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Abstract
We discuss a numerical approach for identifying the surface excitation that is necessary to
maximize the response of a targeted subsurface formation. The motivation stems from
observations in the aftermath of earthquakes, and from limited field experiments, whereby
increased oil production rates were recorded and were solely attributable to the induced
reservoir shaking. The observations suggest that focusing wave energy to the reservoir could
serve as an effective low-cost enhanced oil recovery method. In this paper, we report on a
general method that allows the determination of the source excitation, when provided with a
desired maximization outcome at the targeted formation. We discuss, for example, how to
construct the excitation that will maximize the kinetic energy in the target zone, while keeping
silent the neighbouring zones. To this end, we cast the problem as an inverse-source problem,
and use a partial-differential-equation-constrained optimization approach to arrive at an
optimized source signal. We seek to satisfy stationarity of an augmented functional, which
formally leads to a triplet of state, adjoint and control problems. We use finite elements to
resolve the state and adjoint problems, and an iterative scheme to satisfy the control problem to
converge to the sought source signal. We report on one-dimensional numerical experiments in
the time domain involving a layered medium of semi-infinite extent. The numerical results
show that the targeted formation’s kinetic energy resulting from an optimized wave source
could be several times greater than the one resulting from a blind source choice, and could
overcome the mobility threshold of entrapped reservoir oil.

Keywords: elastic waves, inverse problems, EOR

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During a typical crude oil production process, only 30–50%
of the original-oil-in-place (OOIP) can be produced by a
combination of the primary oil recovery mode (a reservoir’s
natural pressure) and water-flooding—the most widely used
secondary recovery mode. To recover any oil still remaining
in an existing reservoir, enhanced oil recovery (EOR) methods,
such as gas- and polymer-flooding, should be employed

3 Author to whom any correspondence should be addressed.

(Lake 1989). By and large, and beyond site-specific technical
reasons that are of importance, the choice of a specific EOR
method is driven chiefly by economic considerations. Low-
cost and reliable EOR methods are thus of significance for the
exploitation of any remaining reservoir capacity.

The so-called seismic- or wave-based EOR methods offer
such a low-cost alternative, provided they can be shown to
effectively mobilize oil. The key premise of wave-based EOR
methods hinges on the ability of surficial wave sources to
deliver sufficient vibrational energy to an existing reservoir to
induce oil mobility.
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Several field observations seem to support the central
macroscopic hypothesis that reservoir shaking, however it
may be triggered, may lead to increased oil production. For
example, increased rates have been reported in the aftermath
of earthquakes (Steinbrugge and Moran 1954, Smimova 1968,
Voytov et al 1972, Osika 1981), which were subsequently
sustained for a few days after the main seismic event, without
necessarily the presence/help of strong aftershocks. Similarly,
in field applications of wave-based EOR in active or believed-
as-depleted oil fields, where the vibrations were induced by
either ground-surface or borehole wave sources, increased
production rates have also been reported (Kuznetsov and
Nikolaev 1990, Kouznetsov et al 1998, Westermark et al 2001,
Kuznetsov et al 2002, Guo et al 2004, Zhu and Xutao 2005).

Even though there appears to be a clear link between
the induced shaking and production increases, research in
the precise generative mechanisms that lead to increased
oil mobility is rather thin. Beresnev’s work (Beresnev and
Johnson 1994, Iassonov and Beresnev 2003, Beresnev 2006)
is among the very few where attempts have been made to bridge
the scales between the reservoir’s exposure to wave energy and
an individual oil droplet’s mobility. In Beresnev and Johnson
(1994), Beresnev suggested the loss or reduction of an oil
droplets adherence to the pore-surface wall, because of the
wall’s oscillation, as the predominant mechanism for increased
mobility. To investigate the effect the waves have on the
motion of an oil droplet entrapped in the pore space, Iassonov
and Beresnev (2003) built a threshold capillary-trapping model
of an oil droplet in a porous medium, and subjected it to low-
frequency vibration. Subsequent experimental investigations
(Li et al 2005), and numerical simulations (Beresnev 2006),
indicated that a sufficiently large acceleration of the pore-
surface wall must be induced, at least of the order of
1–10 m s−2, to mobilize the oil droplet in the pore space
by the vibrating pore-surface walls. However, Beresnev also
indicated that very low accelerations (<0.1 m s−2) may be
sufficient for mobilizing significant oil volumes, depending
on the ganglion colony’s mobility threshold.

It has also been argued (Surguchev et al 2002, Huh
2006) that reservoir shaking could lead to cross-flow in a
fractured reservoir between the low- and high-permeability
areas. Elastic waves induce differential pore pressure between
layers of different permeability, and thus, the resulting pressure
gradient between the two areas could lead to cross-flow, which,
then, effectively mobilizes the bypassed oil from the low- to
the high-permeability area (figure 1).

Whether wave energy could result in acceleration fields
capable of overcoming the mobility threshold of oil droplets
in thoroughly water-flooded reservoir regions, or could induce
cross-flow owing to the development of strong pressure
gradients, it is possible to sketch, given a specific goal
for the reservoir region, an approach that would maximize
the sought outcome. For example, if EOR were to be
facilitated by maximizing the acceleration field in a target
reservoir, or by maximizing the reservoir’s kinetic energy
or by maximizing the pressure gradients between the low-
and high-permeability zones (assumed to be known), then an
unconstrained optimization problem can be cast such that,

Injector Producer

Rock layers
without oil

Oil reservoir

Rock layers
without oil

High permeability( )k

Low permeability( )k

Low permeability( )k

A wave generator

Effect of wave-based EOR
Bypassed oil moves to high zonek

:
Injection fluid bypasses the oil
in the low-permeability zone

Problem before wave-based EOR

Figure 1. Possible outcome of a seismic wave-based EOR method.

upon solution, the necessary input excitations to optimally
achieve the sought outcome would be obtained.

In this paper, we describe such an approach, whereby we
seek to identify the unknown ground-surface load that could
maximize the kinetic energy of a targeted formation within
a heterogeneous domain. The problem, as described, leads
formally to an inverse-source problem where the domain’s
properties and geometry are known, the response (or some
measure thereof) ought to be maximized and the source load
to achieve the response maximization is unknown. We adopt a
partial-differential-equation-constrained optimization scheme
to resolve and completely define the unknown source. We
start with an objective functional, and augment it with the side
imposition of the governing equations reflecting the physics
of the wave propagation in the heterogeneous formation. We
then seek to satisfy the first-order optimality conditions that
formally lead to a triplet of state, adjoint and control problems,
which, in turn, allow for the determination of the source.
We use a prototype one-dimensional problem to describe the
method.

From the onset we remark that the one-dimensional
problem is overly simplistic in at least two ways: firstly, one-
dimensional excitation conditions are impossible to replicate
in practice. Secondly, the undamped one-dimensional model
we adopt here ignores all of the three attenuation mechanisms
typically associated with the passage of waves in the Earth:
radiation attenuation due to an expanding wavefront, intrinsic
attenuation due to wave energy conversion to heat and apparent
attenuation due to scattering effects. As a result, the energy
demand to attain in practice what one-dimensional analysis
would predict is, in general, underestimated. Nevertheless,
our discussion aims at highlighting the method’s potential
as a tool for prescribing ground sources, with the selective
shaking of a targeted formation in mind. At the end, the
numerical results, even under the one-dimensional simplifying
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Figure 2. Schematic of inverse-source problem: a layered semi-infinite medium truncated at depth x = L, subjected to an unknown surface
excitation. �0 denotes the target layer. The right graph is the sought outcome: the maximization of �0’s kinetic energy.

assumption, seem to be promising for the more realistic three-
dimensional problem.

2. Problem definition

A semi-infinite heterogeneous (layered) medium is subjected
to an excitation on the surface (x = 0) whose temporal
variability f (t) is unknown. We seek to identify f (t) such
that the kinetic energy within a target region (layer) �0

is maximized (figure 2). The semi-infinite extent of the
original domain is truncated through the introduction of a
truncation boundary at some depth x = L. The propagation
of compressional elastic waves within the truncated layered
medium (� = (0, L)) can be described by the following
initial and boundary value problem (IBVP): we find the one-
dimensional displacement field u ≡ u(x, t) such that

∂

∂x

(
E(x)

∂u(x, t)

∂x

)
− ρ(x)

∂2u(x, t)

∂t2
= 0,

x ∈ (0, L), t ∈ (0, T ], (1a)

E(0)
∂u

∂x
(0, t) + f (t) = 0, t ∈ (0, T ], (1b)

∂u

∂x
(L, t) +

1

c(L)

∂u

∂t
(L, t) = 0, t ∈ (0, T ], (1c)

u(x, 0) = 0, x ∈ (0, L), (1d)
∂u

∂t
(x, 0) = 0, x ∈ (0, L), (1e)

where x denotes the location, t denotes the time; T denotes the
total observation time, E represents the modulus4, ρ represents
the density and c = √

E/ρ is the wave propagation speed.
Condition (1b) is the surface excitation condition; (1c) is the
truncation interface condition, which is exact for homogeneous
domains, but only approximate for heterogeneous domains,

4 For example, for compressional waves E = λ + 2μ, where λ and μ are the
Lamé constants.

and (1d) and (1e) indicate that the system is initially at
rest. Equation (1a) accounts, in general, for arbitrary
heterogeneity (i.e. E ≡ E(x)); though the approach we follow
applies to arbitrarily heterogeneous domains, we restrict the
presentation, and the numerical results, to layered domains,
comprising Nls layers. In such a case, (1a) holds within
each layer, and Ei refers to the resident ith layer modulus;
in addition, the following interface conditions must hold:

Ei

[
∂u

∂x

]
x=x−

i+1

= Ei+1

[
∂u

∂x

]
x=x+

i+1

, i = 1, . . . , (Nls − 1),

(2a)

u|x=x−
i+1

= u|x=x+
i+1

, i = 1, . . . , (Nls − 1), (2b)

where (2a) and (2b) are the traction and displacement interface
continuity conditions, respectively. If the excitation f (t) were
known, the IBVP (1) can be solved to obtain the medium’s
response u(x, t). The excitation, however, is unknown: to
estimate it, we minimize the following functional:

L = 1∫
�0

∫ T

0 ρ(x)
[

∂u
∂t

(x, t)
]2

dt dx
, (3)

which involves the reciprocal of the target layer’s kinetic
energy5, evaluated over the entire observation time. We
remark that (3) is only one of various candidate functionals
that could be cast with the goal of maximizing oil droplet
mobility in a targeted zone (e.g. maximizing the acceleration
field). Numerically, we have experimented with (3) as well as
the following functional:

L =
∫
�\�0

∫ T

0 ρ(x)
[

∂u
∂t

(x, t)
]2

dt dx∫
�0

∫ T

0 ρ(x)
[

∂u
∂t

(x, t)
]2

dt dx
, (4)

which aims at maximizing the target’s kinetic energy (�0),
while keeping the neighbouring layers (�\�0) as dormant as

5 We omit the usual 1
2 term implicated in the kinetic energy’s definition from

the denominator of (3), since it does not affect the subsequent optimization
process.
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possible. The minimization of either (3) or (4) is tantamount to
a constrained optimization problem owing to its subjugation
to the governing IBVP. From a wave propagation point of
view, we note that the IBVP (1) models compressional waves
only: this is a consequence of considering the one-dimensional
prototype, but is in no way a limitation of the described
approach.

3. The inverse-source problem

To recast the constrained optimization problem into an
unconstrained problem, we side-impose via Lagrange
multipliers (or adjoint variables) the governing IBVP to either
of the two minimization functionals (3) or (4). The governing
IBVP involves the unknown excitation, parameterized using a
finite set of parameters. The process must yield the optimal
excitation parameters.

There arises an augmented functional, for which we
seek a stationary point by enforcing the vanishing of first-
order optimality conditions. Three optimality conditions are
necessary: the first results from the variation of the augmented
functional with respect to the Lagrange multipliers. As will be
shown, the resulting form is simply the original IBVP or state
problem. The variation with respect to the state variable, u,
will lead to an adjoint problem for the Lagrange multipliers,
which is a final value boundary value problem (FBVP). Lastly,
it is the third problem—the control problem—arising from
variations with respect to the excitation parameters that will
allow the iterative update of the excitation parameters until
convergence.

3.1. Augmented functional

The side imposition of the governing partial-differential
equation (1a), and the associated boundary and initial
conditions, (1b)–(1e), to the objective functional (3) via
Lagrange multipliers λ, λ0, λL, λu and λv yields the
augmented functional A:

A =
{(

1∫
�0

∫ T

0 ρ
[

∂u
∂t

]2
dt dx

)
+
∫ L

0

∫ T

0
λ(x, t)

×
[

∂

∂x

(
E(x)

∂u(x, t)

∂x

)
− ρ

∂2u(x, t)

∂t2

]
dt dx

+
∫ T

0
λ0(t)

[
E(0)

∂u

∂x
(0, t) + f (t)

]
dt

+
∫ T

0
λL(t)E(L)

[
∂u

∂x
(L, t) +

1

c

∂u

∂t
(L, t)

]
dt

+
∫ L

0
λu(x)

[
ρ

T
u(x, 0)

]
dx

+
∫ L

0
λv(x)

[
ρ

∂u

∂t
(x, 0)

]
dx

}
, (5)

where the notation of the Lagrange multiplier differs
depending on the side constraint: λ(x, t), λ0(t), λL(t), λu(x)

and λv(x) denote the Lagrange multipliers for imposing
the governing PDE (1a), the Neumann boundary condition

(1b), the truncation boundary condition (1c) and the initial
conditions (1d) and (1e), respectively, in the augmented
functional (5). Nevertheless, the dimensions of the Lagrange
multipliers are identical to each other. As will be shown,
λ(x, t) can absorb the other Lagrange multipliers such that
the ensuing adjoint problem is constructed solely in terms of
λ(x, t).

3.2. The first-order optimality conditions

Next, we enforce the vanishing of the first variations of the
augmented functional A with respect to the state variable (u),
the adjoint variables (λ, λ0, λL, λu and λv) and a metric ξ

expressing the parameterization of the unknown excitation
f (t). As will be shown,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δλA = 0
δλ0A = 0
δλL

A = 0
δλu

A = 0
δλv

A = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

yields the state IBV problem,

δuA = 0 yields the adjoint FBV problem,

δξA = 0 yields the control problem.

3.2.1. The first condition. The variation of A with respect
to λ, λ0, λL, λu and λv yields, respectively (henceforth, we
drop the functional dependence for brevity wherever there is
no ambiguity),

δλA =
∫ L

0

∫ T

0
δλ

[
∂

∂x

(
E

∂u

∂x

)
− ρ

∂2u

∂t2

]
dt dx = 0, (6a)

δλ0A =
∫ T

0
δλ0

[
E

∂u

∂x
+ f (t)

]
dt

∣∣∣∣
x=0

= 0, (6b)

δλL
A =

∫ T

0
δλL

[
E

∂u

∂x
+

E

c

∂u

∂t

]
dt

∣∣∣∣
x=L

= 0, (6c)

δλu
A =

∫ L

0
δλu

[
ρ

T
u

]
dx

∣∣∣∣
t=0

= 0, (6d)

δλv
A =

∫ L

0
δλv

[
ρ

∂u

∂t

]
dx

∣∣∣∣
t=0

= 0. (6e)

For (6) to vanish for arbitrary δλ, δλ0, δλL, δλu and δλv ,
the following state problem must be satisfied:

∂

∂x

(
E

∂u

∂x

)
−ρ

∂2u

∂t2
= 0, x ∈ (0, L), t ∈ (0, T ], (7a)

E(0)
∂u

∂x
(0, t) + f (t) = 0, t ∈ (0, T ], (7b)

∂u

∂x
(L, t) +

1

c

∂u

∂t
(L, t) = 0, t ∈ (0, T ], (7c)

u(x, 0) = 0, x ∈ (0, L), (7d)
∂u

∂t
(x, 0) = 0, x ∈ (0, L). (7e)

As can be seen, the resulting state problem is identical
to the IBVP (1). We remark that, in the layered case, (7a)
is written for every layer, and that the interface continuity
conditions are formally recoverable; we will illustrate the
layered case with the adjoint problem.
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3.2.2. The second condition. The vanishing of the variation
of the augmented functionalAwith respect to the state variable
u yields

δuA = δu

[(
1∫

�0

∫ T

0 ρ
[

∂u
∂t

]2
dt dx

)

+
∫ L

0

∫ T

0
λ

[
∂

∂x

(
E

∂u

∂x

)
− ρ

∂2u

∂t2

]
dt dx

+
∫ T

0
λ0

[
E

∂u

∂x
+ f (t)

]
dt

∣∣∣∣
x=0

+
∫ T

0
λL

[
E

∂u

∂x
+

E

c

∂u

∂t

]
dt

∣∣∣∣
x=L

+
∫ L

0
λu

[
ρ

T
u

]
dx

∣∣∣∣
t=0

+
∫ L

0
λv

[
ρ

∂u

∂t

]
dx

∣∣∣∣
t=0

]
= 0. (8)

Applying the variation, taking into account that δu and ∂δu
∂t

vanish at t = 0, and after operating on the first term, (8)
reduces to

δuA = −2
{∫

�0
ρ
[

∂u
∂t

δu
]

dx
∣∣
t=T

− ∫
�0

∫ T

0 ρ
[

∂2u
∂t2 δu

]
dt dx

}
( ∫

�0

∫ T

0 ρ
[

∂u
∂t

]2
dt dx

)2

+
∫ L

0

∫ T

0
λ

[
∂

∂x

(
E

∂δu

∂x

)
− ρ

∂2δu

∂t2

]
dt dx

+
∫ T

0
λ0

[
E

∂δu

∂x

]
dt

∣∣∣∣
x=0

+
∫ T

0
λL

[
E

∂δu

∂x
+

E

c

∂δu

∂t

]
dt

∣∣∣∣
x=L

= 0. (9)

Next, we isolate the second term whose first component
becomes (for a layered medium case)∫ L

0

∫ T

0

[
λ

∂

∂x

(
E

∂δu

∂x

)]
dt dx

=
∫ L

0

∫ T

0

[
λ

∂E

∂x

∂δu

∂x
+ λE

∂2δu

∂x2

]
dt dx

=
Nls∑
i=1

{∫ x−
i+1

x+
i

∫ T

0

[
λ

∂Ei

∂x

∂δu

∂x
+ λEi

∂2δu

∂x2

]
dt dx

}

=
Nls∑
i=1

{[∫ T

0
λ

∂Ei

∂x
δu dt

]x−
i+1

x+
i

−
∫ x−

i+1

x+
i

∫ T

0

[
∂

∂x

(
λ

∂Ei

∂x

)
δu

]
dt dx

+

[∫ T

0
λEi

∂δu

∂x
dt

]x−
i+1

x+
i

−
∫ x−

i+1

x+
i

∫ T

0

[
∂

∂x
(λEi)

∂δu

∂x

]
dt dx

}
. (10)

Equation (10) can be rearranged to yield∫ L

0

∫ T

0

[
λ

∂

∂x

(
E

∂δu

∂x

)]
dt dx

=
Nls−1∑
i=1

{[∫ T

0
λEi

∂δu

∂x
dt

]
x=x−

i+1

−
[ ∫ T

0
λEi+1

∂δu

∂x
dt

]
x=x+

i+1

−
[∫ T

0

(
Ei

∂λ

∂x

)
δu dt

]
x=x−

i+1

+

[∫ T

0

(
Ei+1

∂λ

∂x

)
δu dt

]
x=x+

i+1

}

−
[∫ T

0
λE

∂δu

∂x
dt

]
x=0

+

[∫ T

0
λE

∂δu

∂x
dt

]
x=L

+

[∫ T

0

(
E

∂λ

∂x

)
δu dt

]
x=0

−
[∫ T

0

(
E

∂λ

∂x

)
δu dt

]
x=L

+
∫ L

0

∫ T

0

[
∂

∂x

(
∂λ

∂x
E

)]
δu dt dx. (11)

Next, the second component of the second term in (9), after
integration by parts with respect to time, leads to the following:∫ L

0

∫ T

0

[
λρ

∂2δu

∂t2

]
dt dx

=
∫ L

0

[
ρλ

∂δu

∂t

]
dx

∣∣∣∣
t=T

−
∫ L

0

[
ρ

∂λ

∂t
δu

]
dx

∣∣∣∣
t=T

+
∫ L

0

∫ T

0

[
ρ

∂2λ

∂t2
δu

]
dt dx. (12)

In addition,∫ T

0

[
λL

E

c

∂δu

∂t

]
dt

∣∣∣∣
x=L

=
[
λL

E

c
δu

]
x=L,t=T

−
∫ T

0

[
∂λL

∂t

E

c

]
δu dt

∣∣∣∣
x=L

. (13)

Then, by combining (11), (12) and (13), (9) can be rearranged
as

δuA =
∫ L

0

∫ T

0
δu

[
∂

∂x

(
∂λ

∂x
E

)
− ρ

∂2λ

∂t2
+ E(x)ρ

∂2u

∂t2

]
dt dx

+
∫ L

0
δu

[
ρ

∂λ

∂t
− E(x)ρ

∂u

∂t

]
dx

∣∣∣∣
t=T

−
∫ L

0

[
ρλ

∂δu

∂t

]
dx

∣∣∣∣
t=T

+

[
λL

E

c
δu

]
x=L,t=T

−
∫ T

0

[
λE

∂δu

∂x

]
dt

∣∣∣∣
x=0

+
∫ T

0

[
λ0E

∂δu

∂x

]
dt

∣∣∣∣
x=0

+
∫ T

0

[
λE

∂δu

∂x

]
dt

∣∣∣∣
x=L

+
∫ T

0

[
λLE

∂δu

∂x

]
dt

∣∣∣∣
x=L

+
∫ T

0

[
E

∂λ

∂x
δu

]
dt

∣∣∣∣
x=0

−
∫ T

0

[
∂λL

∂t

E

c
+ E

∂λ

∂x

]
δudt

∣∣∣∣
x=L

+
Nls−1∑
i=1

{[∫ T

0
λEi

∂δu

∂x
dt

]
x=x−

i+1

−
[∫ T

0
λEi+1

∂δu

∂x
dt

]
x=x+

i+1

−
[∫ T

0
Ei

∂λ

∂x
δu dt

]
x=x−

i+1

+

[∫ T

0
Ei+1

∂λ

∂x
δu dt

]
x=x+

i+1

}
= 0, (14)

where

E(x) =

⎧⎪⎨
⎪⎩

2(∫
�0

∫ T

0 ρ
[

∂u(x,t)

∂t

]2
dt dx

)2 , x ∈ �0

0, x ∈ �\�0.

(15)
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For (14) to be satisfied for arbitrary δu, we require the
satisfaction of the following adjoint problem:

∂

∂x

(
E

∂λ

∂x

)
− ρ

∂2λ

∂t2
= −E(x)ρ

∂2u

∂t2
,

x ∈ (0, L), t ∈ [0, T ), (16a)
∂λ

∂x
(0, t) = 0, t ∈ [0, T ), (16b)

∂λ

∂x
(L, t) − 1

c(L)

∂λ

∂t
(L, t) = 0, t ∈ [0, T ), (16c)

λ(x, T ) = 0, x ∈ (0, L), (16d)
∂λ

∂t
(x, T ) = E(x)

∂u

∂t
(x, T ), x ∈ (0, L), (16e)

with the continuity conditions

λ|x=x−
i+1

= λ|x=x+
i+1

, (17a)

Ei

[
∂λ

∂x

]
x=x−

i+1

= Ei+1

[
∂λ

∂x

]
x=x+

i+1

, (17b)

and

λL(t) = −λ(L, t), (17c)

λ0(t) = λ(0, t). (17d)

The adjoint problem has structure identical to the state
problem, except for the following differences: whereas the
state problem is driven by the excitation term in the surface
condition (7b), the adjoint problem is driven by body forces
localized to the target layer and expressed in terms of the
accelerations of the state problem (per (16a)). Secondly, as
can be seen from (16d) and (16e), the adjoint problem is a
final value BVP; thirdly, the sign of the time derivative in the
truncation condition (16c) has been changed when compared
with the truncation condition of the state problem (7c), owing
to the reversal of the time line in the adjoint problem.

The preceding development was based upon using (3) as
the objective functional. If, to force the neighbouring layers
to be silent, we choose (4), the resulting state and adjoint
problems remain the same as derived above, provided the
definition of E(x) is replaced by

E(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
∫
�\�0

∫ T

0 ρ
[

∂u(x,t)

∂t

]2
dt dx(∫

�0

∫ T

0 ρ
[

∂u(x,t)

∂t

]2
dt dx

)2 , x ∈ �0,

−2(∫
�0

∫ T

0 ρ
[

∂u(x,t)

∂t

]2
dt dx

) , x ∈ �\�0.

(18)

3.2.3. The third condition. Next, we consider the variation
of the augmented functional A with respect to a scalar variable
ξ , tantamount to parameter fi—a nodal force of the discretized
force function f (t) (see (33)). To this end,

δξA = ∂

∂ξ

{(
1∫

�0

∫ T

0 ρ
[

∂u
∂t

]2
dt dx

)

+
∫ L

0

∫ T

0
λ

[
∂

∂x

(
E

∂u

∂x

)
− ρ

∂2u

∂t2

]
dt dx

+
∫ T

0
λ

[
E

∂u

∂x
+ f (t)

]
dt

∣∣∣∣
x=0

−
∫ T

0
λ

[
E

∂u

∂x
+

E

c

∂u

∂t

]
dt

∣∣∣∣
x=L

+
∫ L

0
λu

[
ρ

T
u

]
dx

∣∣∣∣
t=0

+
∫ L

0
λv

[
ρ

∂u

∂t

]
dx

∣∣∣∣
t=0

}
= 0. (19)

After some manipulation, (19) reduces to

δξA = −
∫ L

0

∫ T

0

[
E

∂λ

∂x

∂u̇

∂x
+ ρλ

∂2u̇

∂t2
+ E(x)ρ

∂u

∂t

∂u̇

∂t

]
dt dx

−
∫ L

0

∫ T

0

[
E

∂λ̇

∂x

∂u

∂x
+ ρλ̇

∂2u

∂t2

]
dt dx

+
∫ T

0

[
λ̇f (t) + λ

∂f (t)

∂ξ

]
dt

∣∣∣∣
x=0

−
∫ T

0

[
λ̇

E

c

∂u

∂t
+ λ

E

c

∂u̇

∂t

]
dt

∣∣∣∣
x=L

= 0, (20)

where (˙) denotes the derivative of the subtended function with
respect to ξ . To further simplify (20), we introduce a weak
form of the state problem using λ̇ as the weight function to
obtain ∫ L

0

∫ T

0
λ̇

{
∂

∂x

(
E

∂u

∂x

)
− ρ

∂2u

∂t2

}
dt dx = 0. (21)

After integration by parts, (21) becomes∫ L

0

∫ T

0

[
E

∂λ̇

∂x

∂u

∂x
+ λ̇ρ

∂2u

∂t2

]
dt dx =

[ ∫ T

0
λ̇E

∂u

∂x
dt

]L

0

.

(22)

Similarly, we introduce a weak form of the adjoint problem
with u̇ as the weight function to obtain∫ L

0

∫ T

0
u̇

{
∂

∂x

(
∂λ

∂x
E

)
− ρ

∂2λ

∂t2
+ E(x)ρ

∂2u

∂t2

}
dt dx = 0,

(23)

which after integration by parts leads to the following:∫ L

0

∫ T

0

[
∂u̇

∂x

∂λ

∂x
E + ρ

∂2u̇

∂t2
λ +

∂u̇

∂t
E(x)ρ

∂u

∂t

]
dt dx

=
[∫ T

0
u̇

∂λ

∂x
E dt

]
x=L

. (24)

Because of (22) and (24), (20) simplifies to the following:

δξA = −
[∫ T

0
Eλ̇

∂u

∂x
dt

]x=L

x=0

−
[∫ T

0
Eu̇

∂λ

∂x
dt

]
x=L

+
∫ T

0

[
λ̇f (t) + λ

∂f (t)

∂ξ

]
dt

∣∣∣∣
x=0

−
∫ T

0

[
λ̇

E

c

∂u

∂t
+ λ

E

c

∂u̇

∂t

]
dt

∣∣∣∣
x=L

. (25)

There also holds

−
[ ∫ T

0
Eλ̇

∂u

∂x
dt

]x=L

x=0

=
[∫ T

0
λ̇

E

c

∂u

∂t
dt

]
x=L

−
[∫ T

0
λ̇f (t) dt

]
x=0

, (26a)
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−
∫ T

0

{
λ

E

c

∂u̇

∂t

}
dt

∣∣∣∣
x=L

=
∫ T

0

{
E

∂λ

∂x
u̇

}
dt

∣∣∣∣
x=L

, (26b)

and thus, (25) reduces finally to the control problem

δξA(= ∇ξA) =
∫ T

0
λ

∂f (t)

∂ξ
dt

∣∣∣∣
x=0

= 0, (27)

where λ, again, denotes the solution of the adjoint problem. We
remark that δξA is equivalent to the gradient of the objective
functional ∇ξL, since the side-imposed constraints to the
augmented functionalA vanish at the stationary point owing to
the satisfaction of the state problem. To obtain the excitation
parameters, we use a gradient-based minimization process and
the control equation (27) as the reduced gradient. The details
are given in the next section; if (4) were to be used instead of
(3), the control problem remains unaltered.

4. Inverse problem solution and discrete forms

Satisfaction of the first-order optimality conditions, upon
discretization, gives rise to a Karush–Kuhn–Tucker (KKT)
system (Karush 1939, Kuhn and Tucker 1951). Stationarity
can be achieved by solving the state, adjoint and control
problems either as a fully coupled problem (a full-space
solution approach) or via a reduced-space approach. Since
the computational cost associated with a full-space approach
is rather significant, we solve the KKT system by projecting
the state and adjoint variables into the space of the control
variables. Such a reduced-space solution approach entails
the following steps: (a) first the state problem is solved
for a trial form of the excitation; (b) the adjoint problem is
then solved using as driver the acceleration field of the state
problem (per (16a)); (c) finally, updates to the parameters
defining the trial form of the excitation are obtained via a
gradient-based scheme that uses the control equation (27) as
the reduced gradient: at each iteration of the gradient-based
scheme the control equation provides the search direction for
the parameter updates.

4.1. State and adjoint semi-discrete forms

The first two steps entail the solution of both an IBVP (the state
problem) and a FBVP (the adjoint problem). We use a classic
Galerkin finite element approach to resolve the discrete state
and adjoint problems. To this end, we multiply (1a) and (16a)
by test functions, w(x) and v(x), respectively, and integrate
by parts, to arrive at the following weak forms:∫ L

0

[
E

∂w

∂x

∂u

∂x
+ ρw

∂2u

∂t2

]
dx +

E(L)

c(L)
w(L)

∂u(L)

∂t

= w(0)f (t), (28a)

∫ L

0

[
E

∂v

∂x

∂λ

∂x
+ ρv

∂2λ

∂t2

]
dx − E(L)

c(L)
v(L)

∂λ(L)

∂t

=
∫ L

0

[
vEρ

∂2u

∂t2

]
dx. (28b)

We introduce the following approximants:

w(x) = wT q(x), u(x) = qT (x)u(t), (29a)

v(x) = vT q(x), λ(x) = qT (x)z(t), (29b)

where u(t) and z(t) denote the vectors of the nodal solutions
of u(x, t) and λ(x, t), respectively; w and v denote the vectors
of the nodal quantities of the test functions, w(x) and v(x),
respectively; and q(x) represents a vector of shape functions.
Then, (28a) and (28b) are reduced into the following semi-
discrete forms:

M
∂2u(t)

∂t2
+ C

∂u(t)

∂t
+ Ku(t) = F(t), (30a)

M
∂2z(t)
∂t2

− C
∂z(t)
∂t

+ Kz(t) = P(t), (30b)

where

M =
∫ l

0
[ρ(x)q(x)qT (x)] dx, (31a)

C = E(L)

c(L)
q(L)qT (L), (31b)

K =
∫ l

0

[
E(x)

∂q(x)

∂x

∂qT (x)

∂x

]
dx, (31c)

F(t) = q(0)f (t), (31d)

P(t) =
∫ l

0
[Eρq(x)qT (x)] dx

∂2u(t)

∂t2
. (31e)

We solve (30a) and (30b) using a Newmark time-
integration scheme such that the state and adjoint solutions at
each time step are obtained from the following linear system
of equations:[

K + C
2

�t
+ M

4

(�t)2

]
u(n+1) = C

[
2

�t
u(n) +

∂u(n)

∂t

]

+ M
[

4u(n)

(�t)2
+

4

�t

∂u(n)

∂t
+

∂2u(n)

∂t2

]
+ F(n+1), (32a)

[
K + C

2

�t
+ M

4

(�t)2

]
z(n) = C

[
2

�t
z(n+1) − ∂z(n+1)

∂t

]

+ M
[

4z(n+1)

(�t)2
− 4

�t

∂z(n+1)

∂t
+

∂2z(n+1)

∂t2

]
+ P(n), (32b)

where �t denotes the time step, and the subscripts (n) and
(n + 1) denote evaluation of the nodal vectors at the nth and
(n + 1)st time steps. Note that the traversal of the time line in
(32b) is reversed with respect to (32a). Moreover, reflecting
the presence of similar operators in both the state and adjoint
continuous problems, note that the matrices K, C and M are
shared by both discrete forms, requiring their formation only
once per inversion iteration. We remark that there is only
one system matrix inversion needed per (excitation) inversion
iteration, owing to the fact that the left-hand sides of (32a) and
(32b) are identical.
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f(t)

t

: nodal force, fi

quadratic approximation

Figure 3. Schematic of parameterization of the unknown excitation
f (t) using quadratic shape functions.

4.2. Excitation temporal discretization

To compute the unknown time signal f (t), we first
parameterize it as (figure 3)

f (t) =
nf∑
i=1

fiϕi(t), (33)

where ϕi(t) and fi denote the ith shape function and nodal
excitation parameter, respectively, and nf is the total number
of parameters. Following the temporal approximation of f (t),
the control equation (27) becomes

δξA =
∫ T

0
λ

∂f (t)

∂fi

dt

∣∣∣∣
x=0

=
∫ T

0
λϕi(t) dt

∣∣∣∣
x=0

= 0. (34)

We remark that the reduced gradient of the original functional
L can be cast as

∇fi
L =

∫ T

0
λϕi(t) dt

∣∣∣∣
x=0

, (35)

which forms the basis for the parameter updates. The
procedure is outlined next.

4.3. Excitation parameters updates

We perform a minimization process to arrive at a solution
satisfying the first-order optimality conditions starting from
f(0)—the set of the initially guessed excitation parameters.
At each iteration, we first solve the state problem using the
excitation parameters obtained from the previous iteration;
then, we solve the adjoint problem using the state solution;
and finally, using the adjoint solutions, we compute the value
of the gradient (35). Then, we update the excitation parameters
as

f(k+1) = f(k) + gθ(k), (36)

where f(k) denotes the parameter vector at the kth iteration;
θ(k) denotes the step length for the kth iteration; g denotes the
search direction, which is obtained using (35) and a conjugate-
gradient (CG) scheme (Fletcher and Reeves 1951, Nocedal
and Wright 2006). We use the optimal value of θ(k) such that
sufficient decrease of the minimization functional is ensured
at each iteration. That is, (a) if the sufficient decrease is
not met, we use a backtracking method (Nocedal and Wright
2006)—reducing the step length by a factor of α until the
sufficient decrease condition is satisfied; (b) after the excitation
parameters are updated, we increase the step length at the
next iteration by multiplying it by β to improve the rate
of convergence. In the applications we used α = 0.9 and
β = 1.1. The entire algorithm is summarized below.

500m

500m

300m

500m

Semi infinite-

x=0m

x

Truncation interface

f t( ) [N/m ]2

c= /2500m s, = 2000 kg/mρ 3

c= /3000m s, = 2000 kg/mρ 3

c= /1500m s, = 2000 kg/m
(Target layer, )

ρ 3

Ω0

c= /4000m s, = 2000 kg/mρ 3

Figure 4. A four-layer heterogeneous domain; the truncation
interface is located at the end of the fourth layer; the target layer is
the softest of the formation (third layer).

algorithm 1 Inversion algorithm

1: Set TOL = 10−8, α = 0.9 and β = 1.1

2: Set k = 0 and initial force parameters f(0)

3: Compute L(k)

4: while (e > TOL) do

5: Solve state problem (30a)

6: Save state variables

7: Solve adjoint problem (30b)

8: Save adjoint variables

9: Compute the search direction g using CG

10: while (L(f(k) + θ(k)g) > L
(
f(k) − 1

2θ(k)∇L(f(k))
)

do

11: θ(k) ← αθ(k)

12: end while

13: Update excitation parameters, f(k+1) using (36)

14: Compute L(k+1)

15: Compute the iterative norm, e :

e = |L(k+1) − L(k)|
|L(k)|

16: θ(k+1) ← βθ(k)

17: k ← k + 1

18: end while

5. Numerical results

We report on numerical experiments to highlight the
application of the outlined procedure. We consider a layered
medium with four layers as depicted in figure 4. The loading
is located on the surface (x = 0 m), and the truncation
interface boundary is imposed at x = 1800 m. The layers
are increasingly stiffer with depth, but are intercepted by a
soft layer at 1000 m, which becomes the target layer. We use
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(a) Iterative updates of the excitation f(t) by minimizing (3); after
797 iterations, the initially-guessed perturbation loading converges
to the final solution

(b) Frequency spectrum of the converged loading
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(c) Frequency spectrum of the initial-guess loading
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Figure 5. (a) Converged excitation form; (b) its Fourier transform;
(c) the Fourier transform of the initial-guess loading.

linear isoparametric elements for the finite element solution of
the state and adjoint problems with an element size of 10 m.
The total observation time is set to T = 20 s, and the time
step is 0.02 s. We use a periodic force function that has
four periods within the T observation period. Each period
is discretized using quadratic shape functions and 64 force
nodes. We require that the nodal excitation parameter does
not exceed 50 kN m−2. The reduced gradient components are
then evaluated as

∇fi
L =

∫ T

0
λ

4∑
j=1

ϕ(i+64(j−1))(t) dt

∣∣∣∣
x=0

. (37)

We validated the derivation and implementation of the state,
adjoint and control equations by comparing the values of the
components of the gradient obtained using (37) to those of a
numerically computed gradient obtained via a finite-difference
method; both gradients were in excellent agreement.
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Figure 6. The kinetic energy in the target layer �0 is much larger
than that corresponding to a non-optimized loading.

5.1. Maximization of the kinetic energy in the target layer

First, we identify f (t) that maximizes the kinetic energy in the
target layer �0 by minimizing the objective functional (3). To
this end, we use the perturbation loading shown in figure 5 as
the initial guess (shown with triangle symbols in the figure).
The optimization process converges after 797 iterations to the
near-periodic rectangular excitation shown also in figure 5; the
dominant frequency of the converged loading is 8.59 rad s−1

(see the frequency spectrum of the converged loading shown
in figure 5(b)).

We note that the optimization process resulted in the
rendering of a complete time signal, including frequency
content and amplitudes that differ significantly from those of
the initial guess. For example, figure 5(c) depicts the Fourier
transform of the initial guess, betraying a drastically different
frequency content than that of figure 5(b). With respect to the
amplitude, the peak value of the initial guess changed from
40 kN m−2 to about 50 kN m−2 for the converged loading.
We remark that for all cases reported herein we use initial
guesses with peak amplitudes below the capacity of modern-
day Vibroseis equipment6.

Figure 6 shows that the total kinetic energy in the target
layer �0 for the converged optimized excitation is much
larger than the kinetic energy for a non-optimized loading
(f (t) = 50 sin (12t) kN m−2). The amplitude of the non-
optimized loading is set approximately equal to the dominant
amplitude of the optimized loading. The total kinetic energy
in �0 is defined as

∫
�0

K(x, t) d�0, where the kinetic energy
K(x, t) is given by

K(x, t) = 1

2
ρ

[
∂u(x, t)

∂t

]2

, in J m−3. (38)

Next, we are concerned with kinetic energy measures both
in the target layer �0 and within its neighbours. Note that,
as shown in figure 7(a), the kinetic energy distribution using
the non-optimized source results in fairly low activity, when
compared to the energy distribution shown in figure 7(b) that
corresponds to the optimized source. Note further that, in this
case, it is not only the target layer’s energy that was affected,
but also that of the layers lying above the target.

6 Modern Vibroseis sources could deliver up to 180 kN m−2, and for
frequencies up to 350 rad s−1.
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(a)

(b)

Figure 7. Distribution of the kinetic energy K(x, t) using two
different excitations. (a) Kinetic energy distribution over the entire
domain using a suboptimal source (f (t) = 50 sin(12t) kN m−2).
(b) Kinetic energy distribution over the entire domain using the
optimized source.

5.2. Selective energy focusing in the target layer—silent
neighbours

Next, we seek to identify f (t) that maximizes the kinetic
energy in the target layer �0 using the objective functional
(4), which aims at keeping the rest of the domain relatively
inert. The excitation parameters converged after 549 iterations.
As can be seen in figure 8(a), the finally converged loading
appears to be sinusoidal of non-uniform amplitudes with a
dominant frequency of 14.11 rad s−1 (the Fourier transform of
the converged solution is shown in figure 8(b)).

Figure 9 shows that the inverted-for excitation selectively
maximizes the distribution of kinetic energy in the target layer
�0. By contrast, the kinetic energy distribution for a non-
optimized loading signal, e.g. for f (t) = 30 sin (5t) kN m−2,
does not show the selective wave-energy focusing behaviour7.
However, a monochromatic loading, f (t) = 30 sin (14.11t)

kN m−2, which uses the dominant frequency of the inverted-
for loading also leads to the selective wave energy focusing
in the target layer, while exhibiting stronger energy levels
than the original inverted-for excitation. We conjecture that
the optimization process converged to a local minimum,

7 We use the peak amplitude of the optimized loading (approximately
30 kN m−2) as the amplitude for the non-optimized monochromatic loading.
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Figure 8. (a) Converged excitation form, and (b) its Fourier
transform.

within a larger basin of attraction around the 14.11 rad s−1

frequency.

Whereas the described process can successfully lead to
excitations that could maximize the kinetic energy within
a target layer, it is of interest to examine the level of
motion induced by the converged signal in order to provide
a preliminary assessment of its practicality. Figure 10 depicts
the acceleration field within the target layer and at 1200 m
from the surface. Figure 10(b) corresponds to the silent
neighbouring layer case (maximum acceleration amplitude
0.2 m s−2), whereas figure 10(a) corresponds to the case of
the unconstrained layers (maximum acceleration amplitude
0.8 m s−2). Even though such levels could lead to increased
oil mobility (see the discussion in section 1), even higher
levels are desirable. There are at least two ways we could use
to investigate the possibility of inducing higher acceleration
fields, while keeping the force amplitudes within the range
of force that could be delivered by present-day equipment.
Specifically, one could modify the objective functional to
seek to maximize the acceleration field within the target layer
instead of the kinetic energy. The functional would then be
cast as

L = 1∫
�0

∫ T

0

[
∂2u
∂t2 (x, t)

]2
dt dx

, (39)

251



C Jeong et al

(a)

(b)

(c)

Figure 9. Distribution of the kinetic energy K(x, t) for both
optimized and non-optimized excitations. (a) Kinetic energy
distribution for the converged excitation. (b) Kinetic energy
distribution for f (t) = 30 sin (14.11t) kN m−2 that uses the
dominant frequency of the converged loading. (c) Kinetic energy
distribution for a non-optimized source f (t) = 30 sin (5t) kN m−2.

replacing (3) or, in the silent neighbours case, as

L =
∫
�\�0

∫ T

0

[
∂2u
∂t2 (x, t)

]2
dt dx∫

�0

∫ T

0

[
∂2u
∂t2 (x, t)

]2
dt dx

, (40)

replacing (4). This will result in the following additional
changes to the formulation.

• Equation (15) should be replaced by

E(x) =

⎧⎪⎨
⎪⎩

−2( ∫
�0

∫ T

0

[
∂2u(x,t)

∂t2

]2
dt dx

)2 , x ∈ �0,

0, x ∈ �\�0;
(41a)
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Figure 10. The acceleration in the target layer at x = 1200 m for
the converged loadings. (a) The acceleration in the target layer for
the converged excitation shown in figure 5(a). (b) The acceleration
in the target layer for the converged excitation shown in figure 8(a).

• equation (18) should be replaced by

E(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2
∫
�\�0

∫ T

0

[
∂2u(x,t)

∂t2

]2
dt dx( ∫

�0

∫ T

0

[
∂2u(x,t)

∂t2

]2
dt dx

)2 , x ∈ �0,

2∫
�0

∫ T

0

[
∂2u(x,t)

∂t2

]2
dt dx

, x ∈ �\�0;

(41b)

• the adjoint problem (16) should be replaced by

∂

∂x

(
E

∂λ

∂x

)
− ρ

∂2λ

∂t2
= −E(x)

∂4u

∂t4
,

x ∈ (0, L), t ∈ [0, T ) (41c)

∂λ

∂x
(0, t) = 0, t ∈ [0, T ) (41d)

∂λ

∂x
(L, t) − 1

c(L)

∂λ

∂t
(L, t) = 0, t ∈ [0, T ) (41e)

λ(x, T ) = E(x)

ρ

∂2u

∂t2
(x, T ), x ∈ (0, L) (41f )

∂λ

∂t
(x, T ) = E(x)

ρ

∂3u

∂t3
(x, T ), x ∈ (0, L). (41g)

Alternatively, one could also use the maximization of
the kinetic energy process with a finer discretization (in
time) for the sought excitation signal, thereby allowing for
higher driving frequencies. The number of elements used
to discretize the signal (see equation (33)) controls, to an
extent, the frequency content of the sought signal: a coarse
time-discretization filters out high signal frequencies, since
there are not enough points to capture them. By contrast, a
finer discretization infuses flexibility, and allows for higher
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Figure 11. (a) Converged excitation form with the high frequency
content, and (b its Fourier transform.

frequency content. Using the same stratification as before, but
a finer signal representation (the period of the time signal of
the wave source is reduced to 0.25 s, and the total observation
time is 5 s), we obtained the converged signal loading shown
in figure 11, with a time step of 0.001 s. Note that the
Fourier transform of the signal reveals now a higher dominant
frequency than before (figure 11(b)), i.e. 125.8 rad s−1 versus
14.11 rad s−1. Using an amplitude of 50 kN m−2 (peak
amplitude of an optimized signal), the kinetic energies for the
inverted-for signal as well as its monochromatic counterpart
are shown in figure 12. Moreover, figure 13 depicts the
acceleration field within the target layer and at 1200 m, which
shows an amplitude of about 4.0 m s−2. The acceleration field
is now significant, and is within the range that could increase
oil mobility (Beresnev 2006).

The entire process, as described herein, was based on
one-dimensional assumptions. As mentioned, it is impossible
to replicate in the field one-dimensional conditions, for, even
if the underlying stratification were layered, the excitation
would have to be uniformly distributed over a fairly large
surface to induce truly one-dimensional behaviour. We used
a maximum amplitude of 50 kN m−2, which is difficult to
replicate with even a fleet of Vibroseis sources spread over
the ground surface, even though each Vibroseis could deliver
180 kN m−2, almost four times the amplitudes we used herein.
However, what has not been taken into account in this one-
dimensional analysis is the potentially beneficial constructive
wave energy interference an optimal distribution of the sources
could achieve for given site conditions, which could, in turn,
result in the multi-fold increase of the accelerations. Thus far,

(a)

(b)

Figure 12. Distribution of the kinetic energy K(x, t) for the optimal
excitations with a high-frequency content. (a) Kinetic energy
distribution for the converged excitation shown in figure 11.
(b) Kinetic energy distribution for f (t) = 50 sin (125.8t) kN m−2

that uses the dominant frequency of the converged loading shown in
figure 11.
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Figure 13. The acceleration in the target layer for the converged
excitation shown in figure 11.

we have shown that the outlined optimization process can lead
to arbitrary excitation signals, which contain strong single-
frequency components. It is of interest to study the relation of
the optimized signal’s frequencies to the exact frequencies
necessary for maximizing the kinetic energy in the target
layer, in order to assess the optimizer’s performance. The
one-dimensional nature of the prototype problem lends itself
easily to the exact solution. We remark that since the problem
involves a domain of semi-infinite extent, there are no resonant
frequencies in the classic sense. However, there is a set of
frequencies for which the response is amplified compared
to others: for the remainder, we term these frequencies,
amplification frequencies. To obtain them, we study the
frequency dependence of the wave response in the prototype
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four-layered system shown in figure 4 by considering the time-
harmonic response within each layer:

u1(x, t) = [A11 exp (−ik1x) + A12 exp (ik1x)] exp (iωt),

0 = x1 � x < x2,

u2(x, t) = [A21 exp (−ik2x) + A22 exp (ik2x)] exp (iωt),

x2 � x < x3,

u3(x, t) = [A31 exp (−ik3x) + A32 exp (ik3x)] exp (iωt),

x3 � x < x4,

u4(x, t) = [A41 exp (−ik4x)] exp (iωt), x4 � x, (42)

where ω denotes the radial frequency of the wave motions;
kn = ω/cn denotes the wavenumber in the nth layer and
cn denotes the wave speed in the nth layer. With the time
harmonic factor exp (iωt), An1 exp (−iknx) and An2 exp (iknx)

represent the outgoing and reflected waves in the nth layer
with amplitudes An1 and An2, respectively. In addition, on the
surface (x = 0), there holds

E1
∂u1(x, t)

∂x
= P exp(iωt). (43)

The following continuity conditions also hold:

u1(x2, t) = u2(x2, t), E1
∂u1(x2, t)

∂x
= E2

∂u2(x2, t)

∂x
,

u2(x3, t) = u3(x3, t), E2
∂u2(x3, t)

∂x
= E3

∂u3(x3, t)

∂x
, (44)

u3(x4, t) = u4(x4, t), E3
∂u3(x4, t)

∂x
= E4

∂u4(x4, t)

∂x
.

Therefore, (42)–(44) give rise to the following system of
equations:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E1ik1, E1ik1, 0, 0, 0, 0, 0

e−ik1x2 , eik1x2 , −e−ik2x2 , −eik2x2 , 0, 0, 0

−E1ik1 e−ik1x2 , E1ik1 eik1x2 , E2ik2 e−ik2x2 , −E2ik2 eik2x2 , 0, 0, 0

0, 0, e−ik2x3 , eik2x3 , −e−ik3x3 ,−eik3x3 , 0

0, 0, −E2ik2 e−ik2x3 , E2ik2 eik2x3 , E3ik3 e−ik3x3 , −E3ik3 eik3x3 , 0

0, 0, 0, 0, e−ik3x4 , eik3x4 ,−e−ik4x4

0, 0, 0, 0, −E3ik3 e−ik3x4 , E3ik3 eik3x4 , E4ik4 e−ik4x4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11

A12

A21

A22

A31

A32

A41

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

Solving for the coefficients A11, . . . , A41 in (45) leads to the
solution for the total wave fields in (42) (there are no roots
to the determinant). For example, for the given stratification
shown in figure 4 and for a force amplitude of P = 50 kN m−2,
the time-harmonic response solution u3(x, t) in the target layer
becomes

u3(x, t)

=
(

22
5 ie− iω(−1300+x)

1500 − 2ie
iω(−1300+x)

1500

)
eiωt

ω
(

165e− 17
30 iω − 5e− 7

30 iω − 11e
7

30 iω − 22e
iω
6 + 363e

17
30 iω − 106e− iω

6

) .

(46)
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Figure 14. Frequency sweep of the particle velocity | ∂u

∂t
| within the

truncated semi-infinite layered system: (a) ω = 0–50 rad s−1,
(b) ω = 50–100 rad s−1 and (c) ω = 100–150 rad s−1.

Clearly, (46) has no resonant frequencies for ω �= 0. The
same applies to the motion within the other layers. However,
there are frequencies for which the motion is amplified.
Figure 14 depicts the distribution of the amplitude of the
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Figure 15. Inverted-for signals showing strong components at the theoretically exact amplification frequencies. (a) The optimized time
signal after the minimization of L1 (all layers are active) with a loading period of 1 s. (b) The optimized time signal after the minimization
of L2 (silent neighbours) with a loading period of 2 s. (c) The optimized time signal after the minimization of L2 (silent neighbours) with a
loading period of 1.5 s. (d) The optimized time signal after the minimization of L2 (silent neighbours) with a loading period of 0.5 s.

particle velocity
∣∣ ∂u

∂t

∣∣ of the time-harmonic motion with
respect to space, and for a frequency sweep between 0
and 150 rad s−1. Note that at discrete frequencies close
to 8.4 rad s−1, 25.2 rad s−1, 41.9 rad s−1, etc there is strong
motion amplification in all layers, not just the target.
By contrast, at frequencies close to 14.2, 30.7, 47.1, . . . ,

125 rad s−1, etc motion amplification is only observed in
the target layer. As shown earlier, the optimization process
we described recovered effectively signals exhibiting strong
components at these amplification frequencies: for example,
figure 5 shows motion amplification at 8.59 rad s−1 (versus
8.4 rad s−1), whereas figure 8 shows 14.11 rad s−1 (versus
14.2 rad s−1; silent neighbours), and figure 11 shows the
motion amplification at 125.8 rad s−1. For completeness,
we remark that by simply changing the loading period the
optimizer would reconstruct loading signals exhibiting strong
components at other amplification frequencies, as can be seen
in figure 15. Thus, we would conjecture that the optimization
scheme is a very effective agent for computing monochromatic
excitation signals aimed at maximizing a desired metric in a
target formation.

6. Discussion

We described a systematic process that allows the
determination of an unknown excitation when seeking to
maximize mobility in a targeted formation embedded within a
heterogeneous domain. We cast the problem as an inverse-
source problem, and used a partial-differential-equation-
constrained optimization scheme to arrive at a triplet of state,
adjoint and control problems. Solving the problem triplet
yields an excitation, which over many others, would result in
large kinetic energy distributions within the target formation.
Since there is no guarantee of convexity of the augmented
objective functional, nor a guarantee that the process would
yield the global maximum, the procedure can be viewed as a
vehicle for avoiding the blind prescription of excitations: one
should be mindful that another excitation may exist that could
yield the global maximum.

Numerical results show that there certainly exists an
optimal time signal of the loading function that can maximize
the wave energy in the target layer. The kinetic energy in
the target layer for the converged optimized source signal is
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several times larger than the kinetic energy for a non-optimized
source signal. The optimizer also identifies a loading signal
that can selectively maximize the kinetic energy in the target
layer, while the kinetic energy in the neighbouring layers is
minimized. The inversion process resulted in excitations that
are well within the specification of present-day equipment, and
capable of inducing significant acceleration fields, which, in
turn, could mobilize oil in existing reservoirs.

The procedure, nearly unaltered, could be extended to the
all-important three-dimensional elastic wave case; it is well
suited for wave-based EOR applications, when given a known
formation and a target reservoir. Though the focus here was on
maximizing kinetic energy, other maximization targets could
be equally well accommodated (we have also discussed the
maximization of the acceleration field). The extensions to
the two- and three-dimensional cases will be communicated
in the future.
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