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a b s t r a c t

We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped
within the pore space of a target reservoir region by optimally directing wave energy to the region of
interest. The motivation stems from field and laboratory observations, which have provided sufficient
evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil
recovery.

Using controlled active surface wave sources, we first describe the mathematical framework
necessary for identifying optimal wave source signals that can maximize a desired motion metric
(kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of
partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source
problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the
associated discrete inverse problem.

Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that
the optimizer converges to wave source signals capable of maximizing the motion within the reservoir.
The spectra of the wave sources are dominated by the amplification frequencies of the formation. We
also show that wave energy could be focused within the target reservoir area, while simultaneously
minimizing the disturbance to neighboring formations – a concept that can also be exploited in fracking
operations.

Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with
results obtained from semi-analytical studies at the granular level, to conclude that, in the case of
shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance
oil recovery.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most Enhanced Oil Recovery (EOR) methods rely on gas- or
chemical-flooding, which, due to the formation's inherent heteroge-
neity, can hardly sweep an oil field in its entirety. By contrast, wave-
based EOR methods are promising, not only due to their relative cost-
effectiveness, but also because the waves used to illuminate a target
reservoir can do so rather indiscriminantly, thus impacting regions of
otherwise bypassed oil. The key idea behind wave-based EOR is that
elastic waves, in whichever way they may have been generated, could
potentially “shake” a reservoir strongly enough to mobilize the
remaining oil. The mobilized oil can then be recovered by conventional
means. The wave sources, typically used in wave-based EOR, include

Vibroseis equipment atop the ground surface, wellbore hydraulic
pumps (Bremmer et al., 2006), and/or wellbore vibrators (Paulsson,
1989; Westermark et al., 2001a).

The potential of wave-based EOR is supported by a set of field
observations, which show that elastic waves induce increased
production of the remaining oil. For instance, it has been observed
that the rate of oil production and/or the oil-water-cut ratio
increases during and after seismic events in oil reservoirs situated
within the broader region impacted by the earthquake
(Steinbrugge and Moran, 1954; Smimova, 1968; Voytov et al.,
1972; Osika, 1981). Increased oil production has also been reported
during field experiments conducted with wave sources located on
the ground surface, or within a wellbore, either in active or in
seemingly-depleted oil fields (Kuznetsov et al., 1990, 2002;
Kouznetsov et al., 1998; Westermark et al., 2001b; Spanos et al.,
2003; Guo et al., 2004; Kostrov and Wooden, 2005, 2008; Zhu and
Xutao, 2005; Barabanov and Pavlov, 2009).
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In addition to field evidence, there have also been laboratory
investigations of the underlying mechanisms of wave-based EOR. It
has been argued that reservoir shaking can lead to cross-flow
oscillation at the interface between low- and high-permeability
areas in highly heterogeneous reservoirs, or in fractured reservoirs.
For example, in a heterogeneous reservoir, the elastic waves induce
pore-pressure oscillation between layers of different permeability
(Bachrach et al., 2001; Huh, 2006) (Fig. 1(a)). Similarly, in a fractured
reservoir (Fig. 1(b)), direct application of hydraulic wave sources to a
fracture can induce a periodic pressure gradient between a fracture
and the surrounding rock matrix, such that transport of the
bypassed oil from the rock matrix into the fracture space can be
enhanced (Owens and Archer, 1966; Surguchev et al., 2002;
Groenenboom et al., 2003; Stirpe et al., 2004; Jeong et al., 2011).

On the other hand, it has been suggested that the seismic
waves increase permeability within hydrocarbon formations.
Elkhoury et al. (2006) reported that seismic waves can alter the
permeability of aquifers by investigating the earthquake-induced
phase changes of the responses of water levels in wells to earth
tidal strains (Elkhoury et al., 2006). Elkhoury et al. (2011) also
presented that permeability within a fractured rock can be
increased via the laboratory tests that use fluid flow oscillation
of a very low frequency (0.05 Hz). Unblocking pores, by breaking
colloidal deposits or mobilizing droplets trapped in pores, is
reported to attribute to the wave-induced change of the perme-
ability in rock formation systems (Manga et al., 2012). Geballe
et al. (2011) also suggested a permeability-change model of porous
permeable rock media, which explained the increase of the
permeability, during seismic activities, followed by its decrease,
due to reclogging of pores.

It has also been suggested that the movement of the pore walls
could also mobilize oil droplets trapped in pore spaces (Beresnev
and Johnson, 1994; Averbakh et al., 2000; Hilpert et al., 2000;
Beresnev, 2006; Beckham et al., 2010). That is, the vibration of
pore walls can dislodge the trapped droplets and coalesce them
into larger ones, allowing them to be mobilized and flow, as
illustrated in Fig. 2. A set of experimental studies, employing

ultrasound waves, have supported the dislodging mechanism of oil
droplets by means of shaking of the rock matrix. In these
laboratory experiments, ultrasonic waves with frequencies over
20 kHz were exploited to mobilize oil droplets in ill-saturated
sandstone core samples, resulting in increased oil production
(Amro et al., 2007; Hamida and Babadagli, 2005a,b,c). However,
since waves at such high frequencies attenuate rapidly with
distance, techniques relying on ultrasound waves are not viable
for mobilizing oil droplets at the reservoir scale (Roberts et al.,
2001; Roberts and Abdel-Fattah, 2009). On the other hand, a
number of laboratory tests have demonstrated dislodging of oil
droplets by using elastic or acoustic wave sources at low frequency
ranges: Roberts et al. (2001, 2003), Roberts and Abdel-Fattah
(2009), and Beckham et al. (2010) showed that dynamic stress,
exerted on a solid rock matrix of a sandstone core at low
frequencies (10–100 Hz), can release trapped oil droplets; Vogler
and Chrysikopoulos (2004) and Thomas and Chrysikopoulos
(2007) also showed that acoustic waves of frequencies up to
300 Hz can remove the non-aqueous phase liquid (NAPL) from
porous permeable core samples; Spanos et al. (2003) conducted
experiments demonstrating that fluid-pressure pulsing at frequen-
cies ranging from 30 Hz to 60 Hz can increase the oil recovery rate
from confined sand packs;

In a capillary-trapping model Iassonov and Beresnev (2003)
developed, they showed that the inertia force induced by the
elastic wave on a trapped oil droplet, should exceed a threshold
level in order for the trapped droplet to overcome the capillary
force. From subsequent experiments (Li et al., 2005; Beresnev
et al., 2011) and numerical simulations at pore scales (Beresnev,
2006; Beresnev and Deng, 2010; Deng and Cardenas, 2013), they
concluded that the acceleration of the rock matrix should be in the
order of 0.1–10 m/s2, or more, to induce oil mobilization. They
further showed that such a threshold acceleration level varies
depending on a number of parameters: (a) the average size of the
pore space; (b) the background pressure gradient; (c) the wave
frequency; (d) the viscosity of the remaining oil; and (e) the capil-
lary pressure. To investigate the feasibility of overcoming the

Nomenclature

Symbol Comment
x location
t time
Saðx; tÞ history of the Cauchy stress tensor in Ω0

uaðx; tÞ displacement vector in Ω0

Sbðx; tÞ history of the Cauchy stress tensor outside Ω0

ubðx; tÞ displacement vector outside Ω0

Ω0 target inclusion (hydrocarbon reservoir)
Ωreg regular domain: Ω\ΩPML

ΩPML domain occupied by PML
Ω entire bounded domain used for computation
Γfixed outer (Dirichlet) boundary of PML
Γload part of the boundary where loads are applied
Γfree free surface boundary
Γint interface boundary between Ω0 and Ωreg

D fourth-order compliance tensor
~Λe; ~Λp coordinate stretching tensors associated with the PML
a, b, c attenuation coefficients associated with the PML
λ, μ Lamé parameters
E elastic modulus
ν Poisson's ratio
ρ mass density
vp compressional wave velocity

vs shear wave velocity
fðx; tÞ vector of applied forces of a surface wave source
nf number of parameters for temporal discretization of

f 2ðx; tÞ
f 2ðx; tÞ x2-directional force function of fðx; tÞ
f 2i

the ith discretized force parameter for temporal
approximation of f 2ðx; tÞ

φiðtÞ the ith shape function for temporal approximation of
f 2ðx; tÞ

nðxÞ unit normal to a surface
L objective functional to be minimized
λua ;λub ;λF Lagrange multiplier vector function
λSa ;λSb Lagrange multiplier tensor function
λsymSa symmetric part of λSa
λsymSb

symmetric part of λSb
A Lagrangian functional
δ variational symbol
EðxÞ coefficient of the body force terms in (16) and (20)
ξ control variable: ξ¼ f 2i

fðkÞ an array of force parameters at the kth optimization
iteration; see Algorithm 1

θðkÞ step length at the kth optimization iteration
α, β parameters of the optimization algorithm
f frequency of the loading time signal of a surface

wave source

C. Jeong et al. / Journal of Petroleum Science and Engineering 129 (2015) 205–220206



capillary force, one needs to investigate the possibility of generat-
ing strong enough wave motions at reservoir scales, such that the
acceleration field exceeds the threshold value.

In a preliminary study (Jeong et al., 2010), we proposed an
optimization scheme that can inversely compute the optimal
loading time signal of a ground surface wave source that leads to
the maximization of a desired metric, such as the kinetic energy,
or, acceleration of a solid rock matrix in a target reservoir
formation, when the formation's properties are a priori known.
For simplicity, one-dimensional compressional wave physics for a
semi-infinite layered medium was considered. This one-
dimensional inverse-source identification methodology showed
that certain source frequencies lead to the amplification of the
wave motion in the target formation. Our numerical optimizer

successfully identified near-monochromatic optimal loading time
signals with strong dominant frequency components, which coin-
cided with the aforementioned formation amplification frequen-
cies. The inverted-for excitations are well within the capability
range of present-day equipment, and induce significant accelera-
tion fields, which, in turn, appear to be large enough to mobilize
oil under these one-dimensional assumptions. However, a one-
dimensional setting is overly simplistic in at least two ways: first,
one-dimensional excitation conditions are impossible to replicate
in practice; second, the undamped one-dimensional model we
adopted ignores all of the three attenuation mechanisms that are
typically associated with the passage of waves in the Earth, i.e.,
radiation attenuation due to an expanding wave-front, intrinsic
attenuation due to wave energy conversion to heat, and apparent
attenuation due to scattering effects. As a result, the wave
responses predicted by this one-dimensional analysis are
overestimated.

Herein, we extend prior work and discuss an inverse-source
approach for the more realistic two-dimensional setting. It is
assumed that the strip loading is stretched infinitely in a direction
that is perpendicular to the cross-sectional plane (see Fig. 4), and
the wave motion is undamped. Such two-dimensional loadings
can be replicated in practice by using a fleet of Vibroseis equip-
ment, under the assumption of lateral homogeneity, as detailed by
Kallivokas et al. (2013). We attempt to address the following
questions:

� Are there characteristic amplification frequencies that lead to
the maximization of the kinetic energy or acceleration field in a
target reservoir?

� Do the optimal loading signals depend on the locations of
surface wave sources?

� Can we focus the wave energy into a target formation while
minimizing the impact on neighboring formations?

� Do the optimal source signals of multiple wave sources have a
different spectrum for each source?

� Is the wave motion, induced by the optimized surface wave
sources, large enough to result in the mobilization of trapped
oil droplets within a target formation?

To address these questions, we use an inverse source approach
to arrive at optimized source signals of wave sources that can
maximize certain desired metrics (e.g., kinetic energy or accelera-
tion) in a target reservoir, while undesired metrics (e.g., vibrational
disturbance) in the surrounding neighborhood is minimized. The
reservoir formation is discretized by using finite elements, sur-
rounded by perfectly-matched-layers (PMLs) to truncate the semi-
infinite extent of the reservoir domain (Kang and Kallivokas, 2010;
Kucukcoban and Kallivokas, 2011, 2013). The PML is a buffer zone

Injector Producer

Rock layers
without oil

Oil reservoir

Rock layers
without oil

High permeability( )k

Low permeability( )k

Low permeability( )k

Awave generator

Effect of wave-based EOR
Bypassed oil moves to high zonek

:
Injection fluid bypasses the oil
in the low-permeability zone

Problem before wave-based EOR

Injector Producer

Rock layers
without oil

Oil reservoir

Rock layers
without oil

A fluid-pressure wave source

Cross flow between fractures
and the roc k matrix improves
fluid transport

A fracture space

Fig. 1. Wave-induced cross-flow oscillation-based recovery mechanism: (a) elastic
wave induces cross-flow oscillation at the interface between different permeability
areas and (b) wellbore hydraulic pumps induce cross-flow oscillation at the
interface between a fracture space and surrounding rock matrix.

Pore scale (~mm)

Fig. 2. The mobilization of trapped oil droplets in pore space by the vibration of
pore wall surface: (a) oil droplets are captured in the pore space before a wave-
based EOR is applied and (b) reservoir shaking mobilizes the oil droplets.
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that surrounds the domain of interest, and forces the decay of both
propagating and evanescent waves as they travel through the PML
(Kucukcoban and Kallivokas, 2013; Fathi et al., 2015). This concept
is schematically captured in Fig. 3.

The apparatus of PDE-constrained optimization is used to
tackle the associated minimization problem. We report on numer-
ical experiments, inverting for the optimal loading time signals
that maximize the kinetic energy, or the acceleration field, within
a synthetic reservoir inclusion.

2. Problem definition

A key objective is to identify the unknown loading signal
characteristics of surface wave sources, which can maximize a
desired motion metric, such as the kinetic energy, or acceleration
field of the rock matrix, within a target reservoir formation, while
also minimizing the disturbance of neighboring formations. In this
section, the underlying elastic wave equations, which are coupled
with PMLs in order to reduce the size of the computational
domain, are discussed. We then introduce candidate objective
functionals for optimizing the wave sources, and, finally, we
discuss source parameterization.

2.1. Governing wave physics

We consider a target inclusion Ω0, embedded in a heteroge-
neous elastic solid medium of semi-infinite extent, subjected to
multiple dynamic strip loadings, located on the ground surface, as
shown in Fig. 4. In this figure, the target elastic inclusion Ω0, as
well as the exterior domain Ω\Ω0 are occupied by a linear elastic
solid. The semi-infinite extent of the elastic medium is negotiated
by a buffer of Perfectly-Matched-Layers (PMLs) (Kucukcoban and
Kallivokas, 2011, 2013), denoted by ΩPML, placed at the domain's
truncation boundary. Moreover, Ωreg denotes the regular domain,
which encompasses the entire domain excluding ΩPML

(Ω¼Ωreg [ ΩPML). We adopt plane strain assumptions; i.e., spa-
tially, the wave motion depends only on x1 and x2. Accordingly, P-,
SV-, and Rayleigh waves will be generated within Ωreg. The elastic
wave response is then governed by the following set of equations:

div
∂STa
∂t

 !
�ρ

∂2ua

∂t2
¼ 0; xAΩ0; tAð0; T �; ð1Þ

D ∂2Sa
∂t2

� �
�1
2

∇
∂ua

∂t
þ ∇

∂ua

∂t

� �T
" #

¼ 0; xAΩ0; tAð0; T �; ð2Þ

and

div
∂STb
∂t

~ΛeþSTb
~Λp

 !
�ρ a

∂2ub

∂t2
þb

∂ub

∂t
þcub

� �
¼ 0;

xAΩ\Ω0; tA ð0; T �; ð3Þ

ΛT
e D ∂2Sb

∂t2

� �� �
ΛeþΛT

e D ∂Sb
∂t

� �� �
Λp

þΛT
p D ∂Sb

∂t

� �� �
ΛeþΛT

pðD Sb½ �ÞΛp

�1
2
ΛT

p∇ubþð∇ubÞTΛp

h i
�1
2
ΛT

e∇
∂ub

∂t
þ ∇

∂ub

∂t

� �T

Λe

" #
¼ 0;

xAΩ\Ω0; tAð0; T �: ð4Þ

The system is initially at rest, and subject to the following boundary
and interface conditions:

ubðx; tÞ ¼ 0; xAΓfixed; ð5aÞ

∂STbðx; tÞ
∂t

nðxÞ ¼ fðx; tÞ; xAΓload; ð5bÞ

∂STbðx; tÞ
∂t

~ΛeðxÞþSTbðx; tÞ ~ΛpðxÞ
 !

nðxÞ ¼ 0; xAΓfree\Γload; ð5cÞ

uaðx; tÞ ¼ ubðx; tÞ; xAΓint; ð6aÞ

∂STa ðx; tÞ
∂t

nðxÞ ¼ ∂STbðx; tÞ
∂t

nðxÞ; xAΓint; ð6bÞ

where spatial and temporal dependencies are suppressed for brevity;
u is the displacement vector, ∂S=∂t represents the Cauchy stress
tensor, D is the fourth-order compliance tensor, ρ is the mass density
of the elastic solid medium, x¼ ðx1; x2ÞT denotes space, t is time, T
represents the total observation time, n is the unit outward normal
vector at the interface boundaries, f ¼ ðf 1; f 2ÞT is the vector of
external forces, yet to be determined,1 and subscripts ‘a’ and ‘b’
represent variables in Ω0 and Ω\Ω0, respectively. Moreover, ~Λe, ~Λp,
Λe, and Λp are the so-called stretch tensors, which enforce attenua-
tion of waves within the PML, and a, b, and c are products of certain
elements of the stretch tensors (Kucukcoban and Kallivokas, 2011,
2013).

Fig. 3. A PML truncation boundary in the direction of coordinate s.

Fig. 4. The problem definition: identification of the loading time signal of the
surface wave sources that can maximize the movement in the target inclusion Ω0

embedded in the semi-infinite medium.

1 Throughout, we only consider vertical excitations, i.e., f 1 � 0.
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Eqs. (1) and (2) are the equilibrium and the combined con-
stitutive and kinematic equations in the target reservoir Ω0,2

respectively. Eqs. (3) and (4) are the equilibrium and the combined
constitutive and kinematic equations in the surrounding elastic
solid medium Ω\Ω0, which also includes ΩPML. These equations
are coupled via (6a) and (6b), which are the continuity of
displacements and traction conditions at Γint, respectively. We
remark that in (1)–(4) the displacement field and the stress history
tensor are both treated as unknowns, resulting in a mixed
formulation.

2.2. Candidate objective functionals

Considering the problem configuration, we seek to identify the
loading time signals of the wave sources that, for example, can
maximize the kinetic energy in a target inclusion Ω0. This can be
realized by minimizing the following objective functional:

L¼ 1
R
Ω0

R T
0 ρ

∂ua1

∂t

� �2

þ ∂ua2

∂t

� �2
" #

dt dΩ

: ð7Þ

Alternatively, one may aim at maximizing the kinetic energy in the
target inclusion Ω0, while simultaneously minimizing the kinetic
energy in the neighboring formations Ωreg\Ω0. This can be
accomplished by minimizing an objective functional of the form:

L¼

R
Ωreg\Ω0

R T
0 ρ

∂ub1

∂t

� �2

þ ∂ub2

∂t

� �2
" #

dt dΩ

R
Ω0

R T
0 ρ

∂ua1

∂t

� �2

þ ∂ua2

∂t

� �2
" #

dt dΩ

: ð8Þ

The denominators of (7) and (8) are the temporal integrals of the
kinetic energy that is spatially integrated over Ω0; the numerator
of (8) is the temporal integral of the kinetic energy that is spatially
integrated over the formations surrounding the reservoir Ωreg\Ω0.

We remark that the form of the objective functional can be
altered depending on the metric to be minimized or maximized.
For instance, a different objective functional could be cast in terms
of the acceleration field:

L¼ 1

R
Ω0

R T
0

∂2ua1

∂t2

� �2

þ ∂2ua2

∂t2

� �2" #
dt dΩ

: ð9Þ

Eq. (9) is the reciprocal of the temporal integral of the square of
the amplitude of the acceleration field that is integrated over the
target inclusion Ω0. Minimization of (9) can lead to optimal
loading time signals that can maximize the rock matrix accelera-
tion within Ω0.

The performance of each of these objective functionals is
examined in Section 5, using various numerical experiments.

2.3. Load parameterization

We consider the loading time signal f 2ðtÞ to be unknown. The
load can be parameterized as:

f 2ðtÞ ¼
Xnf
i ¼ 1

f 2iφiðtÞ; ð10Þ

where φiðtÞ and f 2i
denote the ith (temporal) shape function and

the discrete temporal excitation parameter, respectively, and nf is
the total number of the discretized force parameters; we use
quadratic shape functions for φiðtÞ, as shown in Fig. 5. Our goal is

to compute optimal values for f 2i , such that the resulting loading
time signal minimizes the considered objective functional L.

3. The inverse source problem

Our goal is to compute the temporal characteristics of the wave
sources that are placed on the ground surface, such that the
chosen objective functional is minimized. To this end, we first
construct a Lagrangian functional A by augmenting the objective
functional with the side imposition of the governing wave equa-
tions. Specifically, we introduce Lagrange multiplier vector func-
tions λua ðx; tÞ, λub ðx; tÞ, λFðx; tÞ, and Lagrange multiplier tensor
functions λSa ðx; tÞ, λSb ðx; tÞ to enforce the initial- and boundary
value problem (1)–(6). The Lagrangian functional becomes

A¼ 1R
Ω0

R T
0 ρ

∂ua1
∂t

� �2
þ ∂ua2

∂t

� �2� �
dt dΩ

þ
Z
Ω0

Z T

0
λua � div

∂STa
∂t

 !
�ρ

∂2ua

∂t2

" #
dt dΩ

þ
Z
Ω0

Z T

0
λSa : D ∂2Sa

∂t2

� �
�1
2

∇
∂ua

∂t
þ ∇

∂ua

∂t

� �T
( )" #

dt dΩ

þ
Z
Ω\Ω0

Z T

0
λub � div

∂STb
∂t

~ΛeþSTb
~Λp

 !"

�ρ a
∂2ub

∂t2
þb

∂ua

∂t
þcub

� ��
dt dΩ

þ
Z
Ω\Ω0

Z T

0
λSb : ΛT

e D ∂2Sb
∂t2

� �� �
ΛeþΛT

e D ∂Sb
∂t

� �� �
Λp

�

þΛT
p D ∂Sb

∂t

� �� �
ΛeþΛT

pðD Sb½ �ÞΛp

�1
2

ΛT
p∇ubþð∇ubÞTΛp

n o

�1
2

ΛT
e∇

∂ub

∂t
þ ∇

∂ub

∂t

� �T

Λe

( )#
dt dΩ

þ
Z
Γload

Z T

0
λF �

∂STb
∂t

n�fðx; tÞ
" #

dt dΓ; ð11Þ

where ð�Þ and (:) indicate inner-product for vector- and tensor-
variables, respectively. Moreover, (5a), (5c), (6), and the initial
conditions, are implicitly considered in the Lagrangian A.

Next, we use the Lagrangian (11) to compute the first-order
optimality conditions. To this end, variation of A with respect to
the state variables (ua, ub, Sa, Sb), the adjoint variables (λua , λub , λSa ,
λSb , λF), and the control variables (f 2i

) – these are the sought
temporal source parameters – must vanish.

3.1. The state problem

Taking the variation of the Lagrangian functional A with
respect to the adjoint variables λua , λub , λSa , λSb , λF,

3 and setting
it to zero, i.e., δλA¼ 0, results in the state problem, which is
identical to the forward problem, outlined in (1)–(6).

3.2. The adjoint problem

Taking the variation of A with respect to the state variables ua,
ub, Sa, Sb,

4 and setting it to zero ðδu;SA¼ 0Þ, results in the adjoint

2 In a more realistic setting, these equations can be replaced by Biot's equations
(Biot, 1956), to represent a fluid-saturated porous permeable medium.

3 The variations of the adjoint variables are denoted by δλua , δλub , δλSa , δλSb , δλF.
4 The variations of the state variables are denoted by δua, δub, δSa, δSb.
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problem:

∂2λua
∂t2

ρþdiv
∂λsymSa

∂t

 !
¼ ρE∂

2ua

∂t2
; xAΩ0; tA ½0; TÞ; ð12Þ

D ∂2λsymSa

∂t2

" #
þ1
2

∇
∂λua

∂t
þ ∇

∂λua
∂t

� �T
" #

¼ 0; xAΩ0; tA ½0; TÞ; ð13Þ

∂2λub
∂t2

ρa�∂λub
∂t

ρbþλubρcþdiv �Λpλ
sym
Sb

þΛe
∂λsymSb

∂t

 !
¼ ρE∂

2ub

∂t2
;

xAΩ\Ω0; tA ½0; TÞ; ð14Þ

1
2

~Λe ∇
∂λub

∂t

� �T

þ ∇
∂λub
∂t

� �
~Λe

" #
�1
2

~Λpð∇λub ÞT þð∇λub Þ ~Λp

h i

þD ΛT
e

∂2λsymSb

∂t2
Λe�ΛT

e

∂λsymSb

∂t
Λp�ΛT

p

∂λsymSb

∂t
ΛeþΛT

pλ
sym
Sb

Λp

" #
¼ 0;

xAΩ\Ω0; tA ½0; TÞ; ð15Þ

where λsymSa and λsymSb
denote the symmetric part of λSa and λSb ,

respectively. That is, λsymSa ¼ 1
2 λSa þλTSa
� �

, and λsymSb
¼ 1

2 λSb þλTSb
� �

.

Moreover, the coefficient EðxÞ in the body force term in (12)
and (14) is defined as

EðxÞ ¼
2R

Ω0

R T
0 ρ

∂ua
∂t � ∂ua

∂t

� 	
dt dΩ

� �2 ; xAΩ0;

0; xAΩ\Ω0

8>><
>>: : ð16Þ

The adjoint equations (12)–(15) are supplemented with the following
boundary conditions:

�Λpλ
sym
Sb

þΛe
∂λsymSb

∂t

 !
n¼ 0; xAΓfree; ð17aÞ

λub ¼ 0; xAΓfixed; ð17bÞ

λF ¼ �λub ; xAΓload; ð17cÞ
interface conditions:

λua ¼ λub ; λSan¼ λSbn; xAΓint; ð18Þ
and, final value conditions:

λua ¼ 0;
∂λua

∂t
¼ E∂ua

∂t
; λsymSa ¼ 0;

∂λsymSa

∂t
¼ 0; xAΩ0; t ¼ T ;

ð19aÞ

λub ¼ 0;
∂λub
∂t

¼ E∂ub

∂t
; λsymSb

¼ 0;
∂λsymSb

∂t
¼ 0; xAΩ\Ω0; t ¼ T :

ð19bÞ
We remark that the adjoint problem is a final value problem,

and, thus, is solved backwards in time; it is driven by body force
terms ρEð∂2ua=∂t2Þ, ρEð∂2ub=∂t2Þ, which are obtained from solving
the state problem. Moreover, we remark that the operators
implicated in the adjoint problem are very similar to those in

the forward problem (modulo sign reversals associated with odd-
order time derivatives). Thus, an implementation of the forward
problem can be used for the resolution of the adjoint problem,
with only minor modifications.

If the objective functional shown in (8) – the silent neighboring
formations – is minimized, the adjoint problem remains overall
unaltered, except that the coefficient EðxÞ is modified to read:

EðxÞ ¼

2
R
Ωreg\Ω0

R T
0 ρ

∂ub

∂t
� ∂ub

∂t

� �
dt dΩ

� �
R
Ω0

R T
0 ρ

∂ua

∂t
� ∂ua

∂t

� �
dt dΩ

� �2 ; xAΩ0;

�2R
Ω0

R T
0 ρ

∂ua

∂t
� ∂ua

∂t

� �
dt dΩ

� � ; xAΩreg\Ω0;

0; xAΩ\Ωreg

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð20Þ

If the acceleration-based objective functional (9), is used
instead, then the adjoint equations change as follows: firstly,
Eqs. (12) and (14) are, respectively, replaced by

∂2λua

∂t2
ρþdiv

∂λsymSa

∂t

 !
¼ �E∂

4ua

∂t4
; xAΩ0; tA ½0; TÞ; ð21Þ

∂2λub

∂t2
ρa�∂λub

∂t
ρbþλubρcþdiv �Λpλ

sym
Sb

þΛe
∂λsymSb

∂t

 !
¼ �E∂

4ub

∂t4
;

xAΩ\Ω0; tA ½0; TÞ; ð22Þ

whereas the other adjoint PDEs, (13) and (15), remain unaltered.
We remark that, in (21) and (22), the right-hand-side body force
terms include the fourth derivative of the state solution with
respect to time t, as well as a modified coefficient EðxÞ, which is
defined as

EðxÞ ¼

2

R
Ω0

R T
0

∂2ua

∂t2
� ∂

2ua

∂t2

� �
dt dΩ

� �2 ; xAΩ0;

0; xAΩ\Ω0

8>>><
>>>:

: ð23Þ

Secondly, the final value conditions (19) are replaced by

λua ¼ �E
ρ
∂2ua

∂t2
;

∂λua

∂t
¼ �E

ρ
∂3ua

∂t3
;

λsymSa ¼ 0;
∂λsymSa

∂t
¼ 0; xAΩ0; t ¼ T ; ð24aÞ

λub ¼ � E
ρa

∂2ub

∂t3
;

∂λub
∂t

¼ � E
ρa

∂3ub

∂t3
� Eb
ρa2

∂2ub

∂t2
;

λsymSb
¼ 0;

∂λsymSb

∂t
¼ 0; xAΩ\Ω0; t ¼ T : ð24bÞ

3.3. The control problem

The third optimality condition requires δf 2iA¼ 0, i.e., the
vanishing variation of A with respect to the control parameters
f 2i

, which parameterize the load f 2ðtÞ, as detailed in (10). This
yields

δf 2iA¼
Z
Γload

Z T

0
λu2 ðx; tÞ

∂f 2ðtÞ
∂f 2i

" #
dt dΓ ¼ 0: ð25Þ

Moreover δf 2iA¼∇f 2i
A.

We remark that in the reduced-space approach detailed in the
next section, the gradient of the augmented functional A equals
the gradient of the objective functional L, since the side-imposed
constraints of the augmented functional A vanish, owing to the

Fig. 5. Schematic of parameterization of an unknown excitation f 2ðtÞ using
quadratic shape functions.
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satisfaction of the state problem. That is,

∇f 2i
L¼

Z
Γload

Z T

0
λu2 ðx; tÞφiðtÞ
� 	

dt dΓ: ð26Þ

Thus, with the aid of this gradient, a gradient-based scheme can be
employed to minimize the objective functional L.

4. The inversion process

In this non-linear minimization problem, we iteratively identify a
stationary point by using a gradient-based minimization approach
until the first-order optimality conditions – the triplet of the state,
adjoint, and control equations – are satisfied. The iterative procedure

undergoes the following steps: (a) the state problem, shown in Eqs.
(1)–(6), is solved by using an initially guessed loading time signal;
(b) the adjoint problem, shown in (12)–(19), is subsequently solved by
using the state solution; (c) the gradient ∇f 2i

L, as shown in (26), is
evaluated; and (d) the control parameters f 2i

are updated by virtue of
a conjugate-gradient (CG) scheme (Fletcher and Reeves, 1951;
Nocedal and Wright, 2006) with an inexact line-search method
(Nocedal and Wright, 2006). The numerical optimizer repeats steps
(a)–(d) until the control parameters converge. The numerical optimi-
zation scheme is summarized in Algorithm 1. Herein, a standard
Galerkin method is used to solve the state and adjoint problems.

The accuracy of the PML in the forward wave solver was
verified via comparison with a reference solution for an enlarged
domain with fixed boundaries (Kucukcoban, 2010; Kucukcoban
and Kallivokas, 2011, 2013). We also verified the mathematical
derivation and numerical implementation of the trio of the state,
adjoint, and control problems by comparing (i) the values of the
components of the gradient computed by (26) using a set of
arbitrary force parameters with (ii) those of the numerical gra-
dient obtained by a finite-difference scheme, which is straightfor-
ward but computationally expensive, as

∇f 2i
L¼

Ljf 2i þΔf 2i
�Ljf 2i �Δf 2i

2Δf 2i

; ð27Þ

where Ljf 2i þΔf 2i
or Ljf 2i �Δf 2i

� �
denotes the value of L evaluated

for the same given set of force parameters whose ith parameter is
increased by Δf 2i

from the original value (or decreased byΔf2i );
Δf 2i

denotes the incremental step size used for the finite-
difference scheme. Both gradients (the control (26) versus the
finite-difference (27)) yield identical numerical values.

Algorithm 1. Optimization algorithm.

1: Set Tol¼10�8, α¼ 0:9 and β¼ 1:1
2: Set k¼0, and initialize force parameters fð0Þ
3: Compute LðkÞ
4: while ðe4TolÞ do
5: Solve the state problem and store the state variables
6: Solve the adjoint problem and store the adjoint variables
7: Compute a search-direction g by using CG
8: while ðLðfðkÞ þθðkÞgÞ4LðfðkÞ �1

2θðkÞ∇LðfðkÞÞÞ do
9: θðkÞ’αθðkÞ
10: end while
11: Update excitation parameters fðkþ1Þ, and compute Lðkþ1Þ
12:

Compute the termination condition: e¼ Lðkþ1Þ �LðkÞ


 



LðkÞ


 



13: θðkþ1Þ’βθðkÞ, and k’kþ1
14: end while

5. Numerical experiments

We present numerical experiments conducted for a synthetic
subsurface formation model (Fig. 6), which comprises 4 layers and a

Fig. 6. Subsurface formation model – a target hydrocarbon reservoir inclusion Ω0

buried in a semi-infinite heterogeneous medium subjected to various ground wave
sources: (a) two symmetric wave sources, (b) two unsymmetric wave sources, and
(c) five unsymmetric wave sources.

Table 1
Elastic moduli and wave velocities of the layers of the model shown in Fig. 6.

Formation E (N/m2) vp(m/s) vs(m/s)

Target 1.0�1010 2247 1376
Layer 1 2.0�1010 3178 1946
Layer 2 2.4�1010 3482 2132
Layer 3 3.0�1010 3892 2384
Layer 4 3.6�1010 4264 2611
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target oil reservoir inclusion embedded between the third and fourth
layers. The width and height of the target reservoir inclusion are
160 m and 32 m, respectively; the distance from the ground surface
to the bottom of the inclusion is 200 m. This dome-shaped inclusion
exemplifies a typical shallow oil reservoir structure underneath an
impermeable curved cap stratum. The figures (a), (b), and (c) in Fig. 6
differ from each other only with respect to the location of the wave
sources.

In this example, it is assumed that the elastic modulus E for
each layer becomes larger as the depth increases, and the inclusion

is softer than the surrounding layers.5 We set the mass density
ρ¼2200 kg/m3 and Poisson's ratio ν¼0.2. Then, using the above
values for E, ρ, and ν, the compressional wave velocity vp and the
shear wave velocity vs of each area can be obtained as

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ2μ
ρ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1�νÞ

ρð1þνÞð1�2νÞ

s
; vs ¼

ffiffiffi
μ
ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ρð1þνÞ

s
; ð28Þ

where λ denotes Lamé's first parameter and μ denotes shear
modulus. The elastic moduli and wave velocities of the model are
summarized in Table 1. In the following examples, isoparametric
quadrilateral (or triangular) quadratic elements are used to dis-
cretize the state and adjoint problems. The size of the elements are
approximately 4.0 m or less, in order to discretize with at least 12
points per wavelength: the minimum wavelength, corresponding
to the highest frequency (50 Hz), in the area of the smallest shear
wave velocity in this model is approximately 27.5 m.

5.1. Source optimization solutions

Numerical experiments are conducted for three different configura-
tions of the wave sources: (1) two symmetric wave sources (Fig. 6(a));
(2) two independent unsymmetric wave sources (Fig. 6(b)); and (3) five
independent unsymmetric wave sources (Fig. 6(c)). We considered

Fig. 7. The initially guessed and optimized loading signals for the maximization of
the kinetic energy in Ω0 of the formation model shown in Fig. 6(a) (minimizing
(7)): (a) close-up view (0–0.3 s) of the initially guessed signal, (b) the frequency
spectrum of the initially guessed signal, (c) close-up view (0–0.3 s) of the
converged signal, and (d) the frequency spectrum of the converged signal.

Fig. 8. Frequency sweep of the objective functional, (7), using a harmonic load
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 for the formation model shown in Fig. 6(a).

Fig. 9. Converged loading time signal for the maximization of the kinetic energy in
Ω0 with silent neighbors for formation model shown in Fig. 6(a): (a) close-up view
(0–0.5 s) of the converged signal and (b) the frequency spectrum of the converged
signal.

Fig. 10. Frequency sweep of the objective functional, (8), using a harmonic load
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 for the formation model shown in Fig. 6(a).

5 The poroelastic medium partially saturated with fluid or gas phases is
generally softer than the surrounding media (Gassmann, 1951).
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three different objective functionals for optimization, that is,
(A) maximization of the kinetic energy in Ω0 with all layers active (i.
e., minimization of functional (7)); (B) maximization of the kinetic
energy inΩ0 with silent neighbors (i.e., minimization of functional (8));
and (C) maximization of the acceleration inΩ0 with all layers active (i.
e., minimization of functional (9)). The results of these experiments are
summarized in Table 4 using the optimization case numbers.6 A subset
of the numerical experiments are described in detail next; namely, cases
1A, 1B, 2B, 3B, and 1C.

5.1.1. Two symmetric optimal wave sources for maximum kinetic
energy in a target (case 1A)

We identify the optimal loading time signals for two symmetric
wave sources (Fig. 6(a)), which can maximize the kinetic energy
within the target inclusion Ω0. To this end, we seek to minimize (7)
by using the initially guessed loading time signal, temporally
discretized by 200 quadratic elements (400 discretized force para-
meters), shown in Fig. 7(a). Here, the loading signals of the two wave
sources are set to be identical to each other. The block symbols of the
close-up view of the initially guessed signal in Fig. 7(a) represent the
discretized force parameters used for the temporal approximation of
the loading time signal: such symbols are used in all similar plots. We
numerically require that the amplitude of each discretized loading
parameter, f 2i , does not exceed 60 kN/m2 (a modern Vibroseis can
deliver dynamic pressure up to 60 kN/m2 or more to the ground
surface, Kalinski, 2007). The frequency spectrum of the initially
guessed loading is shown in Fig. 7(b). The initially guessed signal

has a broad frequency spectrum, which, as it will be seen, differs
significantly from that of the finally converged time signal: the
optimization process is unbiased with respect to the initial guess.
The total observation time is 2 s, and the time step is 0.001 s.

Fig. 7(c, d) shows that our numerical optimizer converges, after 66
iterations, to a loading time signal with a dominant frequency of 29 Hz.
Fig. 8 shows that the dominant frequency 29 Hz corresponds to the
global minimum of the distribution of the objective functional, shown
in (7), with respect to the frequency f for a sinusoidal loading
f 2ðtÞ ¼ 50 sin ð2πf Þ kN=m2 for the formation model subject to the
two symmetric wave sources shown in Fig. 6(a). That is, the optimizer
successfully recovered a nearly-monochromatic signal corresponding
to one of the formation's amplification frequencies.

As discussed in our one-dimensional work (Jeong et al., 2010), the
maximization of the kinetic energy within a target inclusion with all
layers active is likely to recover a rectangular-shaped loading time
signal (see the close-up view in Fig. 7(c)). Such a rectangular-shaped

Fig. 11. Initial guesses and optimized loading signals for two independent wave sources at x1 ¼ �30 m and x1 ¼ 70 m corresponding to the maximization of the kinetic
energy in Ω0 with silent neighbors for the formation model in Fig. 6(b): (a) the initially guessed signals, (b) the frequency spectra of the initially guessed signals, (c) the
optimized signals at the 36th iteration, (d) the frequency spectra of the optimized signals at the 36th iteration, (e) the finally converged signals, and (f) the frequency spectra
of the finally converged signals.

Fig. 12. Frequency sweep of the objective functional, (8), using a harmonic load
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 for the formation model shown in Fig. 6(b).

6 For instance, the case number 1A refers to the optimization conducted for the
identification of loading time signals of 1: two symmetric wave sources, that can
lead to A: maximization of the kinetic energy of rock matrix in Ω0 with all layers
active.
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loading time signal contains a few high frequency components. Thus,
the kinetic energy withinΩ0 for such a rectangular-shaped optimized
loading time signal is larger than that of the monochromatic time
signal f 2ðtÞ ¼ 50 sin ð2π � 29tÞ kN=m2 that uses the dominant fre-
quency of the rectangular-shaped signal (Fig. 18(a) vs (b)). Note that
the kinetic energy distribution within Ω0 for the converged time
signal is much larger than that of a non-optimal sinusoidal loading
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 using a non-optimal frequency, such as
f¼25 Hz (Fig. 18(a) vs (c)).

5.1.2. Two symmetric optimal wave sources for maximum kinetic
energy in a target with silent neighbors (case 1B)

Next, we explore the possibility of maximizing the kinetic
energy withinΩ0 while the kinetic energy within the surrounding
areas Ω\Ω0 is minimized by considering the two symmetric wave
sources displayed in Fig. 6(a). In particular, we aim to reduce the
strong wave energy along the free surface via our optimization
scheme by minimizing the objective functional (8).

The optimization process begins again with the initially guessed
perturbation loading time signal that is temporally discretized by 200

quadratic elements (400 discretized force parameters); the total
observation time is 2 s, and the time step is 0.001 s. After 71 iterations,
the optimizer results in a sinusoidally shaped loading signal with a
dominant frequency of 29.5 Hz (Fig. 9). This frequency corresponds to
the global minimum of the objective functional (8), with respect to the
frequency f for a sinusoidal loading f 2ðtÞ ¼ 50 sin ð2πf Þ kN=m2, as
shown in Fig. 10. Again, the optimizer successfully recovered one of the
formation's amplification frequencies.

We point out that the recovered frequency of 29.5 Hz is quite
close to the amplification frequency of 29 Hz, recovered in the
previous experiment (all layers active). That is, the optimizer
arrives at a stationary point for (8) largely due to maximizing
the kinetic energy in the inclusion, rather than by minimizing the
wave energy in the neighboring formations. Fig. 18(d) illustrates
that, despite enforcing silent neighbors, a large portion of the
wave energy still remains along the ground surface for the
optimized loading time signals. In the ensuing experiments (cases
2B and 3B), we will discuss again the possibility of enforcing
silent neighbors with large wave motions in the target by
using independently-optimized wave sources in unsymmetric
locations.

Fig. 13. The initially guessed loading time signals of the five wave sources at unsymmetric locations for the formation model shown in Fig. 6(c) for the maximization of the
kinetic energy in Ω0 with silent neighbors: (a) the initially guessed signals and (b) the frequency spectra of the initially guessed signals.
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5.1.3. Two independent unsymmetric optimal wave sources for
maximum kinetic energy in a target with silent neighbors (case 2B)

Next, we consider two strip surface loading wave sources
situated in unsymmetric locations – the centroids of the strip
loading areas are located at (�30 m, 0 m) and (70 m, 0 m), resp-

ectively – shown in Fig. 6(b). The total observation time is 2 s, and
the time step is 0.001 s; we temporally discretize an initial
perturbation-like loading time signal f 2ðtÞ for each wave source
by using 40 quadratic elements (80 discretized force parameters).
It is also considered that, in this case (2B), only the first 0.3 s of the
force signal will be updated (i.e., f(t)¼0 for t40:3 s). By inverting
loading time signals of such a short duration (0.3 s vs 2 s in the
cases 1A and 1B), we wish to investigate whether inverting for
time signals of a short duration can successfully recover the
amplification frequencies.

We start with two identical initial guesses for the loading time
signals (Fig. 11(a)) at the two loading locations. The loading time
signal for each wave source changes independently during the
iteration procedure, i.e., f ð1Þ2 ðtÞa f ð2Þ2 ðtÞ (see Fig. 11 (c)). Here, f ð1Þ2 ðtÞ
and f ð2Þ2 ðtÞ denote independent loading signals of the strip loading
wave sources, whose centroids are located at x1 ¼ �30 and 70 m,
respectively. Since each time signal is discretized by 80 force
parameters, we are inverting for optimal values of 160 force
parameters. By inverting two wave source signals of unsymmetric

Fig. 14. The finally converged loading time signals of the five wave sources at unsymmetric locations for the formation model shown in Fig. 6(c) after 140 iterations of the
optimization process for the maximization of the kinetic energy in Ω0 with silent neighbors: (a) the finally converged signals and (b) the frequency spectra of the finally
converged signals.

Fig. 15. Frequency sweep of the objective functional, (8), using a harmonic load
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 for the formation model shown in Fig. 6(c).
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locations independently, we wish to examine whether the spectra
of the independent wave source signals differ.

After the first 36 iterations, the optimizer arrives at the time
signals, whose dominant frequencies are 10.3 Hz and 28.3 Hz for
both f ð1Þ2 ðtÞ and f ð2Þ2 ðtÞ (Fig. 11(c, d)). However, after the 80th
iteration, the time signals converge into pulses, whose dominant
frequencies are 8.8 Hz (Fig. 11(e, f)). That is, the optimizer first
converges to a local minimum basin associated with dominant
frequencies 10.3 and 28.3 Hz, and then converges to another local
minimum basin with a dominant frequency of 8.8 Hz after about
80 iterations (see the distribution of the objective functional (8),
with respect to the frequency f of the f ð1Þ2 ðtÞ ¼ f ð2Þ2 ðtÞ ¼ 50
sin ð2πftÞ kN=m2 in Fig. 12). Fig. 11(e) shows that the converged
signals are nearly identical to each other. In this experiment too,
despite the unsymmetric placement of the sources and the

independent way they operate (their source characteristics were
independently updated), the optimized signals are still dominated
by the formation's amplification frequencies.

Fig. 18(e) shows that, even though the final converged loading time
signals lead to small surface wave energy, the kinetic energy within
the target inclusion is also much smaller than that corresponding to
the previously optimized loading signals shown in cases 1A and 1B,
essentially due to the enforcement of silent neighbors.

5.1.4. Five independent unsymmetric optimal wave sources for
maximum kinetic energy in a target with silent neighbors (case 3B)

Next, we consider five independent wave sources located at
unsymmetric locations, as shown in Fig. 6(c). Here, f ð1Þ2 ðtÞ, f ð2Þ2 ðtÞ,
f ð3Þ2 ðtÞ, f ð4Þ2 ðtÞ, and f ð5Þ2 ðtÞ denote independent loading time signals of
the strip loading wave sources whose centroids are located at
x1 ¼ �96; �38;0;48, and 81m, respectively, on the ground surface
ðx2 ¼ 0 mÞ.

The total observation time is 2 s, and the time step is 0.001 s;
we discretize the loading signal of each source by using 40
quadratic elements (80 discretized force parameters) for a dura-
tion of 0.4 s. The optimization process starts with five different
initial guesses with perturbation-like time signals, as shown in
Fig. 13(a); the frequency spectra of the initial signals are shown in
Fig. 13(b). After 140 iterations, the optimizer arrives at the loading
signals shown in Fig. 14(a) with the frequency spectra shown in
Fig. 14(b). We remark that the finally converged loading signals are
all nearly sinusoidal with a strong dominant frequency of 29 Hz
(the frequency accountable for the global minimum of the objec-
tive functional (8), as shown in Fig. 15), while their phase angles,
corresponding to the dominant frequency 29 Hz, differ for each
converged loading signal.

Fig. 18(f) shows that using five unsymmetric wave sources with the
optimized loading signals leads to a clear illumination of the target
inclusion, with an even more effective minimization of the surface
wave energy than in previous experiments (Fig. 18(f) versus (d, e)).
Clearly, wave sources, operating at optimal locations and timings,
would lead to a better wave-energy focusing within a target formation
than non-optimally placed wave sources.

Similar to the experiment 2B, this optimization process, using
independently-optimized loading signals for five wave sources
unsymmetrically placed, also resulted in signals whose spectra
feature a clear dominant frequency for all five wave sources.
Though we expect the formation's amplification frequencies to
have a dominant role in the source signals, we also expect that
constructive interference patterns at a target inclusion will alter
the temporal and (somewhat less) the frequency content of the
optimal signals. Thus, we expect that source placement is of
importance, even though it is not revealed in these experiments
due to the symmetric nature of the synthetic example formation.

5.1.5. Two symmetric optimal wave sources for maximum
acceleration field within a target (case 1C)

Next, we seek to maximize the acceleration field within a target
inclusion Ω0, by minimizing the acceleration-based objective
functional (9), for the formation model subjected the two sym-
metric ground wave sources, as shown in Fig. 6(a). The total
observation time is 2 s, and the time step is 0.001 s. The two
symmetric wave sources are optimized synchronously. Two
numerical experiments are carried out: first, we inverted the force
signal discretized by 100 force parameters; second, we inverted
the force signal discretized by 200 force parameters.

Fig. 16(a, b) shows that the two optimization experiments, using
100 and 200 discretized force parameters, yield loading signals with
dominant frequencies 21 and 49 Hz, respectively. It should be noted
that a higher dominant frequency is recovered when a higher number

Fig. 16. The finally converged optimal loading signals that maximize the accelera-
tion fields within a target: (a) the loading signal discretized by using 100 force
parameters and (b) the loading signal discretized by using 200 force parameters.

Fig. 17. Frequency sweep of the objective functional, (9), using a harmonic load
f 2ðtÞ ¼ 50 sin ð2πftÞ kN=m2 for the formation model shown in Fig. 6(a).
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Fig. 18. The spatial distributions of
R T
0 ρ=2 ∂u1=∂t

� 2þ ∂u2=∂t
� 2n o

dt=T ðJ=m3, the time-averaged kinetic energy, in Ωreg induced by, respectively, (a) the optimized loading in
case 1A, (b) the sinusoidal loading f 2ðtÞ ¼ 50 sin ð2π � 29tÞ kN=m2 that employs the dominant frequency of the optimized signal in case 1A, (c) a non-optimal sinusoidal
loading f 2ðtÞ ¼ 50 sin ð2π � 25tÞ kN=m2, using a non-optimal frequency f¼25 Hz, of two symmetric wave sources (Fig. 6(a)), (d) the optimized loading in case 1B, (e) the
optimized loadings in case 2B, and (f) the optimized loadings in case 3B.
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of discrete force parameters is used. We remark that the amplitude of
the acceleration field within the target inclusion Ω0 tends to be
greater for a higher frequency (the frequency sweep of (9), shown in
Fig. 17, demonstrates that the value of the acceleration-based objective
functional (9) tends to be smaller for a higher frequency). Thus, the
optimizer, for the acceleration-based objective functional (9), leads to
an optimal loading time signal showing a dominant frequency, which
is nearly identical to the highest dominant frequency the temporal
discretization can support. Overall, if one is interested in maximizing
the acceleration field, the higher the frequency the stronger the
acceleration is.

5.2. Feasibility of dislodging trapped oil droplets

To investigate the feasibility of dislodging trapped oil droplets
within the target inclusion in the formation model shown in Fig. 6,
we used the values of threshold acceleration levels for different
frequencies, shown in Table 2, evaluated by using the latest
threshold model (Beresnev and Deng, 2010; Deng and Cardenas,

2013) (the model is taking into account the viscosity of pore fluid),
as well as realistic values for the fluid-saturated porous permeable
rock properties shown in Table 3.

In Table 3: (a) rmax and rmin denote the maximum and
minimum radii, respectively, of the cross-section of pore space in
an axisymmetric sinusoidally constricted pore channel; (b) the
background pressure gradient 35,185 Pa/m corresponds to a Darcy
flow-rate of 1 ft/day of fluid of viscosity 1cp within a porous
permeable rock of permeability 100 md; and (c) the capillary
pressure, i.e., Pc ¼ 2σ cos θ=r, of 800 Pa corresponds to interface
tension σ of 0.04 N/m, a radius of curvature r of 100 micron, and an
oil/water contact angle θ of 01.

The threshold values shown in Table 2 are up to 1.6 m/s2, for
frequencies up to 50 Hz. A summary of the optimization results in
Table 4 shows that the optimized loadings in the optimization
cases 1A, 3A, and 3C produced acceleration field whose amplitude
is as large as the threshold values. Thus, these optimized loads
could initiate the dislodging-based mobilization of the trapped oil
droplets within a fluid-saturated porous permeable rock in the
target shallow reservoir model of Fig. 6. We also suggest that the
mobilization of trapped oil droplets for this subsurface formation
model (or potentially even for deeper reservoir formation models)
could be further facilitated if (i) sources are optimally placed, in
addition to be operated at the optimized signals, (ii) a combination
of surficial and downhole wave sources are employed, especially
for deeper reservoirs, and (iii) vibrational stimulation is combined
with another EOR method, e.g., low-concentration surfactant
injection, which could lower the fluid viscosity of target reservoir
formations (Jeong et al., 2014).

6. Discussion

This section discusses the key findings from the numerical
results. Our observations from the numerical experiments address
the questions posed in the Introduction, as follows.

6.1. Characteristic amplification frequencies

Table 4 shows that there is a dominant amplification frequency
of 29 Hz that leads to the maximization of the kinetic energy
within the reservoirΩ0 in almost all the cases, and under a variety
of loading conditions. The particular frequency, as shown by the

Table 2
Threshold acceleration levels evaluated by using Beresnev's latest threshold
acceleration model (Beresnev and Deng, 2010; Deng and Cardenas, 2013), as well
as the fluid-saturated porous permeable rock properties shown in Table 3.

Frequency Threshold acceleration
(Hz) (m/s2)

10 0.4
20 0.7
30 1
40 1.3
50 1.6

Table 3
Fluid-saturated porous permeable rock properties utilized for evaluating the
threshold acceleration values for the mobilization of trapped oil droplets.

Maximum pore radius rmax 200 micron
Minimum pore radius rmin 100 micron
Background pressure gradient 35,185 Pa/m
Water viscosity 1 cp
Oil viscosity 5 cp
Capillary pressure 800 Pa
Interface tension σ 40 dyne/cm¼0.04 N/m

Table 4
Summary of our numerical experiments.

Case
number

Wave source locations Maximized metric in the
reservoir Ω0

Dominant frequency of
optimized loading

Time-averaged kinetic
energy in Ω0

Maximum

amplitude ∂2u
∂t2 in Ω0

(Hz) (J/m3) (m/s2)

1A Symmetric two sources located at x1 ¼ �70, 70 m
(Fig. 6(a))

Kinetic energy (all layers
active)

29 3�10�4 1.0

1B Kinetic energy (silent
neighbors)

29.5 8�10�5 0.1

1C Acceleration (all layers
active)

49 1�10�4 0.6

2A Unsymmetric two sources located at x1 ¼ �30, 70 m
(Fig. 6(b))

Kinetic energy (all layers
active)

28.5 1�10�4 0.5

2B Kinetic energy (silent
neighbors)

8.8 2�10�5 0.02

2C Acceleration (all layers
active)

50 1�10�4 0.6

3A Unsymmetric five sources located at x1 ¼ �96, �38,
0, 48, 81 m (Fig. 6(c))

Kinetic energy (all layers
active)

29 1.4�10�3 1.2

3B Kinetic energy (silent
neighbors)

29 3�10�4 0.2

3C Acceleration (all layers
active)

45 3�10�4 1.2
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frequency sweep, corresponds to one of the discrete amplification
frequencies of the formation. It is not a resonant frequency in the
classical sense (i.e., a frequency for which the motion becomes
unbounded under undamped conditions), since the medium is
semi-infinite in extent, but, rather, a frequency that will generate a
large response. The frequency depends on the formation's char-
acteristics (geometry, properties, etc.). This amplification fre-
quency can be obtained either by the optimization procedure
described herein, or by conducting a frequency sweep (i.e., an
objective functional versus frequency).

It is also observed that the temporal discretization of the
initially-guessed loading time signal controls the frequency con-
tent of the optimal loading signal that can maximize the accel-
eration within the reservoir. In short, a greater number of force
parameters is likely to lead to optimized loading signals of a higher
dominant frequency for maximizing the acceleration field within a
target reservoir.

6.2. Dependency of source-inversion on the locations of surface wave
sources

It appears that the locations of the wave sources are critical in
arriving at motion maximization, in particular, in the case of
relatively silent neighbors. For example, as was seen in the cases
of two wave sources, there is a significant shift of the dominant
frequency of the optimized signals from 29 Hz (two symmetric
sources, case 1B), to 8.8 Hz (two unsymmetric sources, case 2B).
Moreover, optimizing the five unsymmetric wave sources, in case
3B, leads to more significant reduction of the energy concentration
near the surface, as well as better focusing and illumination of the
target reservoir than the other cases. Thus, we conjecture that
optimally located sources could produce a stronger wave-energy
focusing effect than non-optimally located sources operating at
the reservoir's amplification frequency. Though not explored in
this work, it is possible to enhance the presented optimization
process to include a search for the optimal placement of the wave
sources as well.

6.3. Frequency spectra of independently-optimized multiple wave
sources

Even with multiple independent wave sources at unsymmetric
locations, our optimizer produced optimal excitation signals with
a single dominant frequency – the dominant reservoir's amplifica-
tion frequency. Thus, we conjecture that multiple monochromatic
sources operating at one of the reservoir's amplification frequen-
cies, even if not optimally placed, will still result in significant
motion within the target reservoir. Though not shown here, we
expect that the optimizer will produce signals with different
spectra when faced with a highly heterogeneous formation.

6.4. Feasibility of the wave-induced oil mobilization within a target
formation

We have used the results of a previously published threshold
acceleration model on oil mobility to evaluate whether the motion
resulting from the solution of the inverse source problem could
indeed result in oil mobilization. For most of our simulations, we
used the kinetic energy as the metric to be maximized, but also
produced results where we sought to maximize the acceleration
field at the target formation. Under certain conditions (shallow
reservoirs), the induced motion meets the acceleration threshold.

7. Conclusions

We explored, via computational modeling, the possibility of
inducing a resonance-like wave motion within a target reservoir
formation to increase oil mobility, and therefore, allow for recov-
ery, where none could previously be possible. To this end, we
presented a systematic framework, based on casting the associated
mathematical problem as an inverse source optimization problem.
In particular, we demonstrated via numerical experiments that the
developed algorithm can robustly find optimal wave source signals
that maximize the kinetic energy, acceleration, or another desired
mobility metric, at the target formation. The results of a previously
published threshold acceleration model on oil mobility are used to
evaluate whether the motion resulting from the solution of the
inverse source problem could indeed result in oil mobilization.

The numerical results present the following key findings. First,
optimal signals, of which frequency spectra include characteristic
amplification frequencies, could maximize the kinetic energy or
acceleration field (or any desired metrics) in a target reservoir. The
amplification frequency depends on the formation's characteristics
(geometry, properties, etc.). The optimal source signals of multiple
wave sources are very likely to have a very similar spectrum for
each source. Second, locations of surface wave sources are critical
for the optimal loading signals and their frequency spectra
distribution, as well as the extent to which desired effects (e.g.,
wave energy focusing with silent neighbors) in a target reservoir
are maximized. Third, wave energy could be focused within the
target reservoir area, while simultaneously minimizing the dis-
turbance to neighboring formations. Lastly, the wave motion,
induced by the optimized surface wave sources, is large enough
to result in the mobilization of trapped oil droplets within a
shallow target formation.
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