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A B S T R A C T

Despite the ever increasing adoption of wave motion simulations for assessing seismic hazard, most
assessment/simulations are still based on a flat surface earth model. The purpose of this paper is to quantify
the effect of topographic irregularities on the ground motion and local site response by means of parametric
investigations in the frequency-domain of typical two-dimensional features.

To this end, we deploy best-practice tools for simulating seismic events in arbitrarily heterogeneous
formations; these include: a forward wave simulator based on a hybrid formulation encompassing perfectly-
matched-layers (PMLs); unstructured spectral elements for spatial discretization; and the Domain-Reduction-
Method that permits placement of the seismic source within the computational domain, thus allowing
consideration of realistic seismic scenarios.

Of particular interest to this development is the study of the effects that various idealized topographic
features have on the surface motion when compared against the response that is based on a flat-surface
assumption. We report the results of parametric studies for various parameters, which show motion
amplification that depends, as expected, on the relation between the topographic feature's characteristics and
the dominant wavelength. More interestingly, we also report motion de-amplification patterns.

1. Introduction

Understanding and quantifying the seismic response in regions
with surface irregularities, such as hills, valleys, and alluvial basins,
have been the focus of seismologists and earthquake engineers for
decades. The interest remains strong since discrepancies still exist
between the recorded surface motion from strong earthquakes and
numerical simulations. There are many reasons for the discrepancies,
but chief among them are uncertainties about the subsurface properties
(velocity model, fault location/geometry, etc.) used in seismic motion
simulations, uncertainties in quantifying the seismic source mechan-
isms, and the lack of adequate representation of topographic features.
Empirical evidence following strong earthquakes suggests that topo-
graphic features may induce amplification, and even de-amplification,
in the proximity of a topographic feature. For example, Fig. 1 depicts
damage following the 2010 Haiti earthquake, where buildings closer to
the hill's crest suffered more damage than those along the hill's side.

The literature on the effect of surface geometry on wave motion falls
into three general categories: (i) observations from earthquakes and
field experiments; (ii) studies based on analytical and semi-analytical
solutions for simple topographic geometries, such as a triangular wedge
or a semi-circular valley; and (iii) parametric studies based on

numerical simulations. In the first category, examples include observa-
tions in the aftermath of the 1971 San Fernando Valley earthquake
[13]; the 1987 Whittier Narrows earthquake [27]; and the 2002 Molise
earthquake in Italy [32]. Çelebi [15] investigated the topological
amplification of the 1985 Chile earthquake and reported on the damage
pattern to structures situated on ridges and soft soil sites. He concluded
that the unusual patterns of structural damage resulted from fre-
quency-dependent amplification due to the surface irregularities. Later,
in 1991 [16], Çelebi collected and summarized the results of case
studies on three earthquakes, and provided evidence of topographic
amplification for a particular range of frequencies. Hartzell et al. [23]
studied the cause of the structural damage and ground cracking
observed at the Robinwood Ridge during the 1989 Loma Prieta
earthquake and argued that the presence of ridges intensifies the
motion amplification.

Assimaki studied the 1999 Athens earthquake in Greece [5,7] and
showed that the observed amplification of seismic motion in the
vicinity of a cliff crest could only be predicted by simultaneously
accounting for the topographic geometry, stratigraphy, and nonlinear-
ity. The analysis of the Tarzana Hill recordings from the 1987 Whittier
Narrows and the 1994 Northridge earthquakes by Graizer [22] showed
that the observed amplification was due to the combined effects of

http://dx.doi.org/10.1016/j.soildyn.2016.10.031
Received 20 July 2016; Received in revised form 21 October 2016; Accepted 24 October 2016

⁎ Corresponding author at: The Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX, USA.
E-mail addresses: babakp@utexas.edu (B. Poursartip), arash.fathi@utexas.edu (A. Fathi), loukas@mail.utexas.edu (L.F. Kallivokas).

Soil Dynamics and Earthquake Engineering 92 (2017) 503–527

0267-7261/ © 2016 Elsevier Ltd. All rights reserved.
Available online 09 November 2016

crossmark

http://www.sciencedirect.com/science/journal/02677261
http://www.elsevier.com/locate/soildyn
http://dx.doi.org/10.1016/j.soildyn.2016.10.031
http://dx.doi.org/10.1016/j.soildyn.2016.10.031
http://dx.doi.org/10.1016/j.soildyn.2016.10.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2016.10.031&domain=pdf


topography and layering that resulted in trapping energy within a low-
velocity layer near the surface. Similar observations were also reported
in [42,43,52,53]. Further reviews on observations on seismic amplifi-
cation can be found in Massa et al. [33], and Buech et al. [14].

Field experiments could also provide insight into the effect topo-
graphy plays in seismic amplification, but due to cost considerations
there have only been a few reported attempts. Buech et al. [14]
installed a seismic array along the crest of a hill in New Zealand to
record earthquake data. They reported large amplification along the
crest, as large as eleven times of the motion on the flat surface. Massa
et al. [33] performed a similar experiment using data from a seismic
network installed on a ridge in central Italy. They reported amplifica-
tion as large as 4.5 at specific frequencies. More recently, Wood and
Cox [58] exploited ground shaking generated in a coal mine in central
Utah and reported significant amplitude changes due to topography.
Similar field experiments can also be found in [23,38,40].

Whereas exact solutions of wave motion in a homogeneous, flat-
surface, half-space are readily available, closed-form solutions for a
half-space exhibiting a surface irregularity, even one described by a
canonical shape, are scantier. Among such exact solutions, the greatest
attention has been paid to the scattering of SH waves, owing to the
scalar form of the associated wave equation. One of the earliest studies
is due to Sills [51] where a method was developed to solve the
scattering of SH waves by an arbitrary topography in a homogeneous,
semi-infinite half-space using an integral equation. Sills applied the
method to a semi-circular hill, to a Gaussian hill, and to a combination
of a hill and a valley for various wave motion characteristics. Trifunac
[55] presented a closed-form solution for the diffraction of SH waves by
a semi-cylindrical canyon and reported strong amplification near the
feature. Sánchez-Sesma et al. [47] developed a boundary integral
method for the scattering of SH waves by any irregular feature. In
1985, Sánchez-Sesma [49] described another method particularly
suited for infinite wedge-shaped hills and valleys.

Exact solutions for the vector equation, accounting for P and SV
waves in the presence of a surface feature are rare. One exception is the
analytical solution proposed by Sánchez-Sesma for an infinite wedge
[50]. Paolucci [39] has also provided a simple approximate expression
for the fundamental frequency of triangular hills.

In the absence of exact solutions, numerical tools have long been
used for simulating wave motion in complex domains. We cite
representative works, classified according to the underlying numerical
method: (i) finite difference method-based approaches (FDM), which
are simple to apply but have difficulties with modeling of the complex
surfaces [13,36,37,54], (ii) boundary element-based methods (BEM),
which have the advantage of dimensionality reduction, but are limited
to cases for which the Green's functions are available. Two major BEM
approaches exist, direct (DBEM) and indirect (IBEM). Examples of
(DBEM) include the works by Wong and Jennings [57], Álvarez-Rubio
et al. [1], Kamalian et al. [24] and, Nguyen and Gatmiri [35], whereas
examples of IBEM include the works by Sánchez-Sesma and Campillo

[46], Sánchez-Sesma et al. [48], Luzón et al. [31], Gil-Zepeda et al.
[20], and Rodríguez-Castellanos et al. [44]. (iii) finite element-based
approaches (FEM) which include the works of Moczo et al. [34],
Assimaki et al. [6,8], Chaljub et al. [17], Peter et al. [41], and
Kucukcoban and Kallivokas [30]. (iv) spectral element-based methods
(SEM), that have all the advantages of finite elements, while also allow
for easy parallelization. See, for example, Komatitsch and Tromp [28],
Komatitsch and Vilotte [29], and Fathi et al. [19].

A few parametric studies conducted so far shed light on the problem
of seismic amplification. Ashford and Sitar [2], and Ashford et al. [3]
performed a frequency domain parametric study on the effect of single-
slope topography on the propagation of shear waves. Assimaki et al.
[4,5] affirmed the significance of topography by performing a time-
domain parametric study on a single slope geometry. They concluded
that the frequency content of the excitation, stratigraphy, and the
geometry of the cliff are all important in the amplification of incoming
seismic waves.

Although much work has been done to date, the influence of surface
topography is still neglected in seismic code provisions, since the
codification of the links between amplification and topographic char-
acteristics remains a challenge.

The main goal of this paper is to contribute to a better under-
standing of the effects of surface topography on site response by means
of a systematic parametric investigation. To this end, we consider
parameters such as feature geometry, incident wave type, angle of
incidence, Poisson's ratio, and incident wave frequency. In this study,
we focus on P and SV waves, and omit SH waves because their effects
have already been addressed in the literature. In the following, we first
describe the key components of a software toolchain developed for
conducting the parametric study. Numerical examples validating the
methodology against known solutions appear in Appendix B. The
results of the parametric studies involving idealized hills and valleys
follow the methodology presentation.

2. Wave motion simulation methodology

We briefly discuss an approach that deploys best-practice tools for
simulating seismic events in arbitrarily heterogeneous formations. The
approach includes: a forward explicit wave solver based on a hybrid
formulation that includes perfectly-matched-layers (PMLs) for limiting
the computational domain; the Domain-Reduction-Method that per-
mits placement of seismic sources within the computational domain;
unstructured spectral elements for spatial discretization; and paralle-
lizing tools that allow for a scalable and cost-effective numerical
simulation of wave propagation.

The use of a domain discretization method (finite or spectral
elements) requires that the extent of the semi-infinite physical domain
be truncated to form a finite computational domain by introducing
appropriate absorbing boundary conditions at the truncation surfaces.
To this end, we make use of an unsplit-field Perfectly-Matched-Layer
formulation, described in Kucukcoban and Kallivokas [30], and in
Fathi et al. [19].

Accordingly, the original semi-infinite physical domain is reduced
to a finite domain (Fig. 2), which is further partitioned into the interior
computational domain Ω, and the surrounding PML buffer zone. Per
[19,30], the formulation leads to the following equations of motion for
the discrete problem (in the frequency domain):

ω iωM C K d f(− + + ) = ,2 (1)

where the various matrices and vectors are defined as:
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In (1), the subscript RD denotes the regular/physical domain, and

Fig. 1. Destruction pattern on the hill crest following the 2010 Haiti earthquake.
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MRD, KRD, and fRD are standard mass matrix, stiffness matrix, and
vector of nodal forces, respectively. d and f are the displacement/stress
and force vectors, respectively. A bar on a submatrix indicates its
extension to encompass all the displacement degrees-of-freedom. The
rest of the submatrices in (2) correspond to the PML buffer zone, and
are explained in detail in [19,30]. d, the unknown vector, consists of the
nodal displacements U, partitioned such that the regular domain
displacements are first, followed by the displacements on the interface
boundary between the interior domain and the PML buffer, and finally
the displacements in the PML buffer zone; Σ are the unknown stress
components in the PML.

Eq. (1) does not readily account for a seismic event. Our primary
interest in this study is to be able to accommodate incoming plane
waves at various angles of incidence and frequencies, thus simulating
an earthquake originating from deep in the earth. To this end, we turn
to the Domain-Reduction-Method (DRM) developed by Bielak et al.
[11,12,18,59]. The DRM proposes a two-step approach for incorporat-
ing the effects of the seismic source. In a first step, the free-field
solution is obtained for a traveling plane wave by subtracting the local
heterogeneities or geometric irregularities of the region of interest. In a
second step, the heterogeneities and/or topographic features are re-
introduced and the equations of motion are appropriately modified to
account for the incoming motion. The latter is accomplished by the
introduction of the DRM boundary —a one-element wide layer—
separating the domain of interest containing the topographic feature
from the exterior domain, where the latter is the region between the
DRM and the PML (Fig. 2). Per the DRM formulation, the unknowns
comprise the total motion within the interior domain of interest and
the scattered motion within the exterior domain. It is on the DRM
boundary that the incoming motion is prescribed. Accordingly, the
equations of motion (1) are modified to read:

ω iωM C K d f(− + + ) = ,∼∼͠∼2 (3)

where:
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The subscripts i, e, and b refer to nodes in the interior domain of
interest Ω, the exterior domain Ω+, and the DRM boundary Γ,
respectively. ui and ub denote total motion displacement vectors,
whereas we denotes the scattered motion displacement vector.

The approach has been implemented in a parallel code, with the aid
of PETSc [9], where the Metis [26] mesh partitioner has been used.

3. Description of study parameters

We consider a homogeneous medium with mass density
ρ = 2000 kg/m3, shear modulus G = 100 MPa, and Poisson's ratio
ν = 0.25. The majority of the simulations are based on this material
model. Additionally, to study the effect of Poisson's ratio on the wave
motion, two extra material models are considered with Poisson's ratios
ν = 0.33 and ν = 0.40, and otherwise identical mass density and shear
modulus. The simulations are performed in the frequency domain
without any material damping.

We consider only symmetric hills and valleys to describe surface
irregularities. The schematic configuration of the corresponding com-
putational domains are plotted in Fig. 3, where b denotes the base of
the feature, and h is the height or depth of the hill or valley,
respectively. We introduce the shape ratio S h b= arctan( / )r to quantify
the slenderness of each shape. We also introduce the dimensionless
frequency:

η h
λ

= ,
s (5)

which is the ratio of the feature's height or depth to the shear
wavelength, in order to normalize the incident wave frequency.

We truncate the semi-infinite physical domain such that the
distance from the feature to the truncation boundary is at least three
times the shear wavelength λs. The computational domain has been
surrounded on its sides and bottom by a ten-element-thick PML. We
discretize the computational domain using quadratic quadrilateral
elements with element size that allows for at least 40 points per shear
wavelength.

In summary, we perform the parametric study using the following

Fig. 2. Computational domain partitioned in interior domain Ω; exterior domain Ω+;
DRM boundary; and PML buffer.

Fig. 3. Typical geometry of topographic features used in this study: (a) hills, and (b) valleys.
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parameters:

• wave types: plane P- and SV-waves.

• angle of incidence: 0–45° for P incidence, and 0–35° for SV
incidence in 5° increments.

• incident wave frequency: η varies from 0.1 to 5.0, in 0.1 increments.

• topography: hills and valleys of different geometry.

• topography shape ratio: the inverse tangent of height to base ratio,
h barctan( / ).

4. Parametric study on hills

In this section, we report on the effects of the hill's geometry, the
wave type, wave frequency, angle of incidence, and Poisson's ratio on
the motion amplification/de-amplification.

4.1. Effects of feature's geometry

To investigate the influence of a feature's shape on the resulting
motion, we consider: (i) the effect of the geometry idealization, i.e., how
differences in similar shapes may affect amplification, and (ii) the effect
of shape ratio (the height to base ratio) for a fixed geometry. We report
first on the feature's shape effects.

Four different hill geometries have been previously reported in the
literature: (i) Semi-elliptical and semi-circular hills used in [46,51,56];
(ii) Bell-shaped hills with an exponential function (bell-e) proposed in
[10,51,60]; (iii) Bell-shaped hills described by a cosine function (bell-c)
[25]; and (iv) triangular hills [45,46,50]. We perform the parametric
study on all four shapes to review the effects of topography idealization
on wave amplifications. The geometry and the area of these hills are
described in Table 1 using a coordinate system whose origin is on the
surface. Fig. 4 depicts all four shapes for a common height h = 100 m
and a base b = 100 m. Note that the semi-circular geometry has the
largest area, and the bell-e hill is the steepest idealized hill with the
smallest area. The triangular and bell-c hills have equal areas and,
indeed, the bell-c hill is a smoothened version of the triangular shape
without the sharp corners. In all cases, the half-space is homogeneous
with a Poisson's ratio ν = 0.25.

A sharp corner in the path of the plane waves on the surface would
generate Rayleigh waves, whose amplitudes depend highly on the
geometry of the hill and the sharpness of the corner. The maximum
surface displacement in many cases occurs when the generated
Rayleigh waves interfere constructively with each other within the
feature. This is a key reason that different hill geometries show
different amplifications.

Fig. 5 compares the maximum displacements on the surface of the
four idealized hills due to vertically propagating plane waves with
frequencies ranging from η = 0.1 to 2.0, in increments of 0.1. The
maximum displacement in this figure is normalized with respect to the
flat surface solution u ff , whenever the latter is non-zero (Appendix A).

We note first the fluctuating amplification pattern of the semi-
circular hill; for the other three shapes, the variation of amplification
follows a smoother trend. For example, the horizontal amplification of

the semi-circular hill is 2.70 for an incident P-wave of frequency
η = 0.5, while the amplification for the other geometries is around 1.20;
by contrast, for η = 1.5 the semi-circular amplification is 1.52, while it
is 2.55 for the triangular hill. We conjecture that at certain frequencies,
the convexity of the semi-circular feature assists in the trapping of
energy better than any other of the three shapes.

The other distinct pattern is the difference between the amplifica-
tions of the triangular and bell-c hills, even though they have equal
areas. For instance, the vertical displacement due to an incident SV
with frequency η = 1.5 is only 2.01 for the triangular hill, however, it is
3.40 for the bell-c hill. The difference can be attributed to the sharper
corners that the triangular hill has in comparison to the bell-c hill that
leads to strong Rayleigh wave patterns within the feature. We also note
that the two smooth bell-shaped hills, though very close in shape,
experience different amplifications, particularly for the horizontal
component due to P incidence (Fig. 5(c)). For example, the bell-c hill
horizontal amplification is 2.25 for η = 0.8, while it is 1.76 for the bell-e
hill. In summary, the observed differences between the amplifications
indicate the strong effect the feature's idealization has on the ampli-
fication patterns.

Fig. 6 depicts the maximum surface amplifications of different
geometries for plane waves with angle of incidence θ = 15°. Similar
conclusions can be made for this angle of incidence, even though the
amplifications are overall larger in comparison to the vertical inci-
dence. The amplification pattern of the semi-circular hill is more
rugged as opposed to the smoother amplification patterns of the other
geometries. For example, the horizontal amplification of the semi-
circular hill is 4.40 for an incident P with frequency η = 0.5, while the
amplification for the other geometries is around 2.70; the vertical
amplification varies from 3.6 for the semi-circular hill to 5.35 for the
bell-c hill, 4.7 for triangular and 6.35 for the bell-e for an incident SV
with frequency η = 1.0, i.e., with a wavelength equal to the feature's
height or, equal to half of the feature's base. There are again differences
between the two bell-shaped hills: for example, the vertical amplifica-
tion due to SV incidence is 5.3 for the bell-c shape at η = 1.0, but the
corresponding bell-e shape amplification is 6.2. For most frequencies,
the bell-c hill yields larger amplifications for SV incidence and smaller
amplifications for P incidence.

Not only the maximum surface amplification, but also the overall
amplification pattern on the surface is affected by the geometry
idealization. Figs. 7 and 8 depict the surface amplification patterns
for four geometries due to SV and P incident waves, respectively. In
these figures, the abscissa is the surface coordinate normalized with
respect to the base of the feature b, i.e., the feature is always located
between −1 and 1, and the vertical axis is the normalized surface
amplification with respect to the flat surface response u ff , whenever
u ≠ 0ff . Notice that the vertical displacement due to a vertically
propagating SV, and also the horizontal displacement due to a

Table 1
The geometry of hills for b x b(− ≤ ≤ ), Out of this range y x( ) = 0.0.

Feature's name Geometry Cross section area

Semi-elliptical y x h( ) = 1 − ( )x
b
| | 2 bhπ

2

Bell-c y x h π( ) = 0.5 (1 + cos( ))x
b
| | bh

Bell-e y x h( ) = (1 − ( ) )exp(−3( ) )x
b

x
b

| | 2 | | 2 bh0.86

Triangle y x h( ) = (1 − )x
b
| | bh

Fig. 4. Geometry of four idealized hills for a common height of h = 100 m and base
b = 100 m .
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Fig. 5. Comparison of the maximum surface amplifications for four idealized hills due to vertically propagating SV and P incident waves. (a) Horizontal amplification due to SV
incidence (b) Vertical displacement due to SV incidence (c) Horizontal displacement due to P incidence (d) Vertical amplification due to P incidence.

Fig. 6. Comparison of the maximum surface amplifications for four idealized hills due to inclined incidence at θ = 15°. (a) Horizontal amplification due to SV incidence (b) Vertical
amplification due to SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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vertically propagating P are zero, on a flat half-space. As a result, in
these cases, we plot unnormalized surface displacements.

Fig. 7 indicates that minor changes in the hill's geometry yield
remarkable shifts in the amplification pattern on the surface. For
example, the semi-circular hill shows larger amplitude oscillations on
the flat surface away from the feature, however, the other geometries
experience a large amplification mostly within the feature. The
amplification patterns of the two bell-shaped hills are quite similar,
but are different in magnitude, even though the two hills are close in
geometry. The geometry variation also causes the maximum amplifica-
tions to occur at different locations on the surface, particularly for the
obliquely incident waves. For instance, the largest vertical amplification
in the bell-e hill occurs almost at the top of the hill with a magnitude
6.3, yet for the semi-circular hill the amplification is 3.6 and the
location shifts away from the mid-point.

The role of geometry variation on the surface amplification pattern
is even more noticeable for P incidence as shown in Fig. 8. Not only the
patterns and maximum amplifications are different but also the
location of the maxima is different. For instance, the maximum
displacement for the semi-circular hill occurs closer to the hill top for
the horizontal component due to the oblique incidence (Fig. 8(c)), but
for other shapes it is closer to the foothill. The horizontal component is
more sensitive to the geometry than the vertical component. For
example, for θ = 0°p , the horizontal amplification on the surface of
the semi-circular hill at x b/ = 0.90 is just 0.5, when it is 2.0 for the
triangular hill; at the same location, the vertical amplification for both
the semi-circular and triangular hills is 1.5.

We conclude that even a small change in the idealized model of the
topographic feature has a noticeable effect in both the displacement
magnitude and pattern. Thus, the idealization of the real topography
should be done carefully so that the computational model remains as

close as possible to the physical reality.

4.2. Effects of incident wave frequency

The surface displacement on a flat-surface half-plane domain is
independent of the incoming wave frequency, as shown in Appendix A,
while in a domain with surface irregularities, the wave frequency (or
equivalently the wavelength) plays an important role on surface
displacement. The interest in this section is to explore the dependence
of the wave amplification on wave frequency through the dimensionless
frequency parameter η defined earlier in (5). The influence of the shear
wave velocity on the amplification can also be studied using the same
parameter η. For example, for a fixed height h, a reduction in η is
equivalent to an increase in the incident shear wavelength, which can
be interpreted as either a reduction in the frequency or as an increase
in the shear wave velocity.

We consider the bell-e hill (see Table 1) with a fixed height h = 100
and three different shape ratios S = 15°, 30°r and 45° in a homogeneous
domain with Poisson's ratio ν = 0.25. We plot the normalized max-
imum amplification on the surface against η for different angles of
incidence, irrespective of where the maximum displacement occurs on
the surface. The amplification location will be discussed at the end of
this section. Notice that the higher η is, the smaller the wavelength is in
comparison to the height of the hill.

Fig. 9 displays the maximum amplifications on the surface of a hill
with shape ratio S = 45°r for SV and P incident waves. The horizontal
amplifications due to SV incidence are very close for the smaller
frequencies (Fig. 9(a)), but as the frequency rises ( > 1.0) the amplifica-
tion reduces and remains between 1.5 and 2.5 for all angles. Fig. 9(b)
shows the normalized maximum vertical amplifications due to SV
incidence versus the wave frequency for various angles of incidence.

Fig. 7. Amplification pattern on the surface of four idealized hills with Poisson's ratio ν = 0.25 due to SV incidence for two different frequencies (a) x direction, η = 0.6, θ = 0°s (b) y

direction, η = 0.6, θ = 0°s (c) x direction, η = 1.0, θ = 15°s (d) y direction, η = 1.0, θ = 15°s .
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The vertically propagating SV-wave (θ = 0°s ) is excluded from this
graph because the vertical displacement on the surface of a flat domain
vanishes for this angle (see Appendix A). We note that the vertical
amplifications are much larger than the horizontal ones. For example,
the vertical amplification for η = 2.0 and θ = 5°s is 18.2, while the
corresponding horizontal amplification is only 1.6. The reason is that
the vertical displacement on the flat domain, which we use to obtain the
amplification, is much smaller than the horizontal displacement for
angles of incidence less than the critical angle (see the free-field
solution for a flat half-plane in Fig. A.29).

We remark that the overall amplification tends to reduce steadily as
the angle of incidence increases, except for θ = 35°s . For example, the
larger amplification for θ = 5°s is 19.0 at η = 1.1, while the largest
amplification for θ = 30°s is only 2.0 at η = 1.9. The reason, as shown in
Fig. A.29, is that the vertical displacement on the surface of a flat
domain increases as the angle of incidence increases to θ = 30°s , and
then drops quickly for θ = 35°s . Hence, we expect to see lower
amplifications for higher angles of incidence except for θ = 35°s , which,
by contrast, shows a larger amplification. Note again that, similar to the
horizontal amplification, amplifications for each angle of incidence are
almost constant for all frequencies, except for low frequencies (η < 1.0).

The horizontal and vertical amplifications for P incidence are
plotted in Figs. 9(c) and (d), respectively. Since the horizontal
displacement on a flat half-plane is zero for a vertically propagating
wave, we do not report it for θ = 0°p . Similar to the SV incidence case,
the horizontal amplification reduces as the angle of incidence rises, but
for each angle, particularly for θ > 25°p , the amplification remains
almost constant for frequencies above 2.0, or equivalently for wave-
lengths half the hill's height or smaller. The largest horizontal

amplification is about 12 for θ = 5°p , which is less than the amplifica-
tion due to the SV incidence: the vertical amplifications are typically
smaller than the horizontal ones. The variation of vertical amplification
with frequency is more noticeable in the P incidence case, and becomes
less prominent for higher frequencies. The angle of incidence does not
seem to be playing a significant role for frequencies η < 2, but for
higher frequencies the amplifications get smaller as the angle of
incidence grows.

For a shape ratio S = 45°r , we note that even a small feature, i.e., a
small η, causes significant amplification. The topography may amplify
incident waves by as much as 19 times, particularly waves propagating
at a vertical or close to a vertical incidence. In general, as the angle of
incidence increases, the amplification becomes smaller. The only
exception is the case of SV incidence at angles close to the critical angle.

We conducted similar experiments for a hill with a shape ratio of
S = 30°r . In general, the findings are similar to those drawn for S = 45°r ,
however, amplifications are overall smaller in comparison to the
sharper shape ratio of S = 45°r . In short: the incident waves with
smaller angles of incidence experience larger amplifications; the
vertical amplification of SV incidence is greater than the horizontal
amplification; by contrast, for P incidence, the horizontal amplifica-
tions are greater than the vertical ones.

The maximum amplification on the surface of the hill of shape ratio
S = 15°r is depicted in Fig. 10 for P- and SV-wave incidence. We note
the lower amplifications in comparison to the other shape ratios. For
example, the horizontal amplification due to SV incidence barely
reaches 2.0 and the vertical amplification is only 4.6, while the same
values for the sharpest hill are 3.4 and 18, respectively. The reason can
be attributed to the flatter geometry of this shape ratio that allows the

Fig. 8. Amplification pattern on the surface of four idealized hills with Poisson's ratio ν = 0.25 due to P incidence (a) x direction, η = 1.0, θ = 0°p (b) y direction, η = 1.0, θ = 0°p (c) x

direction, η = 1.0, θ = 15°p (d) y direction, η = 1.0, θ = 15°p .

B. Poursartip et al. Soil Dynamics and Earthquake Engineering 92 (2017) 503–527

509



waves to escape the feature quickly, as opposed to the sharper hill case,
where the energy gets trapped within the hill.

Amplifications of P-waves appear to be independent of the wave
frequency and stay almost constant for each angle of incidence except
for the low frequencies (η < 1.5). This implies that a flatter hill does not
affect incident waves for which the wavelength is several times greater
than the hill's height. Another noteworthy pattern for this shape ratio is
that the largest vertical amplification is due to the largest angle of
incidence θ = 35°s , while other incidence angles result in substantially
smaller amplifications.

In conclusion, wave amplification depends on the incident wave
frequency if the frequency is such that the wavelength is comparable to
the feature's height, otherwise, if the hill's height is several times
greater than the wavelength (large η), the amplification, while sig-
nificant, is almost frequency independent. Additionally, a sharper hill
tends to amplify waves more in comparison to a flatter hill owing to
energy trapping within the feature.

4.2.1. Location of the maximum amplification on the surface
In this section, we discuss the maximum amplification location.

Fig. 11 displays the location of maximum amplification on the surface
of the bell-e hill with shape ratio S = 45°r for various incidence angles
of SV and P incidence. The hill is located between −1 and +1. The
location of maximum amplification for SV incidence is primarily within
the hill, close but not exactly at the top of the hill, just slightly shifted
away toward the sides. This fact is in agreement with the previous
observation that wave amplification is due to the trapped energy within
the hill. The only major exception here is the SV incidence at θ = 35°s ,

where, for several frequencies, the location of the maximum amplifica-
tion is on the flat surface away from the feature. The location of
maximum vertical amplification for P incidence is within the feature.
For the horizontal amplification and at low frequencies, the maximum
occurs away from the feature, however, as the frequency increases, the
location shifts closer to the feature and finally falls within the feature
for all frequencies above 2.5. Similar patterns are observed for hills
with shape ratios other than S = 45°r .

4.3. Effects of angle of incidence

In this section, we consider the effects of the angle of incidence on
the amplification. Toward this end, the scattering of plane waves by the
bell-e hill embedded in a homogeneous medium of Poisson's ratio
ν = 0.25 is considered. We plot maximum surface amplifications,
irrespective of location, against the angle of incidence, ranging from
0° to 35° for plane SV incidence, and from 0° through 45° for plane P
incidence, for a few selected frequencies.

Figs. 12(a) and (b) display the maximum horizontal and vertical
surface amplifications, respectively, for SV wave against the variation of
angle of incidence in a bell-e hill of shape ratio S = 45°r . The horizontal
amplification increases for frequencies higher than η = 2.0, as the angle
of incidence increases to 20°, and then drops for higher angles.
However, for smaller frequencies, i.e., small feature size in comparison
to the wavelength, the amplification is almost independent of the
incidence angle. The vertical amplification, on the other hand, falls
sharply to 2.5 from 18 as the angle of incidence increases from 5° to
30°, and slightly increases to 4.0 at 35° for almost all frequencies. The

Fig. 9. Maximum amplification on the surface of the bell-e hill of shape ratio S = 45°r . (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV incidence (c)

Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.

B. Poursartip et al. Soil Dynamics and Earthquake Engineering 92 (2017) 503–527

510



very low frequencies, e.g., η = 0.1, are less affected by the incidence
angle, similar to the horizontal amplification. In summary, the vertical
displacement is more sensitive to the variation of incidence angle for
the SV-wave.

According to Fig. 12(c), the horizontal amplification continuously
reduces for all frequencies as the angle of incidence increases, except at
very low frequencies where it seems to be less affected by the angle of
incidence. For example, the amplification reduces from 12 to 1.8 as the
angle of incidence increases from 5° to 45° for frequencies higher than
1.5. The vertical amplifications in Fig. 12(d) are not changing much
with the angle of incidence, staying almost constant for all angles.

Similar conclusions are drawn for the bell-e hill of shape ratio
S = 30°r . In comparison with the steeper hill, S = 45°r , amplifications
are smaller for this feature, except for the horizontal amplification of
SV incidence, where amplifications are slightly larger for θ < 15°s . The
reason for smaller amplifications might be attributed to the wider
character of this shape ratio, which allows the waves to leave the
feature with fewer reflections from the sides, thus reducing the
likelihood of amplification.

Fig. 13 depicts the maximum surface amplification for the very wide
hill of shape ratio S = 15°r . The variation of amplification with respect
to the angle of incidence is small and the maximum amplifications for
all angles of incidence are significantly smaller than those of the steeper
hills.

We note that larger amplifications can be reached for vertically or
near-vertically propagating waves. As the angle of incidence increases,
the amplification, overall, reduces. The only exception here is the SV
incidence, where the amplification rises again just before the critical

angle.

4.4. Poisson's ratio effects

We consider the bell-e hill of shape ratio S = 45°r embedded in a
homogeneous domain with mass density ρ = 2000 kg/m3, shear mod-
ulus G = 100 MPa, and use three Poisson's ratios ν = 0.25, 0.33, and
0.40 to examine the effects of Poisson's ratio on the surface amplifica-
tion. In this section, we consider the amplification of P- and SV-waves
with only two angles of incidence, θ = 0° and 15°, and the dimension-
less frequency ranging from η = 0.1 to 5.0. Similar to the previous
sections, the surface displacements have been normalized with respect
to the flat-surface displacements, whenever the latter are non-zero.

We recall that the dimensionless frequency η is normalized with
respect to the shear wavelength (see Fig. 5), and, therefore a change in
Poisson's ratio, while the shear modulus is fixed, affects only the P-
wave velocity/wavelength.

Fig. 14 shows the maximum amplification on the surface of the bell-
e hill for vertically propagating P and SV incident waves. The results
suggest that for SV incidence, the horizontal amplification and the
vertical displacement are not significantly affected by changes in
Poisson's ratio, for all frequencies. The reason is that a vertically
propagating SV wave reflects from the flat surface as SV only, without
any P-wave generated. Thus, as explained earlier in this section, since a
change in Poisson's ratio does not alter the SV wave, the amplifications
remain the same for all frequencies. Even though, the reflection from
the feature leaves a P-wave in the domain, that does not contribute
noticeably to the amplification. By contrast, the variation of Poisson's

Fig. 10. Maximum amplification on the surface of the bell-e hill of shape ratio S = 15°r . (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV incidence

(c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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ratio causes noticeable changes for a P incident wave. The effects of
Poisson's ratio are different for horizontal amplification (Fig. 14(c))
than for vertical (Fig. 14(d)): an increase in Poisson's ratio results in a
larger amplification for the horizontal component and a smaller
amplification for the vertical component. For example, the horizontal
amplification for η = 3.0 increases from 2.0 to 2.5 as ν changes from
0.25 to 0.4, while the vertical amplification reduces from 2.2 to 1.6.

In Fig. 15, we plotted the maximum surface amplification on the
bell-e hill due to the plane P- and SV-waves, propagating at the
incidence angle of 15°. The apparent change, compared to the vertically
propagating waves, is the variation of the vertical amplification with
Poisson's ratio for SV incidence (Fig. 15)(b). For example, the
amplification for frequency η = 3.0 is 10.1 for Poisson's ratio
ν = 0.40, while the amplification for ν = 0.25 is 5.1, however, for the
same frequency the vertical amplifications are about 3.8 for all
Poisson's ratios for a vertically propagating SV-wave (Fig. 14(b)). The
reason is that an oblique SV-wave results in a P-wave reflection from
the surface that will have a different wavelength as Poisson's ratio
varies. Notice as well that the vertical component of the P wave is more
prominent compared to the horizontal component, consequently, the
variation of amplification with Poisson's ratio is more significant for the
vertical amplification for SV incidence. For the oblique P incidence, the
amplification pattern remains the same as the vertical propagation in a
way that a rise in Poisson's ratio will lead to a climb in the horizontal
amplification and a drop in the vertical ones. The Poisson's ratio
variation affects oblique waves more strongly than vertical waves. For
instance, the horizontal amplification of the oblique P wave for

frequency η = 3 increases from 4.1 to 7.7 as Poisson's ratio increases
from 0.25 to 0.4, whereas for the vertical wave the same values are 2.0
and 2.51, respectively.

We remark that the total amplification reduces as Poisson's ratio
increases for the P incidence, particularly for frequencies above η = 1.5,
because the vertical surface displacement is larger than the horizontal
one. Consequently, even though the horizontal amplification increases
sharply, the vertical amplification, which has a larger amplitude, drops,
and the result is a total surface amplification reduction. This amplifica-
tion reduction is expected because as Poisson's ratio increases, the
wavelength of the P incidence increases; hence, the feature appears
smaller to the incoming wave. The amplification exhibits minor
changes for lower frequencies as Poisson's ratio varies, because, in
general, the feature is almost invisible to low-frequency incident waves.
The trend is quite different for the SV incidence where an increase in
Poisson's ratio results in a slightly larger total amplification, because
the horizontal displacement, which is greater in magnitude, exhibits a
minor change, while the vertical component is amplified. Yet, the total
variation remains small, because the magnitude of the vertical compo-
nent is small.

The variation of Poisson's ratio induces modifications in the
amplification pattern on the surface of the domain. To show these
effects, we plot the amplification patterns for three different Poisson's
ratios in Figs. 16 and 17 due to oblique SV and P incident waves,
respectively, for a dimensionless frequency η = 2.0. The horizontal and
vertical amplifications caused by the SV incident wave for all three
Poisson's ratios are very similar, except at the hilltops. The difference is

Fig. 11. Location of the maximum amplification on the surface of the bell-e hill with shape ratio S = 45°r (a) Horizontal amplification due to SV incidence (b) Vertical amplification due

to SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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more significant for the vertical amplification. The shift in the
amplification is more prominent for the incident P-wave. The differ-
ence between the patterns is significant within the feature, yet, mostly
the same away from the feature on the flat surface.

4.5. Spatial amplification patterns

In this section, we report the effects the presence of a hill has on the
displacement pattern on the surface surrounding the topographic
feature.

Figs. 18(a) and (b) show the amplification on the surface of the bell-
e hill with shape ratio S = 45°r for a vertically propagating SV incidence
with frequencies η = 0.6 and η = 2.0, respectively. The horizontal axis is
normalized with respect to the base of the hill such that the feature is
located between −1 and +1. We only normalize the horizontal
amplification with respect to the free-field solution in a flat domain,
because the vertical component in the flat domain is zero. The vertical
displacement within the feature is quite significant, 2.5 times of the
amplitude of the incident wave for η = 0.6 and 4.0 times of the
amplitude of the incident wave for η = 2.0. However, the amplification
on the flat surface around the feature is negligible. More interestingly,
stationary points, where the displacement is zero or close to zero, exist
on the surface because of the destructive interference of plane and
surface waves. The number of stationary points increases as the
frequency increases. Overall, the strongest amplification occurs mostly
within the feature, while it oscillates around one away from the feature.

The surface amplifications for the oblique SV incidence with angle
of incidence 35° are plotted in Figs. 19(a) and (b) for frequencies
η = 0.6 and η = 1.0, respectively. The oblique incident wave enters the
domain and impinges upon the feature from the left (negative x).
Accordingly, the amplification on the flat surface on the left side of the
feature exhibits a smaller amplification, while the flat surface on the

right side experiences a large amplification. For example, for η = 0.6,
the maximum vertical amplification is only 1.6, whereas it is 2.6 on the
right side. For η = 1.0, the difference is even more prominent, 1.7
versus 3.6. Note, however, the maximum amplification occurs on the
left slope of the feature. In summary, the presence of a hill in the
propagation path of an oblique SV incident wave results in surface
amplification on the hill, and on the forward scatter region of the
feature. We conducted similar experiments with oblique P-waves and
reached analogous conclusions.

Thus far, we only focused on the amplification effects that topo-
graphy causes on the surface displacement. Indeed, in some cases, de-
amplification may also develop. For example, the surface amplification
due to the propagation of P-wave with angle θ = 45°p in a hill with
shape ratio S = 45°r shows de-amplification at some locations (see
Fig. 20). The horizontal amplification for η = 0.6 de-amplifies within
the entire feature to the extent that it reduces to 0.2 at one point. A
remarkable de-amplification of the vertical component occurs as well
on the left side of the hill. For the higher frequency, as shown in
Fig. 20(b), de-amplification is less prominent.

Fig. 21 depicts the surface amplification on the surface of a hill with
shape ratio S = 15°r due to SV incidence. A flat hill, as expected, leads
to small amplifications in comparison to a steep hill. For the vertically
propagating SV incidence shown in Fig. 21(a), the horizontal amplifi-
cation oscillates rapidly around one, while the magnitude barely
reaches to 1.25. The vertical displacement is almost negligible. For
an oblique SV incidence, as shown in Fig. 21(b), with an angle θ = 35°s ,
no amplification occurs on the flat surface on the left side of the feature
where the wave hits the domain first, however, there is a significant
amplification on the feature and also on the forward scatter region. By
contrast, the horizontal component experiences a de-amplification
within and away from the feature on the flat surface to the right.

Fig. 12. Maximum amplification on the surface of the bell-e hill of shape ratio S = 45°r . (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV incidence

(c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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5. Parametric study on valleys

In this section, we report parametric studies on the effect valleys
have on the amplification/de-amplification of seismic waves. We use a
two-dimensional linear elastic, homogeneous half-plane with Poisson's
ratio ν = 0.25, mass density ρ = 2000 kg/m3, and shear modulus
G = 100 MPa. The only shape ratio that we consider for this section is
S = 45°r , where b is the base and h is the depth of the valley, as depicted
in Fig. 3(b). The dimensionless frequency for the incident wave is again
defined as η h λ= / s, which is the ratio of the valley's depth to the shear
wavelength.

5.1. Effects of feature's geometry

We use again the same four geometry functions defined previously
in Table 1, but flip the geometry with respect to the x axis to idealize
valleys. We use a single dimensionless frequency η = 1.0, and two
angles of incidence θ = 0° and 15° for P- and SV-waves.

Fig. 22 displays the surface displacement, normalized with respect
to the free-field solution, whenever the displacement is non-zero, for
vertically propagating SV- and P-waves. The horizontal axis of this
figure runs along the surface, and is normalized with respect to the base
of the valley such that the valley is always located between −1 and +1.
The maximum horizontal amplification due to SV wave occurs on the
flat surface away from the valley; it is around 1.5 for all four
geometries, with the triangular valley showing the largest amplifica-
tion. The difference between the amplification pattern of the various
geometries is more interesting within the feature: the semi-circular
valley exhibits a small amplification, whereas all other geometries show
de-amplification. Conversely, the semi-circular valley shows the least
vertical amplification (Fig. 22(b)) within the valley, but the largest on

the flat surface, i.e., 2.8 versus 1.95. In terms of the surface pattern, all
geometries are quite similar with the exception of the semi-circular
valley, which shows a sharp drop and rise at the valley ends, for both
horizontal and vertical displacements.

The contribution of the valley idealization is more prominent for
the P incidence as shown in Figs. 22(c) and (d). The amplification
patterns for the various geometries are relatively different, with the
bell-e valley showing the largest amplifications, both horizontal and
vertical, while the smallest amplification is associated with the trian-
gular valley. Seemingly, for P- and SV-waves, the amplification within
the valley is less than the amplification on the flat surface, and at a few
locations de-amplification occurs.

Fig. 23 shows the amplification pattern on the surface of the four
geometries for oblique incident waves with θ = 15°. Similar conclusions
can be drawn here. Among them is the apparent difference between the
amplification of the semi-circular valley with the bell-shaped valleys,
mainly because of the sharp corners of this geometry.

In summary, small changes in the geometry of the valley result in
significant changes in the surface pattern and in the maximum
amplification. Overall, it is very likely that amplification on the flat
surface away from the feature is larger than the amplification within
the valley. Clearly, for higher wave frequencies, the difference between
the amplification of various geometries is bigger. Hence, when idealiz-
ing valleys, it is important that the computational geometry stays as
close to the physical domain as possible for accurate predictions of the
amplification patterns.

5.2. Effects of incident wave frequency

We study parametrically the dependence of the valleys' surface
amplification on the dimensionless frequency parameter η. Figs. 24(a)

Fig. 13. Maximum amplification on the surface of the bell-e hill of shape ratio S = 15°r . (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV incidence

(c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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Fig. 14. Maximum amplification on the surface of a bell-e hill of shape ratio S = 45°r due to vertically propagating waves. (a) Horizontal amplification due to SV incidence (b) Vertical

amplification due to SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.

Fig. 15. Maximum amplification on the surface of the bell-e hill of shape ratio S = 45°r . The angle of incidence is 15°. (a) Horizontal amplification due to SV incidence (b) Vertical

amplification due to SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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and (b) show the maximum horizontal and vertical amplification,
respectively, on the surface of the bell-e valley of shape ratio S = 45°r

against the frequency for SV incidence. We note that the amplification
is almost constant for frequencies above η = 1.5 for all angles of
incidence, which implies that the amplification depends on the
frequency if the incident shear wavelength is almost the same size as
the valley's depth, otherwise, if the wavelength is more than 1.5 times
the depth of the valley, the presence of the valley amplifies the wave at
each angle of incidence with the same magnitude. The only exception is
the vertical amplification of SV incidence at angle θ = 5°s , where the
amplification reduces to 7.5 at η = 2.90 from its peak value 11.6, and
increases again to 9.6 at η = 5.0. Overall, analogous to the hill
topography, the vertical amplifications are greater than the horizontal
ones, though they are, in general, smaller than the amplifications
caused by hills.

P incidence results in a larger horizontal amplification in compar-
ison to the vertical amplification, as depicted in Figs. 24(c) and (d).
Overall, for frequencies above η = 0.5, the horizontal and vertical
amplifications reduce slightly as the frequency increases. Notice that
the vertical amplifications for all angles are quite the same, however,
the horizontal amplifications are well separated in a way that the higher
angles yield smaller amplifications. In conclusion, surface amplification
caused by a valley is less sensitive to the frequency in comparison to the
hill topography.

5.2.1. Location of the maximum amplification on the surface
Fig. 25 depicts the location of the maximum displacement for P-

and SV- waves on the surface of a half-plane, including the valley. The

maximum horizontal amplification due to SV incidence is outside of the
valley, mostly for lower angles of incidence and frequencies, and
gradually moves toward the valley as the frequency increases. This
trend is, in general, the same for the vertical amplification. For the P
incidence, the location of the maximum horizontal and vertical
amplifications is outside of the valley. As the frequency increases, the
location moves toward the valley, but still remains outside for the
majority of the cases. We note that in most cases, the maximum
amplification occurs away from the topographic feature, which implies
that the presence of a valley results in an amplification on the flat
surface away from the feature and that the valley itself may even
experience a de-amplification.

5.3. Effects of angle of incidence

Fig. 26 illustrates the effects of incidence angle on the surface
amplification of the bell-e valley of shape ratio S = 45°r for a few
selected frequencies. The horizontal amplification due to SV incidence
and the vertical amplification due to P incidence seem to be indepen-
dent of the angle of incidence, whereas the other components are
substantially affected by this parameter. For example, the vertical
amplification of SV incidence reduces drastically as the angle of
incidence increases up to θ = 30°s , and increases only slightly for
higher angles. The reason, as we discussed earlier, is that the vertical
displacement of SV incidence on the surface of a flat homogeneous
half-plane, used to compute the amplification, is minimum at θ = 30°s

and rises to the maximum amount at the critical angle (see Fig. A.29).
The horizontal amplification of P wave is steadily decreasing as the

Fig. 16. Amplification pattern on the surface of the bell-e hill of shape ratio S = 45°r results from an inclined SV incident wave of angle θ = 15°s for different Poisson's ratios. The

dimensionless frequency is η = 2.0. (a) Horizontal amplification (b) Vertical amplification.

Fig. 17. Amplification pattern on the surface of the bell-e hill of shape ratio S = 45°r results from an inclined P incident wave of angle θ = 15°p for different Poisson's ratios. The

dimensionless frequency is η = 2.0. (a) Horizontal amplification (b) Vertical amplification.
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angle of incidence increases to the point that the amplifications for all
frequencies at θ = 45°p are almost identical. We add that the vertical
displacement due to the SV incidence and the horizontal displacement
due to the P incidence are fairly small in comparison to the other
components; hence, even though the amplification of these compo-
nents seems to be prominent, the total amplification is still not that big.
We also note that the dependence of the amplification on the angle of
incidence reduces as the frequency of the incident wave becomes
smaller.

5.4. Spatial amplification patterns

The presence of a feature induces substantial changes on the
amplification pattern not only on the surface of the feature but also

on the flat surface away from it. In this section, we study the effect the
presence of the valley has on the surface patterns for a few cases.

Fig. 27(a) shows the amplification pattern on the surface of a bell-e
valley of shape ratio S = 45°r due to a vertically propagating SV
incidence with η = 1.0. The horizontal component is de-amplified on
the entire surface of the valley, but it is amplified on the flat surface
away from the feature. This pattern is the opposite of the hill's pattern,
where the maximum amplification normally occurs on the surface of
the hill. The reason is that the valley de-focuses the energy by
diffracting waves away from the feature. The vertical displacement in
this case is due to the reflection of waves from the valley, since a
vertical SV incidence does not develop any vertical displacement on a
flat half-plane. The amplitude of the vertical component is quite large
in comparison to the amplitude of the incoming SV incidence and

Fig. 18. Amplification pattern on the surface of the bell-e hill of shape ratio S = 45°r for a vertically propagating SV-wave. (a) (b) .

Fig. 19. Amplification pattern on the surface of the bell-e hill of shape ratio S = 45°r for the oblique SV-wave with angle θ = 35°s . (a) η = 0.6 (b) η = 1.0.

Fig. 20. Amplification pattern on the surface of the bell-e hill of shape ratio S = 45°r for the oblique P-wave with angle θ = 45°p . (a) (b) .
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reaches its largest value next to the edge of the valley on the flat
surface.

Fig. 27(b) depicts surface amplification for P incoming waves with
η = 2.0. The horizontal amplification, which is generated by the
reflection of waves from the valley, is maximum outside the feature
and has the smallest values within the valley. The vertical amplification
on the surface of the valley is negligible, while away from the valley it
increases remarkably. Since the frequency of the incident wave is twice
the frequency of the previous case, we expect to see more ripples in the
solution.

Fig. 28 displays the amplification pattern for obliquely incoming
plane P and SV waves with θ = 15°. The amplification is larger on the
flat surface, and de-amplification occurs within the valley, particularly

in the x direction. Moreover, significant amplification occurs on both
sides of the valley, which implies that the presence of a canyon
drastically changes the displacement everywhere on the surface of the
half-plane.

6. Conclusions

This paper provided a synopsis on the problem of amplification of
harmonic plane P- and SV-waves by idealized topographic feature in a
semi-infinite linear elastic, homogeneous two-dimensional half-plane.

Overall, the feature's geometry and its relation to the characteristics
of the propagating waves affect decisively the severity of the motion
amplification in terms of magnitude and location.

Fig. 21. Amplification pattern on the surface of the bell-e hill of shape ratio S = 15°r due to the plane SV wave (a) θ = 0°s , η = 2.0 (b) θ = 35°s and η = 1.0.

Fig. 22. Amplification pattern on the surface of four idealized valleys due to vertically propagating waves. (a) Horizontal amplification due to SV incidence (b) Vertical amplification due
to SV incidence. (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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For events characterized by frequencies resulting in wavelengths
longer than a characteristic dimension of the topographic feature, the
feature appears nearly transparent to the incoming wave, and the
resulting surface motion pattern is almost unaffected by the presence of
the feature. But, in all other cases, a complex motion pattern emerges,
resulting in significant amplification.

As expected, the strongest amplification is observed within the
topographic feature, owing to the constructive interference of both
body and surface waves inside and on the surface of the feature. But,
the occurrence of strong amplification away from the feature cannot be
excluded, as special cases reported herein demonstrate.

An interesting observation emerging from the present study refers
to the importance of maintaining as faithful a geometric representation
of the physical terrain as is possible, especially in light of the growing
reliance on digital elevation data: two fairly close geometries may result
in significantly different amplification patterns, as the numerical
studies demonstrated.

We also reported on amplification patterns related to idealized
valleys: overall, the amplification is weaker when dealing with terrain
depressions than with proud topographic features.

Specific observations include:

• The approximation of a topographic feature's geometry affects the
amplification in the SV incidence case, regardless of the angle and
frequency of the incident wave. By contrast, for P incidence, the
amplification at low frequencies is less affected by geometric
variations.

• The surface pattern on a hill is significantly affected by the feature's
geometry. There are noticeable differences in the amplification
pattern between the semi-circular feature, and any of the other
three considered geometries. Differences can be observed even

between the triangular feature and any of the two bell-shaped
circumscribing geometries, both within the feature, as well as on
the flat surface exterior to the feature. Differences in the overall
amplification pattern between the two bell-shaped geometries are
less pronounced, but become significant in the region within the
feature, indicating again the importance of geometric representa-
tion.

• In general, for low frequencies, or equivalently, for incident wave-
lengths that are several times the size of the feature's height, the
effect of the feature's geometry tends to diminish, leading to smaller
amplification values.

• The angle of incidence tends to impact more the amplification for
higher frequencies. For very low frequencies (η < 0.5), which are
tantamount to a small feature in comparison to the incident
wavelength, the angle of incidence does not change the amplification
significantly.

• The interplay between the angle of incidence and the feature's
geometry suggests that when waves become trapped within the
feature in such manner that a constructive interface pattern is
developed, the amplification can become large. By contrast, when
the feature is wide enough, reflected waves from the sides of the hill
leave the feature without being trapped, resulting in smaller
amplification. We observed amplifications larger than 10 for a shape
ratio of S = 45°r (steeper), when, by contrast for a shape ratio of
S = 15°r (flatter) amplifications are barely larger than 4.

• The study of the surface amplification patterns in hills indicates that
de-amplification is possible to occur within or away from the feature.
De-amplification stems from the destructive interference of incom-
ing, reflected, and Rayleigh waves generated at the foothills.

• In almost all cases, the maximum amplification occurs on the
surface of the hill. Exceptions are associated with very small

Fig. 23. Amplification pattern on the surface of four idealized valleys. The angle of incidence is θ = 15°. (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to
SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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frequencies, where the incident shear wavelength is several times
the feature's height.

• Even though, in general, the strongest motion will arise within the
feature, the amplification pattern away from the feature, i.e., on the
flat surface to the sides of the feature, may be significantly affected.
Compared to a flat-only model, the presence of a feature may
amplify or de-amplify the motion on the flat part of the surface,
where the amplification may reach 2.5–3. Similarly, de-amplifica-
tion may also occur on parts of the flat surroundings, even leading to
near-silent zones.

• Surface amplifications due to the presence of a valley are overall
smaller than in the case of hill topography. The main reason is that a
valley scatters the incoming waves in a way that energy disperses
away from the feature, as opposed to the hill, where the energy
focuses within the feature.

• The influence of wave frequency is less prominent for valleys than
for hills. For SV incidence, the amplification remains almost
constant for frequencies higher than η = 1.5. The P-wave amplifica-
tion shows a minor rise up to roughly η = 0.5, when the wavelength
of the incoming wave is twice the depth of the valley, and reduces as
the frequency increases.

• For valleys the angle of incidence hardly affects the strong displace-
ment components on the surface (horizontal displacement for SV
wave, and vertical displacement for P-wave). By contrast, the weak
displacement components are highly affected by the angle of
incidence. The amplification decreases sharply as the angle of
incidence increases for P incidence and remains constant for angles
above θ = 30°p . The SV incidence shows an increase once the angle
comes closer to the critical angle.

• In most cases, the location of the maximum amplification is on the
flat surface to the sides of the valley.
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Appendix A. Exact solution for a flat half-plane

The exact solution of wave propagation in a half-plane can be obtained by using the Helmholtz decomposition [21]. Accordingly, the
displacement field due to SV-wave propagation in a half-plane can be written as:

Fig. 24. Maximum amplification on the surface of the bell-e valley. (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV incidence (c) Horizontal
amplification due to P incidence (d) Vertical amplification due to P incidence.
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where usx and usy are the displacements in the x and y directions, respectively; ks and kp are shear and compressional wavenumbers; θs is the angle
of SV incidence, which is also equal to the angle of reflected SV-wave; θp is the angle of reflected P-wave derived according to Snell's law.U A k=s
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where k c c= /p s.
Similarly, the displacement field due to P-wave propagation in a homogeneous flat half-plane can be expressed as:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u x y
u x y U

θ
θ

e U
θ
θ

e U
θ
θ

e
( , )
( , ) =

+ sin
− cos + + cos

− sin +
+ sin
+ cos .x

p

y
p p

i p

p

ik x θ y θ c t
s
r s

s

ik x θ y θ c t
p
r p

p

ik x θ y θ c t( sin − cos − ) ( sin + cos − ) ( sin + cos − )p p p p s s s s p p p p

(A.3)
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The amplitude of the displacement components on the surface of a homogeneous flat half-plane for the SV wave incidence is computed from

Fig. 25. Location of the maximum amplification on the surface of the bell-e valley with shape ratio S = 45°r (a) Horizontal amplification due to SV incidence (b) Vertical amplification

due to SV incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.
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(A.1) as:
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and for P-wave incidence from (A.3) as:
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(A.5) and (A.6) suggest the dependence of the surface motion on Poisson's ratio, and the angle of incidence, while it is independent of the incident
wave frequency.

Fig. 26. Maximum amplification on the surface of the bell-e valley with shape ratio S = 45°r (a) Horizontal amplification due to SV incidence (b) Vertical amplification due to SV

incidence (c) Horizontal amplification due to P incidence (d) Vertical amplification due to P incidence.

Fig. 27. Amplification on the surface of the bell-e valley due to vertically propagating waves. (a) SV incidence, η = 1.0 (b) P incidence, η = 2.0.
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Fig. A.29 depicts the surface displacement according to (A.5) and (A.6) for three Poisson's ratios that we use in this study.

Appendix B. Verification: frequency response of a semi-circular valley

Analytical solutions of wave propagation in a non-flat half-plane are scarce in the literature and are limited to only a few cases, mostly for SH-
waves. Thus, to assess the accuracy of our developed code, we compare our results against those obtained from other numerical approaches. To this
end, we used the indirect boundary element method (IBEM)1 to analyze a two-dimensional semi-circular valley embedded in a homogeneous half-
plane subjected to plane P- and SV-waves. This particular geometry was first used by Trifunac [55] in 1973, to study topographic effects due to SH-
wave propagation, and later in 1982 by Wong [56] for plane P- and SV-waves.

The configuration of the prototype semi-circular valley is shown in Fig. B.30. The homogeneous half-plane is truncated to a 500 m × 300 m
computational domain containing a cylindrical valley of radius R = 50 m0 , surrounded on its sides and bottom by a 25 m-thick PML layer. The

Fig. 28. Amplification on the surface of the bell-e valley due to the incident wave with θ = 15° and η = 1.0 (a) SV incidence (b) P incidence.

Fig. A.29. Displacement on the surface of a flat homogeneous half-plane due to the reflection of: (a) P incident wave; and (b) SV incident wave, for three different Poisson's ratios
against the angle of incidence. The amplitude of the incident wave is one.

Fig. B.30. Computational configuration of the semi-circular canyon.

1 IBEM results were kindly provided by F.J. Sánchez-Sesma and N.C. Zamorate; see
acknowledgments.
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Fig. B.31. Displacement pattern on the surface of a semi-circular canyon caused by a vertically propagating P incidence for four frequencies.

Fig. B.32. Displacement pattern on the surface of a semi-circular valley caused by a θ = 60°p P incidence for four frequencies.
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Fig. B.33. Displacement pattern on the surface of a semi-circular canyon caused by a vertically propagating SV incidence for four frequencies.

Fig. B.34. Displacement pattern on the surface of a semi-circular valley caused by a θ = 30°p P incidence for four frequencies.

B. Poursartip et al. Soil Dynamics and Earthquake Engineering 92 (2017) 503–527

525



domain of interest and PML zone are discretized by quadratic quadrilateral spectral elements (9-node) of size 2.5 m. The discretization resulted in a
ten-element-thick PML with a quadratic attenuation profile m = 2. The density of the medium is ρ = 2000 kg/m3 with shear modulus G = 100 MPa,
and Poisson's ratio ν = 0.33. There is no material damping.

Fig. B.31 shows the surface displacement pattern caused by a vertically propagating P-wave. The IBEM results are well-matched with our
Spectral-Element-Method (SEM) results in both directions. Minor differences exist mostly at the sharp corners of the edge of the valley. The
horizontal displacement is mostly caused by the Rayleigh waves generated at the corners of the valley and attains a maximum at the far end of the
domain. The maximum vertical displacement occurs close to the edge of the valley, where the Rayleigh waves are combined with the reflected P-
wave. The surface displacement exhibits a relatively high amplification on the surface of the valley and also away from it.

The scattering of P incidence with angle θ = 60°p by the semi-circular valley is shown in Fig. B.32. The IBEM results are in a good agreement with
our results with minor differences at the edges of the feature.

The surface pattern for a vertically propagating SV incidence is plotted in Fig. B.33. Other than minor differences between SEM and IBEM
results at the valley edges, the displacements are in agreement.

The last angle of incidence that we explore for the study of SV propagation is the critical angle θ = 30°s
cr . The displacement pattern from the two

different methods are plotted in Fig. B.34 and also show good agreement.
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