the boundary C. Thus, by taking into account that V4 — (G/D)V?* =
—(kID)v (Eq. 8) and that the line integral with kernel aV*/on exhibits a
discontinuity jump as P — p € C, the second boundary integral equation,
which is independent from Eq. 29, is obtained as

2 sin 20 B(p) + J [Ny 2@) + Napp)X(@) + Nipyo) (@)
) ‘

F Nalppd (@] dsg=Gp) ..o (30)
where
1
G(p) =5 f f UpplQ) dag o ovovviiviiii i 31)
R
1

Nl(ppq) =p V'(ppg) cos ¢‘ S (32a)

1 o '
Nappy) = — 7 Vipg oo L (32b)

1
Ni(ppy) = — 7 Uppg) COSD o ov i (32¢)
NuPo) = UlPpg) + v oo e (32d)
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Finally, the third boundary integral equation is derived from Eq. 21 by
letting point P € R; approach a point p on the boundary C;. Thus, taking
into account that the line integral with kernel A(pp,) behaves like a double
layer potential (Eq. 57b of Appendix I), the followmg integral equation is
obtained:

20(p) ~ f [As(,)0(@) + A3 dsy = H) + oo 33)
C .

Eq. 33 is valid for all boundaries C; (i = 0, 1,2, . .., M). Note that Eqgs.
28 and 33 have been derived for points p where the boundary is smooth.

NumMeRiCAL ANALYSIS

The differential Eqs. 26 and 27 and the integral Egs. 29, 30, and 33
constitute a set of five simultaneous equations for the unknown boundary
functions £, X, ®, ¥, ©. Elimination of the boundary quantities Q) and ®
would yield three integrodifferential equations, which would complicate
the numerical solution of the problem. Of course, integrodifferential
equations can be avoided if the integral representation of the solution for
the plate is expressed in terms of boundary quantities having direct
physical meaning (w, daw/dn, M, , V,) (Bezine 1979; Stern 1979; Katsikade-
lis 1982). However, this approach results in kernels with hypersingularities
and, thus, the numerical evaluation of the. singular integrals becomes
cumbersome, especially in the present case, where the kernels are real and
imaginary parts of the Hankel functions with complex argument.

In this section, a straightforward numerical solution of the five coupled
boundary equations is developed. The boundary is discretized into a finite
number of boundary elements (Fig. 2) and, subsequently, the differential
equations are solved using the finite difference method. The integral
equations are then solved using the boundary element method with
constant element. ;

Thus, approximating the derivatives by unevenly spaced central finite
differences involving the nodal values of Eqs. 26, 27, 29, 30, and 33 are
written for the typical point { as

(Arii— 11+ (A1) + (A + 1 Qv + (A1) X

+ (A13)i,iq)i 1.1 S (340)
(A2~ 1 -1 + (A2)i i + (Ao + 1 Qv g + (An)ii -1 Xy
(A22)1 1X + (A22)1 i+ 1X1+ 1+ (A24)1 1\P + (AZS)H =0 ... (34b)
N
z [(Ag]),jﬂj + (A32),'ij + (A33)ijq)j + (A34)U\I'J] = Fi ............. (346‘)
j=1
N
2 [(A“)UQJ + (A42),'J'Xj + (A43)i]'q)j + (A44)U\PJ] = Gi ............. (34d)
j=1
855
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0 X
k FiG. 2. Discretizaﬁon of Boundary of Plate .
2 [(A_s])uﬂj + (A55)U®J] = H,' ........ A A R A (348)
;= 1 B . ’ LR B

J

where i = 1,2, ..., N; N = the number of ,boundaryA élements; and'

(A”),-,,-_l——:el-s,- .. ......... (35a)
(All)i,i = " e,-(s,- + i 1) ..... [ SR (35b)
(All)i,i+1 el o S T - (35C)
(AIZ)i,i = O.SKi ........................... ‘. e e (35d)
. 0.5 | S
( 13),, (V — 1) ....................................... (3 e)
oK
(AZI)i,i—l = |:2K S,’(T) ]e,s, ........................... (35f)
5
' aK
(Azp)ii = [— 2K+ (si— 8- 1)(5) :lei(s,- FSiot) e (35g)
oK -
(Axiir1= [ZK,' + 5 1<§> }e,-s,-_l ....................... (35h)
(Azz),;,-_1=—2€,-s,» ....... ........... (351)
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(Azz)f,,' = 26,'(Si +85i-1) — m .......................... 35
(Azz),',H. 1= — 28,'S,~_ T T T (35k)
1
(A24),'.,,' = (v — 1) ....................................... (35[)
G
(A25)' = = m ................................... (35m)

in which e; = 1/[s;5;,_; (s; + 5;,_1)); 5;—; and s, are the distances along the
boundary between the nodal points i — 1, i and i, i + 1, respectively (Fig.
2). K;, (8K/ds), are the values of the curvature and its derivative at point i.

1 2 sin 26
(A3l)ij = J [D quV (qu) 2 pqu (P;q)] dwg + —F Sy v (36a)
j .
1 G
(A32),'j = J’ iz U(p,'q) - l—) V(p,'q) dsq ....................... (36b)
i .
(A33),'j= - fpqu’(piq) da)q .............................. (36C)
j .
(A34),‘j= fV(p,q) dSq ............. e e (36d)
J o
1
(A41)lj ‘2 p,qV (p,q) dﬁ)q .............................. (366)
1
(A42) = - F V(p,q) dsq ............................... (36f)
J
(As3)y f pigU'(pig) doog +28in 208 ..ot (36g)
J
(A44)U JU(p,q) dsq .................................. (36h)
J
(ASI)U ff)qul(i)lq) qu a1 TS S (361)
J
(A55)U = - JKo(p,q) dSq ................................. (36_]')
i
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pig = P; — qlll, piy = Ip; — ql/l, p; is a nodal point, g € j-element, o, = X;
r, and d; is the Kronecker-delta. The symbol [; indicates integration over
the j-element Notice that in Egs. 364, c, ¢, g, and i the relation cosdds =
rdw has been used (Katsikadelis and Armenakas 1984a). Moreover

F,' =$ Jf V(p,Q)ﬂQ) d()‘Q ............................. (37(1)
R
=% JJ U(p,Q)f(Q) dO‘Q ............................. (37b)
R
. ] )
H,-=§ ff Ko(ﬁ,Q)g(Q) dO'Q‘ e e e e e e e e e e e s (37¢)
R .

In matrix form Eqs. 34a—e are written as

Ay Ap 0 Ay Ay X
Ayl An Ay Ay 0 D | =
Ay Ap Ap Ay O v
As 0 0 0 Aslle

o o

where the elements of the matrices A; (i,j = 1, 2, 3, 4, 5) are given by Eqs.
35, 36 and

Q7 = [0, - Qpl; XT = [XXX; -+ Xpn]; DT = [®, Dy P; o+ D]
= [¥, ¥, ¥; - Tyl OT = [0,0,0; -+ Op]; F' = [F 1FoFs v Fy]
GT = [G1G2G3 GN]’ HT [H1H2H3 HN] ................. (39)

Notice that at corner points the quantity X = aw/dn is discontinuous and
actually the derivative 92X/ds® cannot be approximated using a central
difference scheme. This problem may be treated using backward or
forward differences for nodal points before or after the corner, respec-
tively, to approximate the second derivative along the boundary. How-
ever, good results have been obtained by ignoring the discontinuity and
using small boundary elements near the corners.

Evaluation of Line Integrals in Eqs. 36

When i # j, the arguments p, p do not vanish and these integrals can be
evaluated using any of the known numerical techniques for the evaluation
of line integrals. In this investigation, the curved boundary element is
approximated by a parabolic arc passing through its nodal and extreme
points and its value is computed using eight-point Gaussian quadrature.
When i = j, the arguments of p, p vanish for g = p;. From Eqgs. 56a, ¢, f,
and 57¢ of Appendix I, it is seen that the line integrals with kernels V(p),
pV'(p), pU'(p), pK,(p) are not singular and consequently they are evaluated
as in the case i # j. However, as it is seen from Eqs. 56c and 57a of
Appendix I, the line integrals with kernels U(p) and Ky(p) have a logarith-
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mic singularity and they are evaluated using the technique presented by
Katsikadelis and Armenakas (1985).

Evaluation of Double Integrals in Eqgs. 37
We may distinguish the following four cases:

1. The plate is subjected to a concentrated load P at a point Q, . In this
case, the loading function f(Q) can be represented as

FO) = Po(Q = Qo) «eo i e e (40)
Using Eq. 40 the values of the integrals 37a-b are

P
F, = 5 V(piQo) ........................................ (4161)
G, D U(p,-Qo) ....................................... (41b)

where p;p = Ip; = Qol/l.

2. The plate is subjected to a line load g(s) distributed along a curve S*,
In this case the double integrals of Egs. 37a-b are evaluated using Egs.
41a-b from the following line integrals along the curve S*:

1
Fi=% f GOV dSg « + v v e e e (42a)
S*

1 ‘ ;
G,=5f Q(Q)U(PzQ) dSQ S R I (42b)
S*

where p,, = Ip; — QI/l, Q € §*. v

3. The plate is subjected to a uniform or a linearly varying load f(Q)
distributed over an area R* C R of the plate bounded by a curve C*, In this
case, the double integrals of Eqgs. 37a-b are converted into the following
line integrals on the closed curve C* (Katsikadelis and Kallivokas 1986):

I* sin 20
Fi=—cos26 G;— —x [Eﬂpi) + f pigl' (PigRq) do,
C*
' 3flq)
B T (43a)
fwite] ’
5 aflg)
G- f oV (0)a) do f Vo DL s, | . “3h)
c* ' c* a
where p;, = Ip; — @/, g € C*; I(p) = Im[H{ (Bp)]; e = —4 when p; is inside
R*, ¢ = —2 when p; is on C*, and ¢ = 0 when p; is outside C*, -
859
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The substitution of the domain integrals by line integrals reduces
drastically the required computer time. The line integrals of Eqs. 43a-b, as
well as the line integrals of Eqs. 42a-b, are evaluated numerically
employing the technique presented by Katsikadelis and Armenakas (1985).
Thus, the curve C* or S* is approximated by a finite number of parabolic
elements. On each element the line integral is computed and the resulting
partial values are summed.

4. In the general case where f(Q) is an arbitrary function, the domain

integrals of Eq. 37 can be evaluated using the method presented in

(Katsikadelis 1987). Moreover, equations similar to Eqs. 41-43 can also be
developed for the numerical evaluation of the double integral in Eq. 37c.

EVALUATION OF THE DEFLECTIONS, STRESS RESULTANTS, AND SUBGRADE
REAcTIONS

When the matrices A; (i, j = 1, 2, 3, 4, 5), F, G, H are established, the
system of simultaneous algebraic Eqs. 38 is solved and the values (};, X;,
®,;, ¥;, O, of the boundary functions Q(s), X(s), ®(s), ¥(s), B(s) at the
nodal points are obtained. These values can be used to obtain the
deflection, the stress resultants and the subgrade reaction at any point P in
the interior of the plate, as well as the deflection of the subgrade outside
the plate. Thus, the deflection w(P) is obtained from its integral represen-
tation, Eq. 12, while the subgrade reaction is obtained from Eq. 3. For the
computation of the double integrals F(P) and G(P) we distinguish again
four cases as for the integrals F; and G; in previous section. Moreover, the
deflection of the subgrade wg(P), in the region R; outside the plate, is
evaluated from its integral representation, Eq. 21. '

The bending moments M, , M, the twisting moment M,, and the shear
forces Q, and Q, at any point of the plate are given in terms of the
deflection (Timoshenko and Woinowsky-Krieger 1959) as

= —p( 2, 2 | 44
x = "é;z’ VW ............................... ( a)
- -ply 4b

Q. = Te VW (44b)

M, = -p(L ., 2 44
y = a—yg' VW ............................... (44c¢)

0= -D2V

y= —D VW (44d)

&*w

Miy= = My =D{=¥) g

The second and third order derivatives of the deflections in Eqs. 44a-e
may be evaluated from the computed values of the deflections with
§uﬁicient accuracy using numerical differentiation. However, the accuracy
1s increased and the computer time is considerably reduced when they are
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evaluated by direct differentiation of Eq. 12 using the following combina-
tions of derivatives:

.1 1 1 1
di = 2 sin 20 [5 sz; Bi(p)f do + P LDi(p)Q ds + P fCE,-(p)X ds

1|
+ ‘l‘ f Ji(p)q) ds — f B,‘(P)\P ds], i=1,2,3, 4,5 ... “5)
c o ,
where
*w  otw

d T TG (46a)
5 Fw  dw

L T (46b)
PR

S 2 G e (46¢)
d. ) i V2

4= L VW (46d)
ds = —li %

5= I VAW (46¢)
Bip) = U(p) i e e e @7a)
Byp) = C(p) COS 200 v vttt e (47b)
Bi(p) =C(p) SIN 20 v voo et e 47¢)
Byp) =U'(D) COS @ ¢ vttt vttt e e 474d)
Bs(p) =U'(p) SIN @ v oottt et e e (47¢)
Dip) = = V(P) COS & . oottt e (48a)

Dyp) = E Vip) + ;7 U'(p) + 587 cos 26 V'(p)J cos (20 — &)
— V(D) COS 20 COS B 4 v v v sttt (48b)
Dyp) = [2 V) + 53 U) + 5 c05 29 V'<p>] sin (26 - &)
—V(p) SN 20 COS B v A | (48¢)

Dy(p) = — Ulp) cos w cos +é Vip)cos(@=d) .oovvrn i (484d)
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D5(p) = — Ulp) sin w cos ¢ +% V'(p) sin (co —d) R (48e)

Ep)=V(p) ..... P P e (49a)
Exp) = [V(p) +§ U'(p) + % cos 26 V'(p)] COS2M vvv i (49b)
2 4 .
E;(p) = {V(p) +5 U'(p) + P cos 26 V’(p):l SIN2®W v vt (49¢)
Ea(p) = V(D) COS ® « o v v eee et et e (49d)
Es(0) = V(D) S0 @ « v v eee e e (49¢)
JIP) = U (P) COS D vt i e (50a)
J2(p) = U'(p) cos & cos 20 — % Cp)cos Qo —d) . vvvvnnnnnn. (50b)
J3(p) = U'(p) cos ¢ sin 2w —% Cp)sinQuw—®) .....covvnnn.. 50¢)

o) = - [g U'(p) <0 (0 — ) + Vi(p) cos w cos &

+2 cos 20 U(p) cos w cos ¢] ................... o (50d)
Iie) = - E U'(@) sin (0 — 4) + V(p) sin  cos

+2 cos 26 Ulp) sin o cos ¢} ............................ (s0e)

2
Clp) = Ulp) —-‘; Vi) oo e 51)

For an arbitrary loading function f(Q) the double integrals in Eq. 45 may be
evaluated using the technique presented in (Katsikadelis 1987). When the
loading is due to a concentrated force P at some point Q, the double
integrals in Eq. 45 can be directly evaluated from equations analogous to
Eq. 41. Moreover, when the loading is due to a line load along a curve $*,
the double integrals in Eq. 45 are reduced to line integrals on the curve S$*
and they are computed from equations analogous to Eq. 42. Finally, when
the plate is loaded by a uniform or a linearly varying load distributed over
aregion R* C R bounded by a curve C* the double integrals in Eq. 45 are
converted into the following line integrals (Katsikadelis and Kallivokas
1986).
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TABLE 2. Influence Coefficients for Deflections, Stress Resultants, and Subgrade
Reaction of Circular Plate (v = 0.3) Resting on Biparametric Elastic Foundation (A

=545 =7
(a) Influence coefficients for w and p;atr = 0,0 = 0
Load
position| Deflec- r r r r r
! - = -~ = 0.2 - =0, - =06 ~ = 08
0 tion a 0 a 0.2 a 04 a 0 a
(1) () (3) (4) (5) (6) @)
w 0.32073E—-02 0.19332E~02 0.89935E—03 0.38850E—-03 0.16034E—03
0
Ps bl 0.21563E+01 0.35526E+00 0.38010E-01 -~0.10929E—-01
(b) Influence coefficients for w at r = a, 6 = 0 and wWgatr =1,2a,0 =0
9 Deflec- ro ro o r_ r*08
tion ;—0 -=10.2 —=0.4 -=0.6 -=0.
w 0.49027E~04 0.12782E—03 0.33062E—03 0.84935E—-03 0.21930E—-02
0 ;
Wi 0.22014E—-04 0.56138E—04 0.14068E—03 0.34389E—-03 0.80943E—03
W 0.49027E—04 0.91342E~04 0.14636E-03 0.19038E~03 0.19231E-03
w/4
Wi 0.22014E-04 0.40942E—04 0.67892E~04 0.96783E—~04 0.10951E—03
W 0~{19027E—()4 0.44517E—04 0.33703E—-04 0.21910E-04 0.12369E—04
/2
Wr 0.22014E—-04 0.20398E~04 0.16335E~04 0.11498E~04 0.71797E—-05
W 0.49027E—04 0.23755E—-04 0.10762E—-04 0.46701E—05 0.19309E—~05
3m/d .
W 0.22014E-04 0.10886E—04 0.50744E—05 0.22725E-05 0.97040E~06
w 0.49027E—~04 0.18671E—04 0.70755E—05 0.2673813—05 0.99849E—~06
™ B
Wg 0.22014E—-04 0.85230E—05 0.32721E~05 0.12521Ef05 0.47073E-06
(c) Influence coefficients for M,, My, 0, Qpatr =0,8 =0
0 Stress _ v r v r
resultant ; =0 ; =0.2 - =04 ; =0.6 P 0.8
M, @ —0.42820E—02 ~0.10623E—01 —0.61353E~02 —0.25011E-02
M\P © 0.29433E—01 0.51356E—02 0.70174E—-03 —0.47609E—04
0
0, *® 0.31443E+00 0.21092E~-(1 —0.97923E-02 —0.81229E-02
[eR Ed 0.0 0.0 0.0 0.0
= ® 0.12575E-01 ~0.27438E-02 —0.27168E—02 —0.14743E~-02
M, :
/4
o, © 0.22233E~00 0.14914E-01 —0.69242E~02 —0.57438E—-02
[

] A

)
- —chos (0 + @)

9§

C*

22
£
f jR* ox dy

62
Y

om

864

1
v Vip) do =7 f fV'(p) cos Qw + &) ds
C*

V(p) do = ;j fV'(p) sin w cos (o + ) ds
C*
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TABLE 3, Deflections of Rectangular Plate Resting on Elastic Foundation (A = 5,
s = B)

Boundary differential

integral equation Galerkin's

method (BDIEM) method
xla y/b i 68 B.E. 16 terms
(1) 2 3 (4)
0.0 0.0 0.159E-02 0.162E-02
0.2 0.0 0.158E—-02 0.160E—-02
0.4 0.0 0.154E—-02 0.154E—-02
0.6 0.0 0.143E-02 0.141E-02
0.8 0.0 0.120E—-02 0.112E—-02
1.0 0.0 0.837E~-03 0.670E-03
0.0 0.2 0.159E~-02 0.158E—02
0.0 0.4 0.159E~02 0.157E—02
0.0 0.6 0.157E-02 0.161E—02
0.0 0.8 0.142E—-02 0.137E-02
0.0 1.0 0.834E~03 0.687E—03

af .
- f 3 Vp)sin(@+d)ds ..o (52b)

C*

1
f f fae V() do =~ 3 J fUG) cos (@ + &) ds
R* . C*

+; J;* g—gV'(p) COS D AS oot i e (52¢)

L) do= -5 [ FUG) sin (@ +6) ds
g O Fje

1 of _,
+7L*%V(p)cos¢ds .............................. (52d)

where x, y € R and &, n € C*.

NumMeRicaL ResuLTs

A computer program has been written for the numerical evaluation of
the response of plates with free edges resting on a biparametric elastic
foundation by integrating the coupled boundary differential and integral
Egs. 26, 27, 29, 30, and 33 using the numerical technique developed in
previous sections. Numerical results have been obtained for circular plates
with or without holes, rectangular plates, and plates with complicated
shapes subjected to concentrated or uniformly distributed loads. The
results are in excellent agreement with those obtained from analytical or
other numerical solutions. Notice that for G = 0 the solution for the plate
resting on a Winkler-type elastic foundation is obtained. :
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FIG. 3(a). Circular Plate (v = 0.30) Resting on Elastic Foundation (A = 8,s = 10);
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For the presentation of the numerical results, the following dimension-
less parameters are used (Katsikadelis and Kallivokas 1986):

s =-
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FIG. 3(e). Shear Force O, = Q,/qa

where @ = a characteristic length of the plate (e.g. the radius of a circular
plate, the length of one side of a rectangular plate, etc.). The shear
modulus G may vary from 0-40 MN/m, while the subgrade reaction
modulus & may vary from 0-200 MN/m?®. Thus, for usual engineering
applications it is 0 < s = 30 and 0 = \ = 20.

To check the accuracy of the proposed BDIE method, a circular and an
annular plate have been analyzed. The numerical results are in excellent
agreement with those obtained from analytical solutions (Selvadurai 1979).
The deflections w = w/(qa*/D), wp = w/(qa*/D), the stress resultants M, =
M,/qa* , M, = M,lqa*, O, = O,/qa and the subgrade reaction p, = p,/q for -
the annular plate (v = 0.3) with radii a and 3a, subjected to a uniform load
g and resting on a biparametric elastic foundation (A = 4, s = 5) are
presented in Table 1. The results have been obtained using 48 boundary
elements (32 for the external and 16 for the internal boundary). It is
apparent that relatively few boundary elements are sufficient to obtain
accurate results.
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FIG. 4. Plate of Composite Shape on Elastic Foundation (A = 12, s = 10)

In Table 2, the influence coefficients for the deflection w = w/(Pa?/D),
the stress resultantsM M,/P M, = M,P, Q, = Q,alP, Q, = Q.a/P and
the subgrade reaction ps = p.a*/P at pomt r=20,0 =0 as well as for the
deflection wy = wF/(Pa /D) at point ¥ = 1.2a, 8 = 0 of a circular plate with
free edge for various positions of the concentrated load P are presented (A
= 5,5 = 7, v = 0.3). The results have been obtained using 32 boundary
elements.

In Table 3 numerical results for a rectangular plate (v = 0.3, 2a X 2b, b/a
= 2) resting on an elastic foundation (\ = 5, s = 6) and subjected to a
uniform load g are presented as compared with those obtained using the
approximate Galerkin method was sixteen terms (Vlasov and Leontiev
1966).

In Figs. 3(a)-3(e) the influence of a concentrated load, applied at a point
outside a circular plate (v = 0.3, A = 8, s = 10), on the deflections, stress
resultants, and subgrade reactions along the diameter through the load P is
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FIG. 6. Contour Plot of Shearing Forces 0, = Q,/qa (Magnification Factor 10°)

presented. The plate is subjected to a uniform load. The results have been
obtained using 32 boundary elements.

Finally, a plate of composite shape (v = 0.30) with free boundaries
resting on an elastic foundation (A = 12, s = 10) and subjected to a uniform
load g has been analyzed. The results obtained on the basis of BDIEM
using 68 boundary elements are presented in Figs. 4-7 More specifically, in
Fig. 4 the distributions of the boundary reaction V, = V,/qa and bending
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moments M, = M,/qa®, M,=M /qa as well as the distributions and
contour plots ot the deﬂcctlon W= w/(qa“/D) and subgrade reaction p, =
plq are presented In Figs. 5 and 6 the contour plots of the bending
moment M, = M,/qa* and shearing force O, = Q,/ga of the plate are
shown. These resuits are considered accurate because they differ negligi-
bly from those obtained using twice as many boundary elements.

ConcLuping REMARKS

In this investigation, a boundary equation method is developed to
analyze plates with free edges resting on a Pasternak-type biparametric
elastic foundation and subjected to any kind of loading. The worked-out
examples show that the presented method is efficient in treating plates with
complicated shape, also including holes. The interaction between the plate
and the loading in the foundation area outside the plate is also encoun-
tered. The method is well-suited for computer-aided analysis. The com-
putation of the line integrals is simplified, since the present formulation
avoids hypersingular kernels, Moreover, the conversion of the domain
integrals into line integrals reduces the computation time considerably.
The present approach renders the boundary equation method a powerful
tool to solve difficult plate problems involving complicated boundary
conditions,
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Appenpix 1. Funcmions V(p), V'(p), U(p), ano U'(p)

In this Appendix certain functions are introduced which are useful for
the evaluation of the derivatives of the fundamental solutions of Egs. 9 and
18.

From Eq 9 we obtain

v !

n = 2D sin 28 V)cosd o e e (54a)

V= ! ( (54b)
U= D6 D) e

0 V2 ! U (54c¢)

5; v = m (p) cos Cb .......................... C

in which ( )’ denotes differentiation with respect to the argument p; ¢ =
the angle between r and n (Fig. 1); and

V) =Re [HPBP)] - oo oo (55a)
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V'(p) =Re [— BH{"(Bp)] = — cos 0 Re [H{"(Bp)]
+sin91m[H§1)’(Bp)‘] ............... | (55b)
Ulp) = Re [~ B (Bp)] = — cos 20 Re [H(Bp)] |
+ sin 26 im HOBOT . e ‘. ceee (55¢)
U'(p) = Re [B*H{"[Bp)] = cos 36 Re [H{"(Bp)] |

— sin 30 Im [H(Bp)] ... .. L (55d)

The real valued functions Re[HSP (Bp)], Im[H( D (Bp)], Re[HV (Bp)] Im[H“)
(Bp)] involved in the aforegoing relations denote the real and imaginary
part of the Hankel functions H" (8p), H{" (Bp) and they are evaluated
from their series cxpressions which are given by Zinke (1959).

From the series expressions of the functions V(p), V'(p), U(p) and U’ (p)
we find that

20 ' , -
limV(p)=1—? ................................. . (56a)
p—0 » »

B VR) =0 o oo e et e (56b)
p—0

lim U(p) ~Inp .. ... FURE U ST S (S6¢)
p—>0 ‘ B

Hm U p) ~ = oo e i e e e (56d)
p—0

m [pV'(E)] =0 ... (56¢)
p—0

. 2 sin 20

lim [pU’(p)] = e R EEERE e (561)
p—0

Moreover, for the modified Bessel functions Ky(p) and K,(p) it is valid
(Abramowitz and Stegun 1972):

Hm Kog(B) ~Inp oo e e e . (57a)
p—0

. 1 :

lim K;(p) ~5 ................ A (57b)
=0

Hm pK (D) = 1 o e (57¢)
p—0
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AppPenDIX 1Il. NoTATION
The following symbols are used in this paper:

I
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Cl""’CM

external boundary of plate (Fig. 1);
internal boundaries of plate (Fig. 1);
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flexural rigidity of plate;

modulus of elasticity of plate;

loading function of plate;

function defined by Eq. 14;

loading function of foundation region;
foundation shear modulus;

~ function defined by Eq. 31;

thickness of plate;

function defined by Eq. 22;

kernel functions defined in Appendix I;
foundation reaction modulus;

curvature of boundary;

parameter having dimensions of length defined
by Eq. (10b);

parameter having dimensions of length defined
by Eq. (19b);

differential operator defined by Eq. 2;
differential operator defined by Eq. §;
direction vector of outward normal to bound-
ary of plate;

points on boundary of plate;

points inside region R of plate;

points in foundation region outside plate;
interaction pressure between plate and sub-
grade;

distance between any two points of plate;
distance between any two points in foundation

.region outside plate;

region occupied by plate (Fig. 1);

foundation region outside C, (Fig. 1);

foundation regions inside boundary curves C, ,
» Cy (Fig. 1);

dimensionless parameter defined by Eq. 53;

fundamental solution to Eq. 18;

kernel functions defined in Appendix I,

fundamental solution to Eq. 9;

kernel functions defined in Appendix I;

deflection of plate;

deflection of subgrade in foundation area out-

side plate;

complex parameter defined by Eq. 10c;

angle defined by Eq. 104,

value of dw/dm on i-th boundary element;

dimensionless parameter defined by Eq. 53;

kernel functions defined by Egs. 15 and 23;

G?/4kD parameter characterizing behav10r of

fundamental solution;

Poisson’s ratio;

kernel functions defined by Eqs. 32;

dimensionless distance between any two points

of plate;
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dimensionless distance between any two points
in foundation region outside plate;

angle shown in Fig. 1;

angle shown in Fig. 1;

value of V?w on i-th boundary element;

value of dw/dn on i-th boundary element;
value of 3(V2w)/én on i-th boundary element;
angle between directions x and r (Fig. 1); and
value of w on i-th boundary element.
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