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SUMMARY

We discuss a methodology for computing the optimal spatio-temporal characteristics of surface wave sources
necessary for delivering wave energy to a targeted subsurface formation. The wave stimulation is applied
to the target formation to enhance the mobility of particles trapped in its pore space. We formulate the
associated wave propagation problem for three-dimensional, heterogeneous, semi-infinite, elastic media. We
use hybrid perfectly matched layers at the truncation boundaries of the computational domain to mimic the
semi-infiniteness of the physical domain of interest. To recover the source parameters, we define an inverse
source problem using the mathematical framework of constrained optimization and resolve it by employing
a reduced-space approach. We report the results of our numerical experiments attesting to the methodology’s
ability to specify the spatio-temporal description of sources that maximize wave energy delivery. Copyright
© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cost-effective and reliable methods for the removal of crude oil or contaminant particles from the
pores of geological formations play a crucial role in petroleum engineering, hydro-geology, and
environmental engineering. To date, various extraction techniques that involve injecting water, sol-
vents, polymers, or steam into the geo-formation of interest have been used for this purpose. In the
field of petroleum engineering, these methods are classified into two categories: (a) the conventional
oil recovery methods (water/gas flooding) and (b) the enhanced oil recovery (EOR) methods (chem-
ical/steam injection). Typically, the EOR methods are employed after about 50–60% of the original
oil in place has been produced using the conventional oil recovery methods. In general, the EOR
methods are successful in extracting a part of the remaining crude oil [1]. However, the chemical-
injection-based EOR methods suffer from sweep efficiency problems in low permeability areas, and
the thermal EOR (steam injection) faces problems because of heat loss. Thus, efficient and econom-
ically competitive methodologies for extracting trapped particles from the pores of geo-formations
remain desirable.
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Post-earthquake observations of oil production at depleted oil fields [2–6] and a few field exper-
iments [7–12] suggest that stress wave stimulation of oil reservoirs (geological formations) may
lead to the expulsion of particles trapped in their interstices. Many researchers have conducted
analytical and laboratory investigations of the underlying physical phenomenon to establish the
mechanisms responsible for the vibratory mobilization of trapped oil or colloidal particles. These
studies [7, 8, 13–23] suggest that (a) stress wave stimulation of geological formations can aid the
expulsion of particles trapped in their pore space, provided that the wave motion exceeds the mobi-
lization threshold and (b) an estimate of the mobilization threshold can be obtained by conducting
analytical and laboratory investigations. Based on the field and laboratory observations, it was con-
jectured [7, 8, 24, 25] that stress wave stimulation of geological formations can provide a primary or
auxiliary recourse for enhanced oil recovery. In the, so-called, wave-based EOR method, the stress
wave stimulation is applied using artificial wave sources (e.g., a fleet of Vibroseis and down-hole
hydraulic pumps). The effectiveness of the stimulation is contingent upon, among other factors,
the strength and spatial extent of the wave motion in the oil reservoir. Thus, a successful field
implementation of the said EOR method requires (a) an estimate of the strength (magnitude) of
the wave motion that facilitates the removal of trapped oil from the reservoir and (b) an efficient
wave energy delivery system to generate the wave motion of the required magnitude in the reser-
voir. When artificial wave sources are used to initiate the wave motion, equipment limitations and
various sources of attenuation impose restrictions on the magnitude of the wave motion generated
in the target formation. Therefore, blindly operating sources may not be able to breach the thresh-
old of motion required for particle expulsion, or they may not deliver the stress wave stimulation
in a technically and economically efficient manner. Thus, a cost-effective field implementation of
the wave-based EOR method necessitates selection of advantageous or optimal spatio-temporal
characteristics of the wave sources. In this article, we discuss an optimization-based algorithm for
designing an efficient wave energy delivery system.

If the material and geometric description of the geostructure in question and the capabilities
(maximum amplitude, frequency range, etc.) of the wave sources are known, then the spatio-
temporal source characteristics that focus the wave energy into the target formation can be computed
using reservoir-scale wave physics simulations. For example, if the locations of the sources are
(assumed to be) fixed, then a frequency sweep could be used to determine the dominant frequency
of monochromatic time signals driving the sources. The frequency sweep method uses a mathemat-
ical model of the wave physics to compute a predefined motion metric of the target formation for a
range of frequencies. The frequency corresponding to the maximum value of the metric can be used
to design time signals that drive the sources. However, when advantageous source locations are also
required, a combined frequency-and-location sweep becomes computationally prohibitive. Another
approach for focusing the wave energy into the target formation is based on the principle of time
reversal [26–30]. It involves (a) placing a source in the target formation; (b) recording the waves
emitted by this source at sensors placed on the boundary of the domain (the ground surface); and (c)
re-transmitting the time-reversed versions of the recorded signals from their respective sensor loca-
tions. Although, under favorable conditions, the time-reversed signals could focus at the target, the
methodology does not ensure maximization of a motion metric of the target zone.

Alternatively, the spatio-temporal characteristics of the wave sources that maximize a predefined
motion metric of the target inclusion can be computed using an optimization-based scheme. This
approach formally gives rise to an inverse source problem, which is similar to the inverse medium
problems arising in exploration geophysics [31–37]. Jeong et al. used the inverse source approach
to compute the optimal time signals driving the surface sources for a geostructure abstracted as
a layered elastic solid in one or two spatial dimensions [38–40], whereas Karve et al. [41, 42]
developed an inverse source methodology to resolve not only the optimal source signals but also
the optimal source locations. They conducted numerical experiments for two-dimensional (2D),
synthetically created geostructures and reported that the optimal source locations play a crucial role
in maximizing wave energy delivery to the target formation.

The preceding developments are restricted to two spatial dimensions. Herein, we extend the
development to the all-important three-dimensional case. As the radiation damping is much more
severe in three spatial dimensions, realistic estimates of the required surface energy and of the
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energy delivered to the target formation require the resolution of the inverse source problem in three
dimensions. Although the methodology in three dimensions is similar to the two-dimensional devel-
opment, there are various differences at the modeling level that require algorithmic modifications.
Thus, in this article, we formulate and resolve the wave energy delivery inverse source problem for a
three-dimensional, elastic, heterogeneous, semi-infinite solid. We truncate the semi-infinite domain
of interest using a buffer of hybrid perfectly matched layers (PMLs) [43]. Our working hypotheses
are (a) the material properties and the overall geometry of the target formation and the surround-
ing geostructure are known and (b) the stress waves are initiated by surface sources (e.g., a fleet of
Vibroseis). We remark that the methodology can also be used to decide the optimal locations and
frequency content of down-hole wave sources. We cast the inverse source problem as a constrained
minimization problem, where minimization of a suitably defined objective functional is tantamount
to the maximization of a motion metric of the target formation and the governing wave physics
equations are side-imposed as constraints. In the following sections, we discuss the formulation
of the forward wave propagation problem, the inverse source problem, the numerical implementa-
tion, and report the results of our numerical experiments conducted using a synthetically created
geo-formation that affirms the ability of the proposed optimization methodology to yield source
characteristics that lead to wave energy focusing.

Although the development is motivated by a problem arising in exploration geophysics or
petroleum engineering, the methodology is equally applicable to medical applications where optimal
energy delivery is of interest for therapeutic reasons.

2. THE FORWARD PROBLEM

2.1. Strong form

We are concerned with stress wave propagation in a three-dimensional, heterogeneous, elastic half-
space containing a target inclusion. In order to obtain a finite computational model, we truncate the
domain of interest (�reg D �a[�b) using hybrid PMLs (�PML) [43]. Note that in Figure 1,�a rep-
resents the target inclusion and �b represents the heterogeneous elastic solid surrounding the target
inclusion. The governing equations in � D �reg [�PML, for time t 2 J D .0; T �, are given as

div
�
�a

�
r Pua Cr PuTa

�
C .�a div Pua/ I

�
� �a«ua D 0; x 2 �a (1)

Figure 1. Problem definition. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table I. Symbols used to represent the displacement
field and the material properties.

�a �b [�PML

Displacement field ua ub
First Lamé parameter �a �b
Second Lamé parameter �a �b
Mass density �a �b

and

div
�
�b

�
r Pub Cr PuTb

�
C .�b div Pub/ I

�
� �b«ub D 0; x 2 �b; (2a)

div
�
RSTƒe C PSTƒp C STƒw

�
� �b .a«ub C b Rub C c Pub C dub/ D 0; x 2 �PML; (2b)

.a«SC b RSC c PSC dS/ � �b.div.ƒe Rub/C div.ƒp Pub/C div.ƒwub//

� �b
�
r Rubƒe Cƒe.r Rub/

T Cr Pubƒp Cƒp.r Pub/
T Crubƒw Cƒw.rub/

T
�
D 0; x 2 �PML;

(2c)

where an overdot, ( P ), denotes a derivative with respect to time. The higher-order time derivatives
in Equations (1) and (2) are required in order to facilitate the adoption of PMLs at the truncation
boundary [43]. Equations (1), (2a), and (2b) are the equilibrium equations for �a, �b, and �PML,
respectively. Equation (2c) is the combined kinematic condition and constitutive law for the PML
region (�PML). Various symbols used to denote the displacement vectors and the material properties
are explained in Table I.
In Equation (2), S is the stress history tensor, that is,

S.x; t / D

2
4 S11.x; t / S12.x; t / S13.x; t /

S21.x; t / S22.x; t / S23.x; t /
S31.x; t / S32.x; t / S33.x; t /

3
5 D Z t

0

� .x; t 0/dt 0; (3)

where � is the Cauchy stress tensor. ƒe , ƒp , and ƒw are components of the stretching tensor, and
a; b; c, d are coefficients defining co-ordinate stretching in the PML region. Their detailed definitions
are beyond the scope of this article and can be found in [43]. For t 2 J, the governing equations are
subjected to the following boundary conditions:

ub D 0; x 2 � PML
fixed ; (4a)�

�b
�
r Pub Cr PuTb

�
C ¹�b div Pubº I

�
n D Pf; x 2 �load; (4b)�

�b
�
r Pub Cr PuTb

�
C ¹�b div Pubº I

�
n D 0; x 2 �free; (4c)�

RSTƒe C PSTƒp C STƒw
�

n D 0; x 2 � PML
free ; (4d)

uCb D u�b ; x 2 �I; (4e)�
�b
�
r Pub Cr PuTb

�
C ¹�b div Pubº I

�
nCI D �

�
RSTƒe C PSTƒp C STƒw

�
n�I ; x 2 �II (4f)

interface conditions:

ua D ub; x 2 �a; (5a)

� Ta n�a D ��
T
b nCa ; x 2 �aI (5b)

where, � a D �a
�
rua CruTa

�
C �a.div ua/I; (5c)

� b D �b
�
rub CruTb

�
C �b.divub/II (5d)
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and initial value conditions:

u.x; 0/ D 0; Pu.x; 0/ D 0; x 2 �; (6a)

S.x; 0/ D 0; PS.x; 0/ D 0; x 2 �PML: (6b)

Thus, the forward wave propagation problem is concerned with computing the displacement (veloc-
ity and acceleration) field in the domain of interest, given the applied loads and the material
properties of the heterogeneous halfspace. We intend to use spectral elements to resolve the forward
wave propagation problem. To this end, we formulate the problem in its weak form.

2.2. Weak form

We take an inner product between the test functions va.x/; vb.x/, and the equilibrium Equations (1),
(2a), and (2b), integrate over their respective domains, and add them. We take another inner
product between the test function T.x/ and Equation (2c) and integrate over �PML. After some
simplifications, we arrive at the following integral equations:

Z
�a

rva W
�
�a .r Pua Cr PuTa /C �a .div Pua/I

�
C va � �a«ua d�

C

Z
�b

rvb W
�
�b.r Pub Cr PuTb /C �b .div Pub/I

�
C vb � �b«ub d�

C

Z
�PML

rvb W
�
RSTƒe C PSTƒp C STƒw

�
C vb � �b .a«ub C b Rub C c Pub C dub/ d� D

Z
�load

vb � Pf d�

(7a)

Z
�PML

T W
°
.a«SC b RSC c PSC dS/ � �b.div.ƒe Rub/C div.ƒp Pub/C div.ƒwub//

��b
�
r Rubƒe Cƒe.r Rub/

T Cr Pubƒp Cƒp.r Pub/
T Crubƒw Cƒw.rub/

T
�¯
d� D 0;

(7b)

where a colon, ( : ), represents tensor inner product. The weak form of the forward problem can be
stated as given loads f.x; t / 2 L2.�reg/�J, find ua.x; t / 2 H1.�a/�J, ub.x; t / 2 H1.�b[�PML/�J,
and S.x; t / 2 L2.�PML/ � J, so that they satisfy Equation (7) and condition (6), for every va.x/ 2
H1.�a/, vb.x/ 2 H1.�b[�PML/, and T.x/ 2 L2.�PML/. The pertinent function spaces for a scalar
f , a vector u, and a tensor T are given by

L2.�/ D ¹f W

Z
�

jf j2d� <1º; (8a)

L2.�/ D ¹u W u 2 .L2.�//3º; (8b)

L2.�/ D ¹T W T 2 .L2.�//3�3º; (8c)

H 1.�/D ¹f W

Z
�

.jf j2 C jrf j2/d� <1; f .x/ D 0 if x 2 � PML
fixed º; (8d)

H1.�/ D ¹u W u 2 .H 1.�//3º: (8e)

2.3. Spatial discretization and the semi-discrete form

Numerical solution of the weak form requires discretization in space and time. We introduce spatial
discretization using shape functionsˆ.x/ 2 H1

h
.�/ � H1.�/ and‰.x/ 2 L2

h
.�PML/ � L2.�PML/.
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Thus, the discrete approximations for the test functions are given by

vha .x/ D

2
64

vTa1ˆ.x/
vTa2ˆ.x/
vTa3ˆ.x/

3
75 ; vhb .x/ D

2
64

vTb1ˆ.x/
vTb2ˆ.x/
vTb3ˆ.x/

3
75 ;

Th.x/ D

2
64

TT11‰.x/ TT12‰.x/ TT13‰.x/
TT21‰.x/ TT22‰.x/ TT23‰.x/
TT31‰.x/ TT32‰.x/ TT33‰.x/

3
75 ;

(9)

where the vectors vai ; vbi ; and Tij contain the nodal values of the test functions. Similarly, the
approximants for the trial solutions are given by

uha .x; t / D

2
4ˆ.x/T ua1.t/

ˆ.x/T ua2.t/

ˆ.x/T ua3.t/

3
5 ;uhb .x; t / D

2
4ˆ.x/T ub1.t/

ˆ.x/T ub2.t/

ˆ.x/T ub3.t/

3
5 ;

Sh.x; t / D

2
4‰.x/T S11.t/ ‰.x/T S12.t/ ‰.x/T S13.t/
‰.x/T S21.t/ ‰.x/T S22.t/ ‰.x/T S23.t/
‰.x/T S31.t/ ‰.x/T S32.t/ ‰.x/T S33.t/

3
5 ;

(10)

where the vectors uai .t/; ubi .t/; and Sij .t/ contain the nodal values of the variables at time t .
Introducing the approximations (Equations (9) and (10)) into Equation (7) yields the following
semi-discrete form:

M«dC C RdCK PdCGd D PF; (11)

where

d D Œua1ua2ua3 ub1ub2ub3 S11S12 : : :S33�
T D ŒQua Qub QS�

T ; (12)

F D Œ0 F1 F2 F3 0�T ; (13)

and the temporal dependencies have been suppressed for brevity. In Equation (11), M;C;K; and G
are the global system matrices. They can be computed given the values of the Lamé parameters and
mass densities in the heterogeneous domain (�reg) and the parameters defining coordinate stretching
in the PML region (�PML). Detailed definitions of the system matrices and their constituent element
matrices can be found in [43]. We remark that the matrix G has zero elements everywhere except in
the PML region. Thus, the matrix-vector product Gd is nonzero only in �PML. Next, we discuss the
time integration of the semi-discrete form (11).

2.4. Temporal discretization and integration

Various schemes for integrating the system of third-order ordinary differential equations (ODEs,
Equation 11) in time have been discussed in [43]. Here, we favor an explicit time integration scheme
that requires recasting the semi-discrete form as a system of first-order ODEs in time. To this end,
we (analytically) integrate Equation (11) in time to obtain a system of second-order ODEs given by

M RdC C PdCKdCG Qd D F; PQd D djPML; (14)

where we have assumed silent initial conditions and Qd contains the displacement and stress history
degrees-of-freedom within �PML only [43]. Equation (14) can be expressed as a first-order system
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in time, as

APy D ByC D; (15a)

where (15b)

y D Œz0 z1 z2�T ; z0 D Qd; z1 D d; z2 D Pd; (15c)

A D

2
4 I 0 0

0 I 0
0 0 M

3
5 ;B D

2
4 0 I 0

0 0 I
�G �K �C

3
5 ; and D D

2
4 0

0
F

3
5 : (15d)

An explicit scheme can be used to solve (15) if the inverse of A (i.e., the mass-like matrix, M) can
be computed efficiently. This can be achieved if the mass-like matrix M is diagonal. To obtain a
diagonal matrix M, we use spectral elements for spatial discretization and employ the Legendre–
Gauss–Lobatto quadrature rule for computing the system matrices. Now, Equation (15) can be
rewritten as

Py D LyC R; where (16a)

L D

2
4 0 I 0

0 0 I
� OG � OK � OC

3
5 ;R D

2
4 0

0
OF

3
5 ; (16b)

OC DM-1C; OK DM-1K; OG DM-1G; OF DM-1F; (16c)

and the inverse of the mass-like matrix .M�1/ can be easily computed by taking the reciprocals of
the diagonal entries.

The temporal dimension is now discretized using a timestep � . The value of a variable at the i-th
timestep is denoted by superscript ‘i’, that is, yi � y.t/ at t D i � . We employ the fourth-order
Runge–Kutta (RK4) scheme for time integration of Equation (16a). Using this method, yiC1 can be
computed using yi as

yi+1 D yi C
�

6

�
Hi

1 C 2Hi
2 C 2Hi

3 CHi
4

�
; (17)

where Hi
k D Œh

i
k0 hik1 hik2�

T and

hi10 D zi1; (18a)

hi11 D zi2; (18b)

hi12 D �
OCzi2 � OKzi1 � OGzi0 � OF

i ; (18c)

hi20 D zi1 C
�

2
hi11; (18d)

hi21 D zi2 C
�

2
hi12; (18e)

hi22 D �
OC.zi2 C

�

2
hi12/ �

OK.zi1 C
�

2
hi11/ �

OG.zi0 C
�

2
hi10/ �

OFiC
1
2 ; (18f)

hi30 D zi1 C
�

2
hi21; (18g)

hi31 D zi2 C
�

2
hi22; (18h)

hi32 D �
OC.zi2 C

�

2
hi22/ �

OK.zi1 C
�

2
hi21/ �

OG.zi0 C
�

2
hi20/ �

OFiC
1
2 ; (18i)

hi40 D zi1 C �hi31; (18j)

hi41 D zi2 C �hi32; (18k)

hi42 D �
OC.zi2 C �hi32/ �

OK.zi1 C �hi31/ �
OG.zi0 C �hi30/ �

OFiC1: (18l)

Thus, Equations (17) and (18) can be used to compute the displacement (Pz0), velocity (Pz1), and
acceleration (Pz2) vectors at the (i C 1)-th timestep given their values at the i-th timestep and the
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force vector F. The step-by-step time marching scheme can be represented as a solution of linear
system of equations given by

Qu D f ; (19)

where

u D Œy0 H0
1 H0

2 H0
3 H0

4 y1 H1
1 H1

2 H1
3 H1

4 y2 � � � HN-1
1 HN-1

2 HN-1
3 HN-1

4 yN �T ; (20)

f D Œy0 R0 R
1
2 R

1
2 R1 0 R1 R1

1
2 R1

1
2 R2 0 � � � RN�1 RN� 12 RN� 12 RN 0 �T ; (21)

and the matrixQ is given in Appendix A.

3. LOAD MODELING

In the inverse source problem, the source time signals and source locations are treated as unknowns.
The spatio-temporal source characteristics that maximize a specified motion metric of the target for-
mation are computed using an iterative procedure. This necessitates parameterization of the spatial
and temporal load descriptors. Specifically, the tractions f.x; t / applied on �load consist of contri-
butions, fi .x; t /, from ns sources. The i-th source is defined using a spatial (� i .x/) and a temporal
(fi .t/) component. � i is further decomposed into xp-directional components: 	ip.x/; p D 1; 2; 3.
Thus,

f.x; t / D
nsX
iD1

fi .x; t / D
nsX
iD1

2
4 	i1.x/	i2.x/
	i3.x/

3
5fi .t/: (22)

In our numerical experiments, we apply loads in either x1; x2, or x3 direction; therefore, 	ip.x/ ¤ 0
for only a single value of p. The spatial variation of the i-th load on �load is captured by 	ip , for
example, a constant pressure load applied on part of the surface .x3 D 0/ can be expressed as

	ip.x1; x2; 0/D

�
H

	

i1 �

bi1

2



�H

	

i1 C

bi1

2


�
�

�
H

	

i2 �

bi2

2



�H

	

i2 C

bi2

2


�
; (23)

whereH is the Heaviside step function, 
ik .k D 1; 2/ are the (unknown) xk coordinates of the i-th
load’s centerline, and bik is the width of the load along the xk-direction. Similarly, a load varying
like the Gaussian function is given by

	ip.x1; x2; 0/ D exp

�
�.x1 � 
i1/

2

bi1

�
exp

�
�.x2 � 
i2/

2

bi2

�
: (24)

We parameterize the time signals using quadratic Lagrange polynomials �j .t/ whose temporal
nodal values are denoted by �ij . This allows us to express fi .t/ as

fi .t/ D

nfX
jD1

�ij�j .t/; (25)

where nf is the number of Lagrange polynomials used to define the time signal. Next, we cast the
inverse source problem aimed at focusing wave energy into the target formation.
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4. THE INVERSE SOURCE PROBLEM

The inverse source problem aims at maximization of a motion metric of the target formation by
seeking the optimal spatio-temporal source characteristics. The problem can be cast as a constrained
minimization problem, wherein an objective functional is minimized while staying within the con-
straints imposed by the governing physics. The objective functional and the constraint conditions
defined either in the continuous (strong or weak) form or in the spatio-temporally discretized form
can be used to formulate the inverse source problem [41, 44, 45]. In this work, we favor the latter
approach. We cast the discrete objective functional as

Ld D
1

uTB Puau
D

1

�

"
1
2
PQu0a � PQu0a C

1
2
PQuNa � PQuNa C

N�1P
iD1

PQuia � PQuia

# ; (26)

where the vector of nodal velocities in the target inclusion, PQu
i

a, is formally defined in Equation (12)
and B Pua is a block diagonal matrix with �Bi on its diagonals. Bi are square matrices that are zero
everywhere except on diagonals that correspond to the elements of PQuia. Minimization of Ld is tan-
tamount to the maximization of the velocity field within the target inclusion. Next, we form the
augmented functional and obtain the first-order optimality conditions.

4.1. The augmented functional

We side-impose the governing Equation (19), weighted by the discrete Lagrange multipliers p, on
the objective functional to obtain the discrete augmented functional which is to be minimized. Thus,
the inverse problem can now be stated as

min
f

A.u;p;f / D Ld � pT .Qu � f /; (27)

where

p D Œ�0 �0
1 �

0
2 �

0
3 �

0
4 �1 �1

1 �
1
2 �

1
3 �

1
4 �2 � � � �N-1

1 �N-1
2 �N-1

3 �N-1
3 �N-1

4 �N �T ; (28)

�ik D �k; at t D i �; k D 1; 2; 3; 4; (29)

� D Œ�h �u �v�
T ; (30)

�i D �; at t D i �: (31)

�h is the vector of nodal displacement-history-like adjoint variables. �u and �v are the vectors
of nodal displacement-like and velocity-like adjoint variables, respectively. The first-order optimal-
ity conditions can now be obtained by taking derivatives of A with respect to u;p, and source
parameters � or 
.

4.2. State problem

Differentiating A with respect to p results in

@A
@p
D 0 H) Qu D f ; (32)

which is the same as the forward problem given by Equation (19).
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4.3. Adjoint problem

Similarly, differentiating A with respect to u yields

@A
@u
D 0 H) QTp D

�2B Puau

.uTB Puau/
2
: (33)

Equation (33) represents the adjoint problem associated with the inverse problem of interest.
Because the adjoint problem involves QT , we solve it by marching backwards in time. The adjoint
force vector at any timestep i is given by

gi �
�2B Puau

.uTB Puau/
2
D

�2PQuia
.uTB Puau/

2
D �2L2d PQu

i
a: (34)

Thus, the adjoint force vector at any timestep is obtained by scaling the vector of nodal velocity
values in the target inclusion. The backward time marching is initiated at the final timestep (i D N ),
for which we obtain

�N D gN : (35)

We continue the time marching for i D N � 1;N � 2; : : : ; 0; by computing

�i4 D
�

6
�iC1; (36a)

�i3 D
�

3
�iC1 C �LT�i4; (36b)

�i2 D
�

3
�iC1 C

�

2
LT�i3; (36c)

�i1 D
�

6
�iC1 C

�

2
LT�i2; (36d)

�i D �iC1 C LT .�i1 C �
i
2 C �

i
3 C �

i
4/C gi ; (36e)

at each timestep, and updating i  .i � 1/ after each iteration.

4.4. Control problems

4.4.1. Time-signal optimization. We define a vector of temporal nodal force parameters as

� D Œ�11 �12 : : : �1nf : : : �ns.nf �1/ �nsnf �
T : (37)

During the inversion process, each element of this vector (�mn) is updated using the derivative of
the augmented functional with respect to �mn, given by

@A
@�mn

D pT
@f

@�mn
D �0 � y0 C

N�1X
iD0

"
�i1 �

@Ri

@�mn
C �i2 �

@RiC
1
2

@�mn
C �i3 �

@RiC
1
2

@�mn
C �i4 �

@RiC1

@�mn

#

D �0 � y0 C

N�1X
iD0

h
�n.i�/�

i
1 C �n.i� C

�

2
/Œ�i2 C �

iC1
3 �C �n.i� C �/�

i
4

i
� Rmsp

(38)

Rmsp is the spatial component of the force vector for the m-th source. The definition of Rmsp and the
details of the derivation of the gradient ( @A

@�mn
) are given in Appendix B.
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Table II. Material and geometric properties for the layers and the inclusion shown in the
geological formation model (Figure 2(a)).

Layer Equations defining boundaries of the layers Wave velocities Mass density
tag and the inclusion (all dimensions in meters) Cp (m/s) Cs (m/s) (kg/m3)

L1 0 > x3 > 2 arctan.x1�32 / � 18 1005 615 2200
L2 2 arctan.x1�32 / � 18 > x3 1199 734 2200
T .x13 /

2 C .x23 /
2 C .x3C32:253 /2 < 1 389 238 2200

4.4.2. Load location optimization. The vector of load location parameters is given by

� D Œ
11 
12 : : : 
ns1 
ns2�
T : (39)

The derivative of the augmented functional with respect to a load location parameter 
mn is given by

@A

mn
D pT

@f

@
mn
D �0 � y0 C

N�1X
iD0

"
�i1 �

@Ri

@
mn
C �i2 �

@RiC
1
2

@
mn
C �i3 �

@RiC
1
2

@
mn
C �i4 �

@RiC1

@
mn

#
;

D �0 � y0 C

N�1X
iD0

h
fm.i�/�

i
1 C fm.i� C

�

2
/Œ�i2 C �

i
3�C fm.i� C �/�

i
4

i
� QRmsp;

(40)

where QRmsp is defined in Appendix B.

4.5. Summary of the inversion process

A summary of the inversion algorithm is given in Karve and Kallivokas (Table 2, [42]). We initialize
the algorithm with a guess of the source time signals and the source locations. We, then, solve the
state (forward) problem to obtain the velocity field within the target inclusion (PQuia) and compute the
objective functional (Ld ) as well as the adjoint force vectors (gi ). We use the adjoint force vectors
to resolve the adjoint problem and obtain the values of the adjoint variables (�ij ) on �load. We, then,
compute the gradient(s) of the augmented functional using Equations (38) and (40) and obtain the
search direction(s) using the conjugate gradient method. We use scalar step lengths (˛t and/or ˛l )
to obtain � and/or � for the next inversion iteration and repeat the process until convergence.

5. NUMERICAL EXPERIMENTS

We test the inverse source algorithm by performing numerical experiments on a synthetically created
geological formation model (Figure 2(a)). The formation model contains two layers (L1 and L2) and
a target inclusion (T). The material properties of the layers and the equations defining the geometries
of the inter-layer boundaries are given in Table II. The target inclusion (T) is spherical in shape,
and its diameter is 6 m. The centroid of the target inclusion is located 32.25 m below the ground
surface (x3 D 0). In order to reduce the computational effort required to resolve the inverse source
problem, we select a subset of the geo-formation shown in Figure 2(a) as our computational domain.
The dimensions of the selected computational domain are 24 m � 24 m � 39m. We use 7.5-m-thick
PML zones at the truncation boundaries of the computational domain to mimic the semi-infinite
nature of the domain of interest. The computational domain and the PMLs are shown in Figure 2(b).
We discretize the computational domain using a structured mesh of 27-noded, regular hexahedral,
spectral elements of size 0.75 m � 0.75 m � 0.75 m. We employ the 4th-order Runge–Kutta method
(discussed in Section 2.4), with timestep � D 0:00025s, for time integration, and simulate the wave
propagation in the computational domain for a total time of 0.6s (i.e., T D 0:6 s).
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Figure 2. Geological formation model and computational domain (material properties and geometric
description are given in Table II). [Colour figure can be viewed at wileyonlinelibrary.com]

In order to compare the performance of various spatio-temporal source characteristics, we define
the following motion metrics. If Pui is the vector of the x1-directional, x2-directional, and x3-
directional velocity components at a computational node at time t D i� , then we define the
time-averaged kinetic energy at that node as

KETA D
1

2
�

"
�

2
Pu0 � Pu0 C

�

2
PuN � PuN C �

N�1X
iD1

Pui � Pui
#.

T; (41)

where � is the mass density. Furthermore, we define the time-averaged kinetic energy of the target
inclusion as

KEinc D
1

2

"
�

2
.PQu0a �Minc PQu

0
a C
PQuNa �Minc PQu

N
a /C �

N�1X
iD1

PQuia �Minc PQu
i
a

#.
T; (42)

where Quia is defined in Equation (12) and Minc is the mass matrix for the target inclusion. We remark
that the time-averaged kinetic energy definitions (Equations (41) and (42)) are the spatio-temporally
discretized versions of the continuous definitions given by

KEcTA D

Z T

0

1

2
� Œ Pu.t/ � Pu.t/� dt

.
T; (43)

KEcinc D

Z
�a

Z T

0

1

2
�a Œ Pua.t/ � Pua.t/� dt d�

.
T; (44)
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where Pu.t/ is the vector containing the x1-directional, x2-directional, and x3-directional compo-
nents of velocity at a computational node and Pua.t/ is the velocity vector for a computational node
within the target inclusion. The units of KETA are J/m3 and those of KEinc are J. In our numeri-
cal experiments, we use plots of KETA and values of KEinc to assess the degree of energy focusing.
Next, we describe the numerical experiments and discuss their results.

5.1. Experiment 1 – frequency sweeps and source polarization effect

In this experiment, we use the frequency sweep approach to determine the source frequencies that
could produce a strong wave energy focusing at the target. Accordingly, we apply a uniform (hor-
izontally or vertically polarized) load of magnitude 50 kN/m2 on the free surface (x3 D 0) of the
computational domain. We compute the objective functional (Ld ) and the time-averaged kinetic
energy of the target inclusion (KEinc) for a range of source frequencies driving the uniform load.
The results are shown in Figure 3: it can be seen that for a uniform horizontal load, the minimum
value of Ld and the maximum value of KEinc occur at a source frequency of, approximately, 72 Hz.
Thus, the frequency sweep enables determination of the amplification frequencies of the target for-
mation. In a field implementation of the wave-based EOR, if the locations of the finite-width sources
are chosen arbitrarily, or decided solely based on practical considerations, then one could use the

Figure 3. Frequency sweep for horizontal and vertical loads. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Table III. The initial guess of source
locations.

Load 
i1 
i2
number (i ) (m) (m)

1 8.00 9.00
2 �9.00 7.00
3 �8.00 �7.00
4 8.00 �6.00

amplification frequency as the driving frequency for the sources. For example, if ns horizontally
polarized wave sources are to be applied on the free surface of the geo-formation in Figure 2(a),
then one could use fi .t/ D .50 kN/m2/ sinŒ2
.72/t � for i D 1; 2; : : : ; ns .

The frequency sweep also gives insights into the effect of source polarization on the wave energy
delivery to the target formation. In [46], Sánchez-Sesma et al. discussed the energy partitions for
horizontal and vertical unit harmonic point loads acting on a homogeneous elastic halfspace. They
reported that a vertical load radiates about 55% to 75% of the energy in the form of Rayleigh surface
waves (depending on Poisson’s ratio). A horizontal load, on the other hand, expends only about 10%
to 30% of the wave energy in the form of Rayleigh waves. Thus, horizontally polarized loads seem
to be more efficient at delivering the wave energy to deeply situated target formations. Figure 3(b)
shows that the value of KEinc for the horizontal loads is greater than that for the vertical loads for
most of the driving frequencies considered in this experiment. Furthermore, the maximum value of
KEinc for the horizontal loads is about five times that for the vertical loads. This experiment indicates
that the efficiency of the wave energy delivery can be increased by using horizontally polarized
surface sources instead of vertically polarized sources.

We remark that in our analysis we did not consider the effect of material or intrinsic attenuation.
Material attenuation can be included either by adopting models based on Q-factors, or by incorpo-
rating an attenuation model in the analysis (this will amount to modifying the damping matrix C in
Equation (10)). The inverse source procedure can be used for computing the optimal spatio-temporal
characteristics of horizontally, vertically, or obliquely polarized surface loads.

5.2. Experiment 2 – source time signal optimization

In this experiment, we compare the frequency sweep and the inverse source approaches for deciding
the time signals driving the surface sources that maximize the wave energy delivery to the target
inclusion. We use four, horizontally polarized surface loads (acting along the x1 direction) to initiate
the wave motion. The spatial variability of the surface sources is given by Equation (24). We set
bi1 D bi2 D 1:25 m, and the locations of the centerlines of the loads (
i1 and 
i2) are given in
Table III.

For the frequency sweep approach, we consult Figure 3 and decide to employ monochromatic
source signals with a dominant frequency of 72Hz. Thus, we set fi .t/ D .50 kN/m2/ sinŒ2
.72/t �
for i D 1; 2; : : : ; 4. When surface loads, described by the fi .t/ and .
i1; 
i2/ locations given in
Table III, are used to excite the wave motion in the computational domain, the value of KEinc is about
0.73 J. Of interest is how the time signals computed using the inverse source approach compare in
terms of the energy delivery to the target inclusion, against the monochromatic signals suggested by
the frequency sweep. To this end, we start with an initial guess of the time signals, which is shown in
Figure 4. Figure 4 shows that the spectrum of the initial guess contains a wide range of frequencies.

We, then, use the procedure outlined in Section 4.5 to maximize the wave energy delivery to the
target formation by seeking the optimal time signals for the sources while keeping their locations
fixed. The maximum amplitude of the loads is restricted to 50 kN/m2. The converged time signals
and their frequency spectra are shown in Figure 5. The resulting distribution of the time-averaged
kinetic energy in the computational domain is shown in Figure 7(a). It can be seen in Figure 5(b) that
the converged signals have two dominant frequencies, approximately, 56 Hz and 72 Hz. The time-
averaged kinetic energy (KEinc) for the converged signals is 0.88 J. The fact that one of the dominant
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Figure 4. Initial guess of source time signals and the associated frequency spectra. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 5. Converged time signals and the associated frequency spectra after time signal optimization.
[Colour figure can be viewed at wileyonlinelibrary.com]

frequencies of the converged signals (72 Hz) is equal to the amplification frequency suggested by
the frequency sweep is a validation of the inverse source approach.

This experiment highlights the key differences between the frequency sweep and the inverse
source approaches. For the geostructure considered in this experiment, the optimal time signals sug-
gested by the inverse source procedure were able to deliver about 20% more time-averaged kinetic
energy to the target than that delivered by the best monochromatic signals selected using the fre-
quency sweep method. We remark that a frequency sweep conducted using a uniform load applied
on the entire surface of the computational domain can become blind to the complex interference
patterns generated by the waves emitted by finite-width sources. To alleviate this drawback, a fre-
quency sweep can be conducted using a number of finite-width sources. We remark that a combined
frequency-and-location sweep becomes computationally prohibitive.
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Table IV. Converged source locations
after the source location optimization.

Load 
i1 
i2
number (i ) (m) (m)

1 �1.21 �0.03
2 �1.06 0.28
3 �0.88 0.15
4 �0.25 0.05

5.3. Experiment 3 – source location optimization

In this experiment, we discuss computation of the optimal source locations while keeping the source
time signals fixed. The source time signals can be chosen using the frequency sweep approach, the
time-reversal approach, or the inverse source approach. Here, we illustrate the procedure using the
optimal time signals obtained in experiment 2. The initial guess of the source locations is given in
Table III and the (fixed) time signals are shown in Figure 5. We, now, seek the optimal source loca-
tions using the inverse source algorithm described in Section 4.5. The converged source locations
are given in Table IV, and the plot of time-averaged kinetic energy after the source location opti-
mization is shown in Figure 7(b). The time-averaged kinetic energy of the inclusion (KEinc) after
the source location optimization is 1.68 J.

The results of this numerical experiment highlight the importance of source location optimization.
The KEinc value after time signal optimization was 0.88 J. Placing the loads at the optimal locations
resulted in a 90% increase in the value of KEinc (0.88 to 1.68 J). In a field implementation of the
wave-based EOR, the stress wave stimulation will be applied for days. Thus, a 90% increase in the
energy delivery could result in significant improvement in the efficiency of the sought mobilization
process.

5.4. Experiment 4 – simultaneous optimization of spatio-temporal source characteristics

The simultaneous optimization process is initialized with a guess of source time signals and source
locations. Both temporal and spatial source characteristics are updated during each inversion iter-
ation to arrive at the optimal spatio-temporal source characteristics. We illustrate the simultaneous
optimization procedure in this numerical experiment. We start the inversion process with the initial
guess of source time signals and source locations given in Figure 4 and Table III, respectively. We,
then, use the inverse source algorithm summarized in Section 4.5 to obtain optimal spatio-temporal
source characteristics. The converged source locations are given in Table V, while the converged
time signals and the associated frequency spectra are shown in Figure 6. The plot of the time-
averaged kinetic energy for the optimal time signals and load locations is shown in Figure 7(c).
The converged source time signals and locations are similar to those obtained by the sequen-
tial time-signal-location optimization process (Figure 5 and Table IV). The time-averaged kinetic
energy of the inclusion after the simultaneous spatio-temporal optimization is about 1.88 J (as
opposed to 1.68 J for the sequential optimization), which is about two times the value achieved after
source time signal optimization. Thus, once again, the results highlight the importance of source
location optimization. We remark that the simultaneous optimization process provides more free-
dom for fine-tuning the spatio-temporal source characteristics, and hence, it may perform better
than the sequential optimization process, especially for geostructures exhibiting a high degree of
heterogeneity.

5.5. Experiment 5 – uncertainty effects of the geostructure’s material properties

In the preceding sections, our inverse source formulation and numerical experimentation assumed
a priori knowledge about the material properties of the geostructure of interest. In practice,
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Figure 6. Converged time signals and the associated frequency spectra after simultaneous optimization.
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 7. The plots of time-averaged kinetic energy (KETA). [Colour figure can be viewed at
wileyonlinelibrary.com]
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Table V. Converged source locations after
simultaneous optimization

Load 
i1 
i2
number (i ) (m) (m)

1 -0.81 -0.02
2 -0.88 -0.01
3 -0.76 -0.01
4 -0.83 0.04

Table VI. ‘True’ material properties for
the layers and the inclusion shown in the
geological formation model (Figure 2(a)).

Layer Wave velocities
tag Cp (m/s) Cs (m/s)

L1 926 567
L2 1066 652
T 438 268

however, the material properties of the layered formations and the target are not precisely known.
We illustrate the effect of uncertainty in our knowledge of the material properties by conducting the
following numerical test: we assume that the material properties used in our computational model
are ‘incorrect’, and that the ‘true’ material properties are those given in Table VI, reflecting a change
of 10% to 30% in the values of the Lamé parameters. We, then, use the wave sources endowed with
the ‘optimal’ spatio-temporal characteristics computed using the ‘incorrect’ material properties (in
experiment 4, i.e., Table V and Figure 6) to excite the wave motion in the computational domain
endowed with the ‘true’ material properties. The resulting value of KEinc was reduced from 1.88 J
(experiment 4) to 0.78 J – a reduction of about 58%. Thus, the simple numerical test shows how
imperfect knowledge of the material properties can adversely affect wave energy focusing. This
observation calls for a formal treatment of the uncertainties in the input data – either by formulat-
ing and resolving a Bayesian inverse source problem or by quantifying the effects of uncertainties
in the input using sensitivity and/or reliability analyses. In [47], Karve et al. discussed a systematic
framework for evaluating the uncertainty in the wave energy delivery to targeted geo-formations.
They formulated the wave propagation problem for a two-dimensional, elastic geostructure, and per-
formed sensitivity as well as first-order reliability analyses to compute the probabilities of failure to
achieve threshold values of KEinc. In their work, the uncertainty in the knowledge of the material
properties was modeled by assigning suitable probability distribution functions to the Lamé param-
eters. Similar analysis can be performed for a three-dimensional, elastic geostructure. We remark
that the uncertainties in the knowledge of the material properties tend to reduce the amount of the
kinetic energy delivered to the target, but the focusing appears to remain intact.

6. CONCLUSIONS

We discussed an inverse source approach for designing wave energy delivery systems used to apply
stress wave stimulations to targeted subsurface formations. We provided evidence of the method’s
ability to resolve the optimal spatio-temporal characteristics that focus the wave energy to the tar-
geted formation by conducting numerical experiments on a prototype geological formation. Our
numerical experiments indicate that optimal load locations play a key role in delivering vibrational
energy to the targeted formation and that horizontally polarized loads are preferred for delivering
wave energy to deeply situated geological formations than vertically polarized loads. The inverse
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source and the associated reliability quantification [47] methodologies provide an analytical frame-
work for designing field implementations in applications of interest to wave-based enhanced oil
recovery.
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APPENDIX A: THE MATRIX Q

Q D
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(A.1)
where the matrix L is defined in Equation (16b), I is the identity matrix, and � is the timestep.

APPENDIX B: CONTROL PROBLEMS

We recall that the vector R at the k-th timestep is defined as

Rk DM-1

2
4 0

0
Fk

3
5 DM-1

2
664

0
0

nsP
jD1

Fjsp � fj .k�/

3
775 ; (B.1)

where Fjsp is the vector of nodal values corresponding to the spatial variation of the j -th source and
the function fj .t/ defines the value of j -th source at time t . We remark that Fjsp is assembled using
element force vectors for the j -th load, given by

Fjelem D

2
64 Fjelem;x1

Fjelem;x2

Fjelem;x3

3
75 D Z

� load
elem

2
4 �j1.x; 
j1; 
j2/ˆı1p�j2.x; 
j1; 
j2/ˆı2p
�j3.x; 
j1; 
j2/ˆı3p

3
5 d�; (B.2)
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where ılp .l D 1; 2; 3/ is the Kronecker delta, � load
elem is the loaded boundary for the element, and xp

is the loading direction. We use Equations (B.1) and (B.2) to compute the derivatives of Rk with
respect to temporal parameters �mn and location parameters 
mn.

B.1. Time signal optimization
The control equation for time signal optimization (Equation 38) involves the derivative of Rk

with respect to �mn, or

@Rk

@�mn
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2
4 0

0
Fmsp .

@fm.k�/
@�mn

/

3
5 DM-1

2
4 0

0
Fmsp

3
5 �n.k�/: (B.3)

Thus, we update each element (�mn) of the control parameter vector �, using

@A
@�mn
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N�1X
iD0

h
�n.i�/�

i
1 C �n.i� C

�

2
/Œ�i2 C �

i
3�C �n.i� C �/�

i
4

i
� Rmsp; (B.4)

where

Rmsp DM-1

2
4 0

0
Fmsp

3
5 : (B.5)

B.2. Load location optimization
The derivative of Rk with respect a location parameter (
mn) is given as

@Rk

@
mn
DM-1

2
4 0

0
@Fmsp
@�mn

fm.k�/

3
5 DM-1

2
4 0

0
QFmsp

3
5 fm.k�/; (B.6)

where QFmsp is assembled using derivatives of element force vectors for m-th load, given by

@Fmelem

@
mn
D

Z
� load
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2
64
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@�mn

ˆı2p
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3
75 d�: (B.7)

Thus, we update each element (
mn) of the control parameter vector �, using

@A

mn
D �0 � y0 C

N�1X
iD0

h
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i
1 C fm.i� C

�

2
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i
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where

QRmsp DM-1

2
4 0

0
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3
5 : (B.9)
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