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A B S T R A C T

Assessing the built environment’s seismic risk relies increasingly on numerical simulations of the response of
infrastructure components to seismic motion. Since forecasting earthquake-induced motion is difficult, if not
impossible, subjecting the infrastructure to seismic motion from past earthquakes remains the most potent
way to assess the infrastructure’s risk and resilience. However, such simulations require a rupture-to-rafters
modeling approach that entails complex inversion procedures and ultra-scale computations.

In this work, we discuss a systematic methodology that attempts to reconstruct the earthquake-induced
wavefield only within the near-surface deposits, using ground surface recordings of seismic motion. The
methodology improves on alternative approaches by bypassing the need for either seismic source inversion or
joint seismic-source-and-material-model inversion, relying instead on a priori knowledge of the soil properties
for only the near-surface deposits, thus realizing significant computational savings.

The methodology takes advantage of a state-of-the-art, near-surface, seismic wave motion simulation
framework rooted in the Domain Reduction Method (DRM), which relies on a reduced computational domain
containing the near-surface deposits only, including possible topographic features and even accounting for
materially-nonlinear response. The reduced domain is surrounded by an artificial boundary – the DRM
boundary –, onto which the seismic input is typically prescribed in forward seismic motion simulations. A
narrow wave-absorbing buffer exterior to the DRM boundary completes the computational domain. It is the
aim of this work to reconstruct the DRM seismic input from ground-surface records using an inversion approach
rooted in partial differential equation (PDE)-constrained optimization, without having to appeal to fault rupture
inversion or joint inversions. To this end, we use the DRM, enhanced with a Complex-Frequency-Shifted (CFS)
Perfectly-Matched-Layer (PML), to address the forward wave simulation, and an adjoint approach to address
the inversion of the DRM seismic input.

Our numerical experiments demonstrate the versatility of the methodology in reconstructing the near-
surface seismic motion from sparse surface motion records, almost irrespective of the azimuthal coherency of
the incoming motion.
1. Introduction

We are concerned with the fidelity of near-surface numerical simula-
tions of seismic motion. The interest stems from the, ever-present, need
to assess seismic risk to infrastructure systems. Since the current state
of knowledge prevents accurate forecasting of an earthquake to any de-
gree of usefulness, the assessment of seismic risk is, perforce, conducted
through studies of the effects past seismic events could have on the
infrastructure. This rationale has long been acknowledged in seismic
codes, where seismic response analyses are required to be performed for
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infrastructure systems using, for example, ground acceleration records
of past earthquakes.

While the last few decades have been marked by considerable
advances in both computational power and in our ability to ever more
faithfully simulate earthquake-induced ground motion, the reliance
on one-dimensional models for, for example, site analyses [1,2], and
seismic motion deconvolution [3–5], persists. Central to our ability
to assess seismic risk within the described rationale, is not only the
ability to depart from one-dimensional models and graduate to two-
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and three-dimensional models, but also the ability to accurately de-
scribe both the subsurface properties and the seismic source. How
could the latter, in particular, be accomplished? The most reliable
information we have from past events are the ground surface motion
records: ideally, the recorded surface motion can serve to infer both
the subsurface properties and the source characteristics, usually in the
context of joint inversion. Joint inversion entails the computationally
daunting task of estimating the properties of the subsurface together
with the fault rupture characteristics, following the adoption of suitable
material models for the subsurface, a model for the fault rupture, and
discretization of the computational domain from the depths of the earth
where the faults are located, all the way to the ground surface. Even
under the assumption of a linear material model, there can easily result
tens to hundreds of millions of material property unknowns that need
to be inverted for. Consider, for example, the forward simulation of
a 1994 Northridge earthquake aftershock in the San Fernando Valley
in California that was attempted some 30 years ago [6]: even after
relaxing mesh quality considerations, a volume of 54 km long by 33
km wide by 15 km deep (to capture the fault), would result in about
40 million material property unknowns (two wave velocities and one
mass density per material point in a mesh of 13 million nodes). The task
of inverting for all these parameters remains an open challenge despite
many attempts to date, including successful inversions made possible
only under constrained conditions [7,8].

Given the computational complexity of joint inversion, it stands to
reason to question the practicality of such inversions. An easy answer is
that knowledge of the subsurface properties and of the source charac-
teristics would allow us to perform true rupture-to-rafters seismic event
simulations by adding infrastructure components to the ground surface
in a fully-coupled soil–structure model that would now allow modeling
the infrastructure’s response to incoming (past) seismic motion, while
including the seismic source in the model. This, too, is a computation-
ally costly procedure, often demanding high-performance computing
resources [9]. To reduce the computational demands, it is often the case
that three-dimensional seismic motion simulations are performed on a
reduced computational domain using the Domain Reduction Method
(DRM) [10,11] that affords the inclusion of topographic features and/or
regions exhibiting nonlinear behavior within a limited near-surface
computational domain (Fig. 1). Typically, the DRM partitions the com-
putational domain into two domains, one interior to the DRM boundary
and one exterior, where the latter is usually terminated with an ab-
sorbing boundary condition or a wave-absorbing buffer, tasked with
mimicking the propagation of the outgoing waves in the unbounded
physical domain that is excluded from the computations.

A key requirement of the DRM, and central to the near-surface
seismic motion computations, is the need to prescribe the incoming
seismic motion on the DRM boundary: to date, the seismic input on the
DRM has been, by and large, prescribed in the form of idealized motion
(e.g., a plane wave), typically unrelated to the actual input/motion
induced by a real earthquake. It is the aim of this article to bridge this
gap, by providing a systematic approach that allows the determination
of the seismic input on the DRM boundary based on ground surface
records. We, thus, argue that, for the purpose of near-surface seismic
motion simulations, it is not necessary to consider a rupture-to-rafters
approach, but instead to use the surface records to invert for the
seismic input on the DRM boundary, and then to prescribe on the DRM
boundary the inverted-for seismic input in order to fully reconstruct the
total seismic wavefield within the near-surface deposits. In this manner,
one always stays within the near-surface (computational) confines,
without ever venturing into the (computationally) treacherous path of
joint inversion that engages huge computational domains and entails
significant cost.

To this end, we build upon recent work on a related problem
that pertained to the scalar SH case [12], and extend it here to the
all-important elastic/seismic wave case. Specifically, we start by first
2

deploying a state-of-the-art framework for the forward problem, i.e, s
for the numerical simulation of the propagation of seismic (elastic)
waves in the near-surface and in the time-domain [13–15]. The forward
simulation engine consists of: (𝑖) the DRM partitioning scheme [10] that
allows the computation of the total and scattered wavefields within the
domains interior and exterior to the DRM boundary, respectively; and
(𝑖𝑖) a Complex-Frequency-Shifted-Perfectly-Matched-Layer (CFS-PML)
wave-absorbing buffer [16,17] that surrounds the domain exterior
to the DRM boundary and results in the effective absorption of the
outgoing scattered motion.

Our goal, then, is to use the surface motion records to invert for
the seismic input, which is expressed in terms of forces applied on
the DRM boundary. To this end, we follow classic lines of partial
differential equation (PDE)-constrained optimization, whereby we seek
to minimize the misfit between the recorded motion at the surface
sensors and the motion at the same sensor locations that would result
from trial seismic forces prescribed on the DRM boundary, constrained
only by the governing PDEs. Among a few alternatives for imposing
the latter constraint (e.g., strong or weak form of the continuous
PDEs), herein we adopt a discretize-then-optimize (DTO) approach [18,
19] according to which we side-impose to the misfit functional the
space–time-discrete form of the governing PDEs (discretized in space
and time). We use an adjoint method to recover the sought-after
seismic forces on the DRM boundary by satisfying the Karush–Kuhn–
Tucker conditions. As discussed in Section 4.3, the inverted-for DRM
forces suffer from solution multiplicity, but the resulting total wave-
field in the domain interior DRM appears unique, and exceedingly
well-reconstructed close to the free surface: this is likely due to the im-
plications of the Cauchy–Kovalevskaya theorem [20], as also discussed
in Section 4.3.

We note that, in addition to the aforementioned computationally-
expensive joint inversion approaches, there have also been a few other
attempts reported in the literature for the characterization of the incom-
ing seismic motion in the near surface deposits using measured ground
motion data: though less computationally expensive, they are also less
effective in reconstructing the near-surface seismic motion. Among
them, Ghahari et al. [21] and Ghahari et al. [22] studied methods
to simultaneously identify the transfer function of a soil column and
the incident wave, using recorded signals at two or more stations,
while also accounting for uncertainty. Li et al. [23] argued that body
waves should be inverted for realistic and comprehensive assessment of
seismic effects on structures, but their wavefield-inversion methodology
inverted only the incident angles of idealized incoming plane waves.
We note that, in the aforementioned studies, the characterized seismic
inputs have been limited to propagating plane waves impinging on the
free surface at a single angle of incidence. In contrast, herein, we are
interested in reconstructing the seismic wavefield while allowing for
azimuthally incoherent incident waves.

Herein, the theory and numerical experiments are described for
two spatial dimensions: the extension to three dimensions requires
that a 3D forward DRM wave simulation engine be used (see, for
example, Poursartip et al. [13], endowed with 3D PMLs (Fathi et al.
[24])); however, the rest of the technical ingredients remain the same,
and, even though the computational cost would increase, we expect
the seismic motion reconstruction to be feasible and to exhibit similar
performance as the one we report in Section 5. Overall, the quality of
the near-surface seismic motion reconstruction depends chiefly on the
density of the ground surface sensor network.

2. The seismic input and the DRM

To describe the inversion process that leads to the determina-
tion of the seismic wavefield within the near-surface deposits using
the ground-surface records, it is necessary to introduce the forward
modeling framework, which rests on the Domain Reduction Method
(DRM) [10]. The DRM is simply the means by which any incoming

eismic motion can be effectively replaced by a set of forces that act on
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Fig. 1. Problem configuration: the originally unbounded domain is replaced by a reduced, finite, computational domain 𝛺𝑖∪𝛺𝑒∪𝛺CFS−PML. Domain 𝛺𝑖 encompasses the near-surface
heterogeneous deposits of interest. The domain partitions are realized through the introduction of the artificial boundaries 𝛤DRM and 𝛤CFS−PML. 𝑁s sensors are deployed on the
ground surface.
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an artificial boundary – henceforth referred to as the DRM boundary –
enveloping the near-surface domain of interest. To this end, consider
the computational domain depicted in Fig. 1(a); the originally un-
bounded domain has been rendered finite through the introduction of a
wave-absorbing buffer 𝛺CFS−PML, and the resulting finite computational
domain has been partitioned into an interior domain 𝛺𝑖 and an exterior
domain 𝛺𝑒 through the introduction of 𝛤DRM – the DRM boundary. We
assume that 𝛺𝑖∪𝛺𝑒 are occupied by linear, heterogeneous, elastic solids
– a typical assumption for soils not exposed to strong ground motion.
We note though that, in general, and owing to the versatility of the
DRM, 𝛺𝑖 could also be occupied by a nonlinear solid; herein, we treat
the linear case only.

Following classic DRM lines and a standard Galerkin approach, the
motion within 𝛺𝑖 and 𝛺𝑒 can be described by the following semi-
discrete form1,2:

⎡
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⎣
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(1)

In (1), subscripts 𝑖, 𝑑, and 𝑒 refer to matrix and vector partitions
pertaining to the interior domain 𝛺𝑖, the DRM boundary 𝛤DRM, and the
exterior domain 𝛺𝑒, respectively. For example, 𝐊𝛺𝑖

𝑖𝑖 is the stiffness ma-
trix assembled from elements whose nodes lie entirely in the interior of
𝛺𝑖, whereas 𝐊𝛺𝑖

𝑖𝑑 is the stiffness matrix assembled from finite elements
that lie in 𝛺𝑖 and have at least one node on the DRM boundary 𝛤DRM.
Similarly, 𝐊𝛺𝑖

𝑑𝑑 refers to stiffness matrix elements engaging nodes on
𝛤DRM only, but stemming from finite elements that lie in 𝛺𝑖, whereas
𝐊𝛺𝑒

𝑑𝑑 refers to similar matrix elements engaging nodes on 𝛤DRM, yet
stemming from finite elements that lie within 𝛺𝑒.

Moreover, we use lowercase letters to refer to the various contin-
uous wavefields (e.g., 𝐮𝑖), and uppercase letters (e.g., 𝐔𝑖) to refer to
their discrete counterparts. Thus, 𝐔𝑖 and 𝐔𝑑 denote the vectors of nodal
values of the total (displacement) wavefields 𝐮𝑖 and 𝐮𝑑 in 𝛺𝑖 and on

1 For brevity, the semi-discrete form (1) is written assuming lossless soil
eposits; damping matrices exhibiting a similar structure to the mass and
tiffness matrices can be added to account for lossy soils under viscous
amping assumptions.

2 To avoid notational congestion and maintain the focus on the DRM, the
ffect of the CFS-PML buffer has not been included in (1); it is restored later
3

n Eq. (2).
𝛤DRM, respectively, whereas 𝐖𝑒 denotes the vector of nodal values of
he scattered (displacement) wavefield 𝐰𝑒 within the exterior domain
𝑒. In the right-hand-side of (1), according to DRM theory, the fields
ith zero (0) superscript refer to the displacement field that would have

esulted had the interior domain 𝛺𝑖, which may include topographic
eatures, heterogeneities, or other nonlinearities, been replaced by a
omain where these particular features had been removed/simplified:
n the parlance of the DRM, the zero-superscripted fields are referred
o as the free-field motion.

Of critical importance to both the forward modeling and the ensuing
nversion is understanding the role that the right-hand-side of (1) plays
n the modeling: owing to the particular structure of the matrix–vector
roducts involved, the resulting vectors 𝐏𝛤DRM and 𝐏𝛤 ′

DRM
refer to (effec-

ive) forces that are applied only on 𝛤DRM and on 𝛤 ′
DRM, respectively.

DRM is, as previously defined, the interface separating the interior
omain 𝛺𝑖 from the exterior domain 𝛺𝑒, whereas 𝛤 ′

DRM encompasses
all the nodes in the first-most layer of elements in 𝛺𝑒, adjacent to 𝛤DRM,
ut exclusive of the nodes on 𝛤DRM (Fig. 2). Typically, the DRM layer is
nly one-element wide, sandwiched between 𝛤DRM and 𝛤𝑒 (Fig. 1): if,
or example, the DRM layer consists of bilinear quadrilaterals (Fig. 2a),
hen 𝛤 ′

DRM ≡ 𝛤𝑒; if, in contrast, the DRM layer consists of biquadratic
lements, then 𝛤 ′

DRM ≡ 𝛤𝑒 ∪ 𝛤𝑚 (Fig. 2b).
The effective forces 𝐏𝛤DRM and 𝐏𝛤 ′

DRM
capture the incoming seismic

otion to its fullest extent, and account for all of its characteristics,
ncluding directionality, frequency content, and propagation path. To
se the effective forces in a forward modeling setting, it is necessary to
btain first the free-field motion 𝐮0: this requires a priori knowledge of
he seismic source characteristics and of the earth’s (linear) properties
rom the source (rupture fault) to the ground surface. But, in an
nverse setting, it is precisely 𝐏𝛤DRM and 𝐏𝛤 ′

DRM
that we are interested

n inverting, informed only by the ground-surface records, i.e., by 𝐮𝑖
n the ground surface, without any need for a priori information on the
ource or the earth’s properties at depth.3 Thus, for inversion purposes,
he free field motion 𝐮0 needs never be computed.

It is important to note that the wavefields in (1) exhibit, by design, a
iscontinuity on the DRM boundary: 𝐮𝑖 and 𝐮𝑑 are the total wavefields

nterior to 𝛤DRM and on 𝛤DRM, respectively, whereas 𝐰𝑒 is the scattered
avefield, exterior to 𝛤DRM. In fact, it is the effective forces 𝐏𝛤DRM and
𝛤 ′
DRM

that are responsible for imparting the discontinuity between the
wo wavefields (𝐮𝑑 and 𝐰𝑒) across 𝛤DRM, and are themselves discon-
inuous (there is a jump between 𝐏𝛤DRM and 𝐏𝛤 ′

DRM
): this observation

s of importance in assessing the quality of the inversion, as will be
iscussed.

3 The properties of the near-surface deposits in 𝛺 must be a priori known.
𝑖
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Fig. 2. Typical topology of a DRM layer and associated effective forces; (a) the DRM layer consists of bilinear quadrilaterals; (b) the DRM layer consists of biquadratic quadrilaterals.
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3. The forward problem

Now that the DRM’s technical details have been described, we
turn to the complete description of the forward simulator, which
encompasses not only the DRM, but also addresses the truncation of the
unbounded domain through the introduction of a recently developed
Complex-Frequency-Shifted Perfectly-Matched-Layer (CFS-PML) [16,
17]. The particular form of the CFS-PML we adopted allows us to retain
the second-order character of the semi-discrete equations of motion, at
the moderate expense of auxiliary CFS-PML variables introduced within
the absorptive PML buffer. Then, the resulting semi-discrete form for
the forward simulation engine becomes:

⎡

⎢

⎢

⎢

⎣

𝐌𝛺𝑖
𝑖𝑖 𝐌𝛺𝑖
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⎥

⎥

⎥

⎦
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⎣
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⎤

⎥
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⎦
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⎡
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𝑑𝑒

𝟎 𝐊𝛺𝑒
𝑒𝑑 𝐊𝛺𝑒

𝑒𝑒 +𝐊PML

⎤

⎥
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⎦
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⎢

⎢

⎣
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⎥
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⎦
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⎤

⎥
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⎦

= 𝐅DRM,

(2)

where 𝐌PML, 𝐂PML, and 𝐊PML, are mass, damping, and stiffness ma-
trices associated with the CFS-PML (detailed expressions can be found
in Appendix A), and the vector 𝐕(𝑡) is augmented to now consist of
the vector of nodal scattered field displacements 𝐖𝑒(𝑡) within 𝛺𝑒 ∪
𝛺CFS−PML, and of the vector of auxiliary PML variables Θ(𝑡), Φ(𝑡), and
𝐇(𝑡) (Appendix A). We note that the various damping submatrices in (2)
account for lossy soils, following the adoption of suitable soil models
that incorporate intrinsic attenuation; various candidate choices for
soils that would yield velocity-proportional damping terms (e.g., Gener-
alized Maxwell Body) can be found in [25]. Here, owing to the lossless
4

soils considered in this study, the various damping submatrices in (2) d
vanish identically, except for 𝐂PML, which is always nonzero due to the
presence of the PML buffer. In compact form, Eq. (2) can be rewritten
as the standard second-order set of ODEs:

𝐌 𝐔̈(𝑡) + 𝐂 𝐔̇(𝑡) +𝐊 𝐔(𝑡) = 𝐅DRM(𝑡), (3)

where, now, 𝐔(𝑡) encompasses all nodal unknowns, i.e., the total dis-
placements 𝐔𝑖(𝑡) and 𝐔𝑑 (𝑡), the scattered displacements 𝐖𝑒(𝑡), and the
auxiliary nodal vectors Θ(𝑡), Φ(𝑡), and 𝐇(𝑡):

(𝑡) =
[

𝐔𝑇
𝑖 (𝑡) 𝐔𝑇

𝑑 (𝑡) 𝐕𝑇 (𝑡)
]𝑇

=
[

𝐔𝑇
𝑖 (𝑡) 𝐔𝑇

𝑑 (𝑡) 𝐖𝑇
𝑒 (𝑡) Θ𝑇 (𝑡) Φ𝑇 (𝑡) 𝐇𝑇 (𝑡)

]𝑇 , (4)

nd

DRM(𝑡) = [𝟎𝑇 𝐏𝑇
𝛤DRM
(𝑡) 𝐏𝑇

𝛤 ′
DRM
(𝑡)]𝑇 . (5)

e note that in (5), the force vector 𝐅DRM(𝑡) has non-zero entries
nly along 𝛤DRM and 𝛤 ′

DRM. By adopting an implicit Newmark time-
ntegration scheme, and by collecting the acceleration-like quantities
̈ (𝑡), the velocity-like 𝐔̇(𝑡), and the displacement-like 𝐔(𝑡) at all time
teps in a single vector 𝐝̂, it can be shown that (3) reduces to (see
ppendix B):

𝐝̂ = 𝐅̂DRM, (6)

here a hat ( ̂ ) denotes space–time discretization of the subtended
uantity. The compact form (6) is the discrete form of the space–time-
iscretized forward problem.

. Inverting for the seismic input

The inversion for the seismic input is driven by the ground-surface
ecords of motion, collected, typically, in the form of displacement or
elocity time histories for each motion component.4 Given 𝑁s sensors

4 If velocities are recorded, then the records are integrated in time to yield
isplacement time series, which are preferable, since the integration process
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situated on the ground surface (Fig. 1), the recorded displacement time
histories form the measurement vector 𝐝̂m, with non-zero entries only
along the surface.

We define the following discrete objective functional ̂ to capture
the misfit between measurements 𝐝̂m and computed responses 𝐝̂inv; the
latter are based on trial distributions of the seismic input 𝐅̂inv

DRM on the
DRM boundary:

̂ = 1
2
(𝐝̂inv − 𝐝̂m)𝑇 𝐁 (𝐝̂inv − 𝐝̂m), (7)

here 𝐁 is a block diagonal matrix defined as 𝛥𝑡 𝐁, in which B is a
quare, diagonal matrix that has zero entries everywhere except for
ntries of one along its diagonal, which correspond to the sparsely-
istributed ground surface sensors nodal locations. Then, we construct
Lagrangian ̂ by side-imposing to the objective functional ̂, using

agrange multipliers 𝝀̂, the discrete forward problem (6), written for
omputed responses 𝐝̂inv corresponding to trial seismic input 𝐅̂inv

DRM:

̂ = 1
2
(𝐝̂inv − 𝐝̂m)𝑇 𝐁 (𝐝̂inv − 𝐝̂m) − 𝜆̂𝑇 (𝐐 𝐝̂inv − 𝐅̂inv

DRM). (8)

In accordance to the space–time discretization scheme described in
Appendix B, 𝝀̂ is the discrete space–time Lagrange multiplier vector
defined as 𝝀̂ = [𝝀𝑇0 , 𝝀̇

𝑇
0 , 𝝀̈

𝑇
0 ,… ,𝝀𝑇𝜏 , 𝝀̇

𝑇
𝜏 , 𝝀̈

𝑇
𝜏 ]

𝑇 , where a subscript indi-
cates a time step, and 𝜏 denotes the final time step. The goal is
to find the (space–time discrete) seismic forces 𝐅̂inv

DRM by minimizing
the Lagrangian ̂, thus, simultaneously, enforcing the observations 𝐝̂m
to match the computed responses 𝐝̂inv, while the underlying physics
described by Eq. (6), i.e., 𝐐 𝐝̂inv = 𝐅̂inv

DRM, are satisfied. To this end,
we seek a stationary point for the Lagrangian ̂, as described in the
following section.

4.1. First-order optimality conditions

To invert for the unknown seismic input 𝐅̂inv
DRM on the DRM bound-

ary, we seek to satisfy the first-order optimality conditions. The op-
timality conditions are obtained as the Fréchet derivatives of the La-
grangian with respect to the Lagrange multipliers 𝜆̂, the forward re-
sponse 𝐝̂inv, and the inversion variable 𝐅̂inv

DRM, respectively. Accordingly,
the first two derivatives result in:
𝜕̂
𝜕𝝀̂

= −𝐐 𝐝̂inv + 𝐅̂inv
DRM, 𝜕̂

𝜕𝐝̂inv
= −𝐐𝑇 𝜆̂ + 𝐁 (𝐝̂inv − 𝐝̂m). (9)

Requiring that the above Fréchet derivatives vanish yields the first
two optimality conditions, which, as it can be readily seen, define the
following forward and adjoint problems for the forward response 𝐝̂inv
nd for the Lagrange multipliers 𝜆̂, respectively:

𝐝̂inv = 𝐅̂inv
DRM

⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
forward problem

, 𝐐𝑇 𝜆̂ = 𝐁 (𝐝̂inv − 𝐝̂m)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

adjoint problem

. (10)

We note that the forward problem is driven by trial distributions of
the effective forces 𝐅̂inv

DRM, while the adjoint problem is driven by the
misfit at the sensor locations. The adjoint problem is also a final-value
problem that is resolved by marching backwards in time [26]. Lastly,
the third optimality condition leads to the following control equation:

𝜕̂
𝜕𝐅̂inv

DRM

= 𝝀̂. (11)

That is, the gradient of the Lagrangian with respect to the seismic
input (inversion variable) equals the adjoint solution 𝝀̂. We note that,
when the control Eq. (11) vanishes for an inverted set of seismic input
forces 𝐅̂inv

DRM, then 𝝀̂ ≡ 0, and the misfit vanishes identically, while the
forward problem is also satisfied. In other words, in such cases, 𝐅̂inv

DRM

filters out high-frequency artifacts that are inconsistent with the induced
motion.
5

s

is pronounced to be a solution for the seismic input, since all three
optimality conditions are satisfied.

4.2. The inversion process

Armed with the technical details described in the preceding section,
we discuss next the inversion process in its entirety. The overarching
goal is twofold: (a) to recover the seismic forces on the DRM boundary
using only the surface records and information about the material
properties of the near-surface deposits; and (b) to reconstruct the total
wavefield within the near-surface deposits, since such a reconstruction
would allow us to assess the response everywhere within the region
of interest, setting the stage for a complete post-mortem assessment of
the exposed infrastructure. Moreover, the reconstruction of the DRM
forces also allows the assessment of future infrastructure additions (or
subtractions) to the same seismic scenario, by taking advantage of the
DRM theory.

As previously described, the inversion process engages only the re-
duced, finite, computational domain depicted in Fig. 1, which includes
the interior domain 𝛺𝑖 containing the near-surface deposits of interest,
the DRM boundary and its discrete counterpart defined by a single-
element layer, sandwiched between the dashed lines 𝛤DRM and 𝛤𝑒
(Fig. 2), the (rather limited) exterior domain 𝛺𝑒, and the surrounding
absorptive buffer 𝛺CFS−PML, occupied by the non-convolutional CFS-
PML [16,17]. Without loss of generality, we assume throughout that
the incident seismic motion, whether synthetic or real, originates from
a location exterior to the reduced computational domain.

The first step involves the synthetic generation of the ground-
surface records at the sensor locations: to this end, we turn to an
extended computational domain, where the exterior domain 𝛺𝑒 has
been enlarged to now contain a seismic source. The enlarged domain,
too, is terminated with a CFS-PML buffer. Herein, we model the seismic
source as a body force situated within 𝛺𝑒, but several other commonly
used seismic source models, including double-couples, plane waves,
kinematic fault models, etc., are possible: the presented methodology is
independent of the seismic source model. Then, using the DRM frame-
work, the free-field response 𝐮0 corresponding to the seismic source
is generated first, and, next, with the aid of the expressions involved
in the right-hand-side of (1), the effective seismic forces 𝐅DRM on the
DRM boundary are defined. Then, using (2), the total wavefield 𝐮𝑖 is
obtained at all nodes within the interior domain of interest 𝛺𝑖, and,
consequently, on the surface as well: the displacement histories at the
𝑁s sensor locations on the ground surface are then used to populate
the measurements 𝐝̂m, thus completing the synthetic generation. When
actual records are available, the entire first step is omitted, and the
synthetic data are replaced by the real sensor data.

The inversion process is initiated with a guess for the seismic forces
𝐅̂inv
DRM, and the forward problem (10)a is solved next, resulting in

computed responses 𝐝̂inv. Using the computed responses 𝐝̂inv and the
known measurements 𝐝̂m, the misfit is computed, allowing next for
the solution of the adjoint problem (10)b, which yields the Lagrange
multipliers 𝜆̂. Per the control Eq. (11), the computation of the Lagrange
multipliers is used in the gradient definition, which, in turn, drives the
updates for the seismic forces 𝐅̂inv

DRM. The updated DRM forces are fed
back into the forward problem, and the process is repeated until the
third optimality condition is satisfied (adjoint variables vanish). We
note that both the horizontal and vertical components of the nodal
forces 𝐅̂inv

DRM at the DRM layer are inverted for: they are the only entries
f 𝐅̂inv

DRM that are non-zero during the inversion iterations. The flowchart
f Fig. 3 summarizes the overall inversion process.

.3. On the multiplicity of the seismic forces

As witnessed in prior work involving the scalar wave case [12],
he inverted components of 𝐅̂inv

DRM differed significantly from the target
̂
eismic forces 𝐅DRM, despite the fact that there was good agreement
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Fig. 3. Flowchart of the inversion process for the reconstruction of the seismic DRM
orces and the total wavefield in 𝛺𝑖. Left column: inversion process based on synthetic

data; right column: inversion process based on real data.

between the computed and measured total wavefields in the interior
domain 𝛺𝑖, and, despite the fact that the misfit had vanished. In
addition, it was also observed that there was a significant difference
in the scattered wavefield in the exterior domain 𝛺𝑒: the amplitudes of
the scattered motion induced by the inverted seismic forces were sig-
nificantly larger than those induced by the target (true) seismic input.
The same observations were confirmed in the numerical experiments
reported herein for the elastic wave case.

To understand the root cause for the discrepancies, it is necessary
to describe first the rather uncommon characteristics of the inverse
problem at hand. To this end, we note that there are infinite ways by
which one can partition the total wavefield 𝐮𝑒 in the exterior domain
𝛺𝑒. Specifically, there are infinitely many pairs of incident wavefields
𝐮̃0 and scattered wavefields 𝐰̃𝑒, which, when combined, will produce
the same total (true) wavefield 𝐮𝑒 = 𝐰̃𝑒+ 𝐮̃0 in 𝛺𝑒. Using any single one
of the fictitious incident fields 𝐮̃0 in the DRM forces of Eq. (1), as if it
were a priori known, would still satisfy the equations of motion, and
would still render the true total wavefield 𝐮𝑖 in the interior, but would
produce a, possibly, non-physical external wavefield 𝐰̃𝑒 (e.g., large
amplitude scattered motion) . The set of all such possible fictitious
incident fields5 generates a set of DRM force distributions, all of which
constitute admissible solutions for the DRM forces. In other words, we have
an uncommon peculiarity for an inverse problem: whereas in a typical
inverse problem, one aims at reducing the solution multiplicity by
adopting regularization schemes to filter out unwanted multiples, here,
any single one of the DRM force distributions would be admissible (as
long as the misfit vanishes). There is, thus, no need for regularization,
in the classical sense, and none has been implemented.

We further note that the set of admissible DRM force distributions
includes DRM forces that are continuous across the DRM layer, as
well as distributions that exhibit a jump, as originally predicated by
the DRM theory: any such force distribution would be admissible.

5 The set includes the true pair 𝐰̃ + 𝐮0, where 𝐮0 is the free-field motion.
6

𝑒 f
Thus, the remaining question is whether the inversion process can
converge to any single one of the infinitely many, admissible, DRM
force distributions. As it turns out, this is a question of quality of the
inverted DRM force distributions, and not a question of uniqueness of
the DRM forces: the inversion process will converge to one of the
many candidate DRM force solutions, with the quality of the force
reconstruction dependent only on the availability/density of the ground
surface data.

The observed difference between the inverted DRM forces and
the true DRM forces derived based on the free-field motion is due,
primarily, to the fact that the inversion process favors seismic forces at
the DRM boundary that are continuous across the DRM layer, thereby
defeating one of the foundational elements of the DRM theory, which,
as discussed in Section 2, enforces a partitioning of the wavefields into
total for the interior and scattered for the exterior, by imparting a
jump in the forces on the DRM layer. But, as argued above, this is not
of concern, since the interior total field would still be, by and large,
well reconstructed. The latter is likely due to the Cauchy–Kovalevskaya
theorem that guarantees the uniqueness of the total wavefield in the
neighborhood of the sensor data (but cannot guarantee uniqueness
away from the neighborhood), and helps explain the remarkably good
reconstruction of the total wavefield near the free surface.

It is for the outlined reasons and owing to the peculiarity of the
inverse source problem at hand that, when discussing the numerical
results, our focus is on comparisons of the true total wavefield in the
interior domain of interest against the total wavefield resulting from
the inverted DRM forces 𝐅̂inv

DRM, and not on the DRM forces per se.

5. Numerical experiments

We report numerical experiments aimed at the reconstruction of
the seismic forces on the DRM boundary enveloping the near-surface
deposits of interest, when given ground surface measurements at a few
sensors. Of particular focus is the method’s effectiveness in reconstruct-
ing the total wavefield within 𝛺𝑖 induced by the inverted DRM forces
̂ inv
DRM, when compared with the total wavefield induced by the targeted
RM forces 𝐅̂DRM.

Throughout, we use a reduced computational domain that is 40 m
ide by 20 m deep, surrounded along three of its sides by a 10 m-thick
ML buffer (Fig. 4(A)). We recall that the DRM is primarily designed
o partition the computational domain so that topographical features
nd/or zones of soil nonlinear behavior be contained within the interior
omain 𝛺𝑖. In the absence of such features, the DRM placement is
riven by the region of interest and considerations of computational ef-
iciency. And, therefore, here, the computational domain is partitioned
nto the interior domain 𝛺𝑖 – a 35 m long by 17.5 m deep domain –,
hich is enveloped by a, relatively thin, exterior domain 𝛺𝑒 (Fig. 4A).

For the purpose of generating the incident wave motion, we embed
he reduced domain within an enlarged domain; the size of the enlarged
omain is set to be 80 m by 40 m, and it too is surrounded by a 10
-thick PML (Fig. 4(B)).

Both the reduced and the enlarged domains are heterogeneous;
oreover, in addition to the layering, two stiff inclusions are also

mbedded within the reduced domain (Fig. 4). The properties of the
arious materials implicated in the model are as follows: the shear wave
peeds are 𝑉s1 = 200 m/s, 𝑉s2 = 150 m/s, 𝑉s3 = 100 m/s, 𝑉s4 = 500 m/s,
nd 𝑉s5 = 800 m/s; the dilatational wave speeds are 𝑉p1 = 400 m/s, 𝑉p2
300 m/s, 𝑉p3 = 200 m/s, 𝑉p4 = 1000 m/s, and 𝑉p5 = 1600 m/s; and

he mass density of both the reduced and enlarged domains is uniform
nd set at 1500 kg/m3.

We note that the properties of the reduced domain are considered a
riori known; in practice, they could be obtained via site characteriza-
ion (e.g., spectral analysis of surface waves (SASW) method [27–31],
ulti-channel analysis of surface waves (MASW) method [32,33], or
ull-waveform inversion (FWI) method [34–36]).
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Fig. 4. Computational models for the numerical experiments; (A) Reduced computational model used in inversion; (B) Enlarged computational model used for synthetic sensor
data generation.
For the spatial discretization of the computational domains, we use
a structured mesh, consisting of 9-noded quadrilateral elements with an
edge size equal to 1 m, thus resulting in nodal spacing of 0.5 m. Given
that the smallest shear wave velocity in our model is 100 m/s, and the
highest dominant frequency is 10 Hz, there result about 20 nodes per
the shortest wavelength, which is in line with typical recommendations
for wave propagation problems.

For the temporal discretization, a time step size of 0.001 s, and a
total observation time of 1.5 s are used in all numerical experiments.
The spacing of the ground surface sensors is not fixed, but varies in
our numerical experiments in order to study the effect of the sensor
array density on the reconstructed wavefield; the first sensor is always
situated at the top-left corner of 𝛤DRM, while the last one is located at
the top-right corner of 𝛤DRM.6

Without loss of generality, we use point body forces in the enlarged
omain to generate the incident fields. A point source serves as a sur-
ogate for a seismic source (e.g., seismic moment tensor at a fault), and
esults in generating both compressional and shear waves. To address
he time dependence of the point sources, we use Ricker wavelets with
peak amplitude of 100 N/m and a central frequency of 2 Hz, 5 Hz,

r 10 Hz to drive the vertical body force component 𝑃𝑦(𝑡), while the
orizontal component 𝑃𝑥(𝑡) is set to zero. We remark that the presented
ethod can accommodate any profile (spatial or temporal) of a seismic

ource in the enlarged domain; moreover, our inversion solver does not
eed to be informed of the profile of the source.

In order to assess the quality of the reconstructed total wavefield
ithin 𝛺𝑖, we define a global space–time normalized error norm in the

east-squares sense, per:

6 Placing sensors at the intersection of the DRM with the ground surface is
ot required; it is merely convenient for the computational simulations.
7

 |𝐮| =

𝑁
∑

𝑗=1
|𝐝target𝑗 − 𝐝inv𝑗 |

2

𝑁
∑

𝑗=1
|𝐝target𝑗 |

2
× 100[%], (12)

where 𝐝target𝑗 is the vector of the displacement amplitudes of the true
total wavefield |𝐮𝑖| of all nodes in 𝛺𝑖 at the 𝑗th time step; 𝐝inv𝑗 is its
reconstructed counterpart induced by the inverted DRM forces 𝐅̂inv

DRM;
and 𝑁 is the total number of time steps. Global norms 𝑢𝑥 and 𝑢𝑦 for
the horizontal and vertical displacement components, respectively, are
similarly defined.

5.1. Example 1: Inverting for the seismic forces and the total wavefield due
to a body-wave-dominant seismic source

In this example, we study the performance of the presented ap-
proach when the near-surface deposits are excited by a body-wave-
dominant source situated at the bottom-left of the enlarged domain.
The source is a Ricker pulse with a central frequency of 10 Hz.

Fig. 5 shows a snapshot of the target displacement amplitudes
of the total wavefield taken at 𝑡 = 0.40 s. The dashed line in the
enlarged domain is 𝛤CFS−PML, i.e., the interface between the enlarged
domain and its surrounding CFS-PML buffer, while the solid line is
the DRM boundary 𝛤DRM, surrounding 𝛺𝑖. The total wavefield within
𝛺𝑖 is shown in Fig. 5(A) and represents the target wavefield that the
presented inversion approach ultimately seeks to reconstruct by using
𝐅̂inv
DRM.

To drive the inversion, we deploy 19 ground sensors spaced 2 m
apart; thus, the sensor array extends over the entire surface of the
reduced computational domain. Fig. 6 compares the snapshots of the
displacement amplitudes of target total wavefield in 𝛺𝑖 that are com-

puted using the enlarged domain solver against their reconstructed
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Fig. 5. Example 1: Snapshot at 𝑡 = 0.40 s of the total wavefield amplitudes induced by a body-wave-dominant source in the form of a body force Ricker pulse operating at 10 Hz.
(A) Target total wavefield motion amplitudes |𝐮𝑖| in 𝛺𝑖; (B) Total wavefield motion amplitudes in the enlarged domain.
Fig. 6. Example 1: (First row) Snapshots of the target displacement wavefield |𝐮𝑖| in 𝛺𝑖 induced by a body-wave-dominant source in the form of a body force Ricker pulse
operating at 10 Hz; (Second row) reconstructed displacement wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.
counterparts induced by the inverted DRM forces 𝐅̂inv
DRM, after 500

inversion iterations. As can be seen, the reconstructed wavefields are,
overall, in great agreement with the target wavefields, especially near
the ground surface, with the accuracy somewhat degrading as the DRM
boundary is approached. For example, if one were to consider the
bottom half of the domain (i.e., −18 m< 𝑦 ≤ −9 m), the associated
error  |𝐮| is 10.11%, while the error reduces to 1.04% when considering
the top half of the domain (i.e., −9 m< 𝑦 ≤ 0 m). This performance is
as expected, since the vanishing of the misfit governs the error in the
near-surface wavefields.

Fig. 7 depicts the comparison of the target total wavefield in 𝛺𝑖 and
the reconstructed wavefield in terms of the acceleration amplitudes. As
it can be seen, the reconstructed acceleration wavefields are in great
agreement with their target counterparts. Similarly to the displacement
wavefields, here too we observe better agreement within the top half
of the domain than within the bottom half. Specifically, while the error
8

 |𝐮̈| is 1.50% within the top half of the domain, it increases to 11.47%
within the bottom half of the domain. Furthermore, there is a slight
worsening of the error associated with the acceleration fields (6.63%)
when compared with the displacement fields (5.11%), but, overall, the
accuracy is comparable.

Fig. 8 shows excellent agreement between the time-histories of the
horizontal and vertical displacements of the measured ground motions
and their reconstructed counterparts induced by 𝐅̂inv

DRM at the nineteen
sensor locations on the ground surface; the excellent agreement is due
to the successful minimization of the misfit functional.

Lastly, we are interested in the method’s performance as the exci-
tation’s frequency content changes, and as the number and the spacing
of the sensors changes. To this end, we consider three Ricker pulses
driven by central frequencies of 2 Hz, 5 Hz, and 10 Hz, and different
sensor spacing, varying between 1 m and 18 m. Table 1 tabulates the
results for all cases considered.
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Fig. 7. Example 1: (First row) Snapshots of the target wavefield |𝐮̈𝑖| in 𝛺𝑖 induced by a body-wave-dominant source in the form of a body force Ricker pulse operating at 10 Hz;
(Second row) reconstructed acceleration wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM..
Fig. 8. Example 1: Comparison between measured horizontal and vertical displacement time histories and their reconstructed counterparts induced by the inverted DRM forces
𝐅̂inv
DRM at 19 ground sensor locations.
Fig. 9 illustrates the relationship between the error  |𝐮| and both
the dominant frequency of the source and the sensor spacing. As it
can be seen, and as expected, the error increases as the density of
the sensor array coarsens. Similarly, the error increases as the source
frequency increases, but the error can be improved by increasing the
mesh density. Overall, the error in the reconstructed total wavefields
is remarkably low for all cases for which there is a sufficient, and
relatively small, number of sensors deployed. Furthermore, the number
of sensors per wavelength can serve as a criterion to establish the
minimum sensor density required for a robust reconstruction of the
seismic wavefield (i.e.,  |𝐮| ≤ 10%). Per Fig. 9, it would be necessary
to deploy at least 3 sensors per the shortest wavelength (i.e., the shear
wavelength in the upper layer of the domain). And, thus, for example,
when using a source with a dominant frequency of 5 Hz (the shortest
wavelength is 20 m), a sensor spacing of 12 m (about 1.67 sensors per
wavelength) would not result in  |𝐮| ≤ 10%, but a sensor spacing of
7 m (about 2.9 sensors per wavelength) would satisfy the inequality.

As discussed earlier, the inverted DRM forces, owing to the inherent
multiplicity of admissible solutions, could generate strong scattered
9

wavefields in the exterior domain 𝛺𝑒. Thus, having a quality absorbing
condition at the truncation interface of the computational domain is
of paramount importance in order to guard against pollution of the
wavefield solutions from reflections off of the truncation boundary.
To demonstrate the importance the CFS-PML buffer plays in obtaining
quality solutions, we, next, compare the target and reconstructed total
wavefields for two different truncation strategies, one resting on the
CFS-PML, and a second one that relies on simple dashpots, commonly
referred to as the Lysmer and Kuhlemeyer absorbing boundary condi-
tion [37]. We use the data of case 1.13 (see Table 1) to highlight the
differences. The dashpot conditions are realized via:

𝜎𝑥𝑥 = 𝜌𝑉p𝑢̇𝑥, 𝜎𝑥𝑦 = 𝜌𝑉s𝑢̇𝑦, on𝛤DRMlef t
and𝛤DRMright

, (13)

𝜎𝑥𝑦 = 𝜌𝑉s𝑢̇𝑥, 𝜎𝑦𝑦 = 𝜌𝑉p𝑢̇𝑦, on𝛤DRMbottom
. (14)

Fig. 10 depicts snapshots of the target total wavefield |𝐮𝑖| in 𝛺𝑖
(top row), of the reconstructed total wavefield when the CFS-PML is
used (middle row), and of the reconstructed total wavefield when the
dashpot condition is used (bottom row). Moreover, Table 2 summarizes
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Fig. 9. Relation of the error to the dominant frequency (or the shortest wavelength 𝛬) of the body-wave-dominant source and the sensor spacing (Example 1).
Fig. 10. Example 1: (A) Target total wavefield |𝐮𝑖| in 𝛺𝑖; and (B,C) reconstructed total wavefields obtained using the CFS-PML, and the Lysmer and Kuhlemeyer absorbing boundary
condition, respectively.
Table 1
Summary of errors for various sensor array spacings and driving seismic source
frequencies.

Case Central Sensor  |𝐮| 𝑢𝑥 𝑢𝑦

number frequency spacing

1.1 2 Hz 1 m 0.15% 0.68% 0.14%
1.2 2 Hz 2 m 0.14% 0.65% 0.14%
1.3 2 Hz 5 m 0.17% 0.76% 0.17%
1.4 2 Hz 7 m 0.19% 0.75% 0.18%
1.5 2 Hz 12 m 0.48% 4.39% 0.49%
1.6 2 Hz 18 m 1.05% 5.54% 1.55%
1.7 5 Hz 1 m 1.99% 3.95% 2.83%
1.8 5 Hz 2 m 1.90% 3.75% 2.67%
1.9 5 Hz 5 m 2.23% 4.22% 3.31%
1.10 5 Hz 7 m 2.56% 4.22% 4.53%
1.11 5 Hz 12 m 12.77% 21.69% 28.18%
1.12 10 Hz 1 m 5.21% 11.85% 7.04%
1.13 10 Hz 2 m 5.11% 11.70% 6.88%
1.14 10 Hz 5 m 7.92% 14.66% 11.53%
1.15 10 Hz 7 m 13.06% 19.84% 24.20%

various global error metrics between the target and reconstructed total
wavefields in 𝛺𝑖. From both Fig. 10 and Table 2, it is clear that the
use of the dashpots severely degrades the quality of the reconstructed
wavefields, and its use should be avoided.
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Table 2
Errors in the reconstructed total wavefields obtained when using the CFS-PML versus
the Lysmer and Kuhlemeyer absorbing boundary condition.

Truncation condition  |𝐮| 𝑢𝑥 𝑢𝑦

CFS-PML by François et al.
[16,17]

5.11% 11.70% 6.88%

Lysmer and Kuhlemeyer [37] 11.51% 20.03% 19.54%

5.2. Example 2: The effect of a structure

In this example, we study the effect the addition of a structure
within the domain of interest may have on the ability of the inversion
algorithm to reconstruct the DRM seismic forces and the total wavefield
within 𝛺𝑖 (Fig. 11). The structure is modeled as a solid, partially buried,
and partially extending above the ground surface: we set its shear
and dilatational wave speeds at 𝑉s6 = 3250 m/s and 𝑉p6 = 5900 m/s,
respectively. The target total wavefield is again induced by the body
force of Example 1, operating at central frequencies of 5 Hz and 10 Hz.
We also compare the performance of the inversion when (𝑖) sensors are
distributed on the ground surface with a 2 m spacing; and (𝑖𝑖) when
additional 5 sensors are vertically deployed along the height of the
structure, as shown in Fig. 11.
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Fig. 11. Computational model of the near-surface deposits, encompassing a structure.
Fig. 12. Maximum displacement amplitude |𝐮max| of the topmost node of structure 𝑉6 as a function of excitation frequency.
Table 3
Example 2: Summary of errors in the total wavefield for two different sensor array
configurations and two driving seismic source frequencies.

Case Central Sensors in Number of  |𝐮| 𝑢𝑥 𝑢𝑦

number frequency the structure sensors

2.1A 5 Hz No 19 2.75% 5.11% 5.11%
2.1B 5 Hz Yes 19 + 5 3.60% 7.03% 6.66%
2.2A 10 Hz No 19 8.73% 14.26% 13.84%
2.2B 10 Hz Yes 19 + 5 9.78% 15.40% 16.05%

We note that structure 𝑉6 exhibits strong resonance at, approx-
mately, 1.9 Hz, as depicted in Fig. 12. Specifically, Fig. 12 shows
he maximum displacement amplitude of the topmost node of 𝑉6, for

frequencies ranging from 0.1 Hz to 15 Hz. Therefore, the structure’s
dominant amplification frequency is contained within the spectrum
of the Ricker source, though not coinciding with the Ricker’s central
frequency (5 Hz or 10 Hz for the two cases considered).

Table 3 shows the global error in the reconstructed total wavefields
in 𝛺𝑖 for four different cases after 500 iterations. The results show that
the presented method can accurately estimate the wave motions in 𝛺𝑖,
even in the presence of a structure: the error in the motion amplitudes
 |𝐮| is smaller than 10% in all cases.
11
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Table 3 also shows that the final values of  |𝐮| for all Cases 2.1A to
2.2B,7 obtained by using only the distributed sensors on the top surface,
are close to those obtained by using a combination of sensors on the
ground surface and in the structure. Namely, the  |𝐮| value of 2.75% of
Case 2.1A (5 Hz without the vertical array) is close to the  |𝐮| value of
3.06% of Case 2.1B (5 Hz with the vertical array), and the  |𝐮| value
of 8.73% of Case 2.2A (10 Hz without the vertical array) is close to the
 |𝐮| value of 9.78% of Case 2.2B (10 Hz with the vertical array).

Furthermore, Table 4 shows the global error in the reconstructed
wavefields in the soil and in the structure, respectively. It can be
seen that minimizing the misfit that includes the measurements on the
vertical array of the structure makes the error  |𝐮| in the soil to be
greater than otherwise (e.g., 3.61% in Case 2.1A versus 4.75% in Case
2.1B). On the other hand, because the error  |𝐮| in the structure is
already quite small even when the vertical array is not used, we do
not notice significant improvement of  |𝐮| in the structure when its
sensor array is used (i.e., 0.02% in Case 2.1A → 0.01% in Case 2.1B,
and 0.38% in Case 2.2A → 0.38% in Case 2.2B). Thus, it seems that we

7 Case 2.1A and 2.2A do not use measurement data from the vertical array
n the structure, whereas Case 2.1B and 2.2B do.
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Table 4
Example 2: Summary of errors in the total wavefield in the soil and in the structure for two different driving seismic source frequencies and
two different sensor array configurations.
Case  |𝐮|  |𝐮|

soil  |𝐮|
struct 𝑢𝑥 𝑢𝑥

soil 𝑢𝑥
struct 𝑢𝑦 𝑢𝑦

soil 𝑢𝑦
struct

2.1A 2.75% 3.61% 0.02% 5.11% 6.61% 0.02% 5.11% 6.56% 0.01%
2.1B 3.60% 4.75% 0.01% 7.03% 9.12% 0.01% 6.66% 8.57% 0.01%
2.2A 8.73% 9.08% 0.38% 14.26% 14.69% 0.08% 13.84% 14.58% 0.89%
2.2B 9.78% 10.18% 0.38% 15.40% 15.85% 0.07% 16.05% 16.91% 0.89%
Fig. 13. Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target wavefield |𝐮𝑖| in 𝛺𝑖 induced by a body-wave-dominant source in the form of
a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.
may not need sensors in the structure for the presented algorithm, at
least in this example with a single structure of a simple shape.

Lastly, Fig. 13 shows snapshots of |𝐮𝑖| of the target total wavefield in
𝛺𝑖 and their estimated counterparts, for Case 2.1A (5 Hz central Ricker
pulse frequency, and ground surface array only). Similarly, Figs. 14
and 15 show the snapshots of the target horizontal and vertical dis-
placements and their reconstructed counterparts, respectively. Figs. 13,
14, and 15 all indicate that the wavefields close to the lower DRM
boundary are not as accurately reconstructed as those near the ground
surface. Specifically, the error  |𝐮| for the bottom half of the domain
(i.e., −18 m< 𝑦 ≤ −9 m) is 7.99%, while  |𝐮| is only 0.38% for the
near-surface wavefields (i.e., −9 m < 𝑦 ≤ 0 m) and the wavefield in the
structure. We suggest that, since the sensors are located at the upper
part of the domain, the minimization of the misfit functional leads to
more effective reconstruction of waves in the upper part of the domain
than in the lower part.

5.3. Example 3: Inverting for the seismic forces and the total wavefield due
to a surface-wave-dominant seismic source in the presence of a structure

In this example, we study the effect a surface-wave-dominant source
has on the quality of the reconstructed total wavefields. In particular,
the incident wave originates from a source embedded within the top-
left area of the enlarged domain. We obtain results again for four
different cases, corresponding to two different Ricker pulses with cen-
tral frequencies of 5 Hz and 10 Hz, while we also consider two different
array configurations, with and without a vertical sensor array in the
structure.

Table 5 shows the errors for all four cases (Cases 3.1A to 3.2B) after
500 inversion iterations. We note the relatively small errors, ranging
from 0.34% to 3.83%, which demonstrate the successful reconstruction
of the total wavefields induced by surface wave-dominant incident
waves.
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Table 5
Summary of errors in the total wavefield for two different array configurations and
two driving seismic source frequencies.

Case Central Sensors in Number of  |𝐮| 𝑢𝑥 𝑢𝑦

number frequency the structure sensors

3.1A 5 Hz No 19 0.34% 1.20% 0.39%
3.1B 5 Hz Yes 19 + 5 0.47% 1.79% 0.53%
3.2A 10 Hz No 19 3.41% 10.31% 5.13%
3.2B 10 Hz Yes 19 + 5 3.83% 11.47% 5.90%

Table 5 also shows that the inclusion of the vertical sensor array in
the structure did not significantly affect the resulting errors. Moreover,
it can also be seen that when increasing the frequency of the incident
waves, the errors increase. We also note that the errors  |𝐮| for the
surface-wave-dominant cases of Example 3 (range: 0.34% to 3.83%)
were smaller than the errors reported in Example 2 (range: 2.75%
to 9.78%), which pertained to the body-wave-dominant excitation. In
general, the wavefield is better reconstructed in areas close to the
ground surface sensor network, for both P-SV dominant incidence and
for surface-wave-dominant incident motion, likely owing to the impli-
cations of the Cauchy–Kovalevskaya theorem, as previously discussed.
The results are better for surface-wave-dominant incident motion, be-
cause the reconstruction also benefits from the fact that most of the
motion is contained within the zone proximal to the sensors: the rise
of the error at depth, which is expected, is over smaller amplitude
wavefields, and has a lesser impact on the global error metric.

Fig. 16 depicts snapshots of the target and reconstructed total
wavefields |𝐮𝑖| in 𝛺𝑖 in Case 3.1A, i.e., when a Ricker wavelet with
a 5 Hz dominant frequency is used as the source, and only the sensors
on the ground surface are used for inversion. Figs. 17 and 18 show
snapshots of the target horizontal and vertical wavefield components,
and their reconstructed counterparts, respectively, and as previously
noted, they indicate a fairly satisfactory wavefield reconstruction.
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Fig. 14. Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target horizontal component of the wavefield |𝐮𝑖| in 𝛺𝑖 induced by a body-wave-dominant
source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.

Fig. 15. Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target vertical component of the wavefield |𝐮𝑖| in 𝛺𝑖 induced by a body-wave-dominant
source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.

Fig. 16. Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target wavefield |𝐮𝑖| in 𝛺𝑖 induced by a surface-wave-dominant source in the form
of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.
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Fig. 17. Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target horizontal component of the wavefield |𝐮𝑖| in 𝛺𝑖 induced by a surface-
wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces
𝐅̂inv
DRM.
Fig. 18. Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target vertical component of the wavefield |𝐮𝑖| in 𝛺𝑖 induced by a surface-wave-dominant
source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic DRM forces 𝐅̂inv

DRM.
5.4. Example 4: The effect of material property uncertainty

The inversion procedure outlined in this study relies on a priori
estimates of the material properties of the near-surface deposits. It is
important to acknowledge that in real-world scenarios, the actual prop-
erties of the near-surface deposits might diverge from their estimates.
In this example, we attempt to assess the effect of such discrepan-
cies between estimated and actual properties on the accuracy of the
reconstructed wavefields.

To this end, we use again the same setup that was used in the
previous numerical experiments (Fig. 11), with the following modifi-
cations: here, we assume that the previously used material properties
correspond to estimates that differ from their true values by 2% to 5%
as shown in Table 6. In addition, we also assume that the true depth of
the topmost layer is 9 m, whereas the estimated depth was 10 m. We
note that the sensor data were obtained using the true/actual values,
and not the estimated values.

We study four different cases, corresponding to two different Ricker
pulses with central frequencies of 5 Hz and 10 Hz and two differ-
ent property distributions, exhibiting 2% and 5% deviations from the
estimated properties, respectively. Table 7 shows the error between
the reconstructed and true wavefields for all four cases, denoted as
Cases 4.1A, 4.1B, 4.2A and 4.2B, respectively. Table 7 also includes the
errors for Cases 2.1A and 2.2A, where no uncertainty was considered
(Example 2), and are included here for reference. The results show
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that the error  |𝐮| increases as the deviation from the true properties
increases. Table 7 also shows that error worsens further with higher
frequencies.

The top row of Fig. 19 shows snapshots of the true wavefields
|𝐮𝑖| in 𝛺𝑖 when a 5 Hz central Ricker pulse frequency is employed.
Furthermore, the second, third, and fourth row of Fig. 19 show the
reconstructed wavefield for Cases 2.1A, 4.1A, and 4.1B, respectively,
corresponding to 0%, 2%, and 5% uncertainty in wave speeds. Al-
though, as depicted in Fig. 19, there is a gradual worsening of the
reconstructed wavefields as the deviation between true and estimated
properties becomes greater, it is noteworthy that the wavefields are still
reasonably well reconstructed near the top of the domain.

6. Conclusions

We discussed a systematic methodology for reconstructing the total
seismic wavefield within the near-surface deposits using scant ground-
surface measurements, under the assumption that the deposits have
been previously characterized. We assumed further the site to be ar-
bitrarily heterogeneous, and that the incident seismic motion to induce
deformations that remain within the linear range. The total wavefield
reconstruction is of importance not only for assessing seismic risk in
sites where the infrastructure has remained, by and large, unchanged
over time, but also in sites where infrastructure modifications are

planned.
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Table 6
Summary of the shear and dilatational wave speeds used in Example 4.
Wave Estimated properties True properties (2% deviation) True properties (5% deviation)

speed (m/s) 𝑉s 𝑉p 𝑉s 𝑉p 𝑉s 𝑉p

𝑉2 150 300 147 294 142.5 285
𝑉3 100 200 102 204 105 210
𝑉4 500 1000 510 1020 525 1050
𝑉5 800 1600 784 1568 760 1520
𝑉6 3250 5900 3185 5782 3087.5 5605
Fig. 19. Example 4: (First row) Snapshots of the target wavefield |𝐮𝑖| in 𝛺𝑖 induced by a body-wave-dominant source operating at 5 Hz; (Second-Fourth row) reconstructed
wavefields in Case 2.1A, 4.1A, and 4.1B, respectively, corresponding to 0%, 2%, and 5% uncertainty in wave speeds.
Table 7
Summary of errors for different levels of uncertainty in wave speeds and driving seismic
source frequency.

Case Central Uncertainty in  |𝐮| 𝑢𝑥 𝑢𝑦

number frequency in wave speeds

2.1A 5 Hz 0% 2.75% 5.11% 5.11%
4.1A 5 Hz 2% 3.79% 9.41% 6.10%
4.1B 5 Hz 5% 5.14% 13.83% 7.86%

2.2A 10 Hz 0% 8.73% 14.26% 13.84%
4.2A 10 Hz 2% 10.10% 18.96% 16.55%
4.2B 10 Hz 5% 11.99% 22.72% 20.81%

To reconstruct the seismic wavefield everywhere within a site of
interest, the presented methodology requires no prior knowledge of the
seismic event or of the source characteristics. Instead, the method aims
at the reconstruction of seismic forces along the, so-called, DRM bound-
ary, enveloping the near-surface deposits of interest. We discussed that
there are infinitely many DRM force distributions that could satisfy the
data, and argued that any single one of the DRM force distributions
would result in the true total wavefield in the interior, but could result
in strong (and non-physical) scattered motion in the domain exterior
to the DRM boundary and the deposits of interest. To combat large
amplitude scattered motion that may pollute the total wavefield in the
domain of interest, we deployed a state-of-the-art absorptive CFS-PML
buffer to force the decay of outgoing scattered waves within the buffer.

On the technical side, we cast the inverse source problem as a PDE-
constrained optimization problem, where the PDE was incorporated
as a constraint in its space–time discrete form. We used a gradient-
based minimization scheme, powered by a discretize-then-optimize
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(DTO) approach, which aimed at minimizing the misfit between mea-
sured time-series of the total wavefield at the sensors and their recon-
structed counterparts — the latter obtained from trial DRM seismic
force distributions.

The following is a summary of observations from the numerical
experiments.

• The inverted DRM forces reconstruct fairly well the total wave-
field in the interior domain of interest, which may also include
structures.

• The reconstructed total wavefield tends to be more accurate in
the vicinity of the sensors than in depth.

• For quality reconstructions of the total wavefield, the required
sensor spacing and density depend on the frequency content of
the incident motion: higher frequency content demands denser
arrays.

• The method is effective for arbitrarily incoherent incident fields;
surface-wave-dominant incident fields tend to reconstruct the
wavefield more accurately than body-wave-dominant fields.

• The method provides acceptable accuracy even in the presence
of geophysical uncertainties. The results show that the error in
the reconstructed wavefield increases with rising uncertainties,
as would be expected, but the wavefields are reasonably well
recovered in the topmost layers, proximal to the free surface and
the sensor array.

We note that the presented methodology is readily scalable to three
dimensions and, with a few modifications, could also accommodate
nonlinear behavior in the interior domain
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Nomenclature

Symbol Comment
𝛤DRM and 𝛤 ′

DRM DRM layer boundaries
𝛤CFS−PML Interface boundary between 𝛺𝑒 and 𝛺CFS−PML
𝛺𝑖, 𝛺𝑒 Interior and exterior domains, respectively
𝛺CFS−PML Perfectly-matched-layer wave-absorbing buffer
𝑖, 𝑑, 𝑒 Subscripts for matrix and vector partitions in 𝛺𝑖,

𝛤DRM, and 𝛺𝑒, respectively
𝐮𝑖, 𝐮𝑑 Total displacement wavefields in 𝛺𝑖 and on 𝛤DRM,

respectively
𝐮0 Free-field motion
𝐰𝑒, 𝝑, 𝝋, 𝜼 Scattered displacement wavefield and three

auxiliary fields within CFS-PML
𝐍𝑢, 𝐍𝜗, 𝐍𝜑, 𝐍𝜂 Shape functions for (𝐮𝑖,𝐮𝑑 ,𝐰𝑒), 𝝑, 𝝋, and 𝜼,

respectively
𝐁𝑥, 𝐁𝑦, 𝐁𝜗, 𝐁𝜑 Shape function derivatives
𝐔𝑖, 𝐔𝑑 Vectors of nodal values for 𝐮𝑖 and 𝐮𝑑 , respectively
𝐖𝑒, 𝜣, 𝜱, 𝐇 Vectors of nodal values for 𝐰𝑒, 𝝑, 𝝋, and 𝜼,

respectively
𝐔 Vector consisting of 𝐔𝑖, 𝐔𝑑 , and 𝐕
𝐕 Vector consisting of 𝐖𝑒, 𝜣, 𝜱, and 𝐇
𝐝̂ Vector consisting of the time discretization of

𝐔(𝑡), 𝐔̇(𝑡), and 𝐔̈(𝑡) for all time steps
𝐝̂m Vector consisting of measured responses
𝝀̂ Lagrange multiplier vector (space–time discrete)
𝐝̂inv Vector consisting of computed (inverted)

responses
𝐝target𝑗 Vector of target |𝐮𝑖| of all nodes in 𝛺𝑖 at the 𝑗th

time step
𝐝inv𝑗 Vector of reconstructed |𝐮𝑖| induced by 𝐅̂inv

DRM of
all nodes in 𝛺𝑖 at the 𝑗th time step

𝐏𝛤DRM , 𝐏𝛤 ′
DRM

Seismic forces on 𝛤DRM and on 𝛤 ′
DRM, respectively

𝐅DRM Global seismic force vector
𝐅̂DRM Time discretization of 𝐅DRM(𝑡) for all time steps
𝐅̂inv
DRM Trial (inverted) distributions of the seismic forces

𝐅̂DRM
𝐌,𝐊,𝐂 Global mass, stiffness, and damping matrices for

𝛺𝑖 ∪𝛺𝑒 ∪𝛺CFS−PML
𝐌PML, 𝐊PML,
𝐂PML

Global mass, stiffness, and damping matrices for
CFS-PML

𝐐 Discrete space–time forward operator
̂ Discrete objective functional
̂ Discrete Lagrangian functional
𝐁,𝐁 Block diagonal matrices with non-zero entries

corresponding to sensor locations
 |𝐮| Error norm for |𝐮𝑖|
𝑢𝑥 Error norm for the horizontal component of 𝐮𝑖
𝑢𝑦 Error norm for the vertical component of 𝐮𝑖
𝑁s Number of sensors on the ground surface
𝑁 Total number of time steps
𝜏 Final time step
𝑉s, 𝑉p Shear and dilatational wave speed
𝜆, 𝜇 Lamé parameters
𝛼𝑥, 𝛽𝑥, 𝜔𝑥 Real and imaginary stretching functions and

frequency shift in the 𝑥 direction
𝛼𝑦, 𝛽𝑦, 𝜔𝑦 Real and imaginary stretching functions and

frequency shift in the 𝑦 direction
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Appendix A. On the cfs-pml matrices 𝐌𝐏𝐌𝐋, 𝐂𝐏𝐌𝐋, and 𝐊𝐏𝐌𝐋

The non-convolutional second-order Complex-Frequency-Shifted
Perfectly-Matched-Layer [16,17] is used for truncating the unbounded
domain, following a mixed-field formulation. Within the PML, the
scattered displacements 𝐰𝑒, and the three auxiliary variables, 𝝑, 𝝋 and
𝜼, are discretized using:

𝐰𝑒 (𝐱, 𝑡) =𝐍𝑢 (𝐱)𝐖𝑒 (𝑡) , (A.1)

𝝑 (𝐱, 𝑡) =𝐍𝜗 (𝐱)Θ (𝑡) , (A.2)

𝝋 (𝐱, 𝑡) =𝐍𝜑 (𝐱)Φ (𝑡) , (A.3)

𝜼 (𝐱, 𝑡) =𝐍𝜂 (𝐱)𝐇 (𝑡) , (A.4)

here 𝐍(.) are vectors of global basis functions. The PML matrices are
efined as [16,17]: see Eqs. (A.5)–(A.7) in Box I.
n Eqs. (A.5)–(A.7),

𝐋𝜗 =
⎡

⎢

⎢

⎣

1 0
0 0
0 1

⎤

⎥

⎥

⎦

, 𝐋𝜑 =
⎡

⎢

⎢

⎣

0 0
0 1
1 0

⎤

⎥

⎥

⎦

,  =
⎡

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 0
𝜆 𝜆 + 2𝜇 0
0 0 𝜇

⎤

⎥

⎥

⎦

, (A.8)

0 =
(

𝛼𝑥𝜔𝑥 + 𝛽𝑥
) (

𝛼𝑦𝜔𝑦 + 𝛽𝑦
)

,

𝐴1 = 𝛼𝑥
(

𝛼𝑦𝜔𝑦 + 𝛽𝑦
)

+ 𝛼𝑦
(

𝛼𝑥𝜔𝑥 + 𝛽𝑥
)

, 𝐴2 = 𝛼𝑥𝛼𝑦, (A.9)

𝐵0 =𝜔𝑥𝜔𝑦, 𝐵1 = 𝜔𝑥 + 𝜔𝑦, 𝐵2 = 1, (A.10)

𝛾0 =
(

𝛼𝑥𝜔𝑥 + 𝛽𝑥
)

𝜔𝑦, 𝛾1 = 𝛼𝑥
(

𝜔𝑥 + 𝜔𝑦
)

+ 𝛽𝑥, 𝛾2 = 𝛼𝑥, (A.11)

𝛿0 =
(

𝛼𝑦𝜔𝑦 + 𝛽𝑦
)

𝜔𝑥, 𝛿1 = 𝛼𝑦
(

𝜔𝑥 + 𝜔𝑦
)

+ 𝛽𝑦, 𝛿2 = 𝛼𝑦, (A.12)

where 𝜆 and 𝜇 are the Lamé parameters; 𝛼𝑥, 𝛽𝑥 are the real and
the imaginary stretching parameters of the PML’s stretching function,
respectively, and 𝜔𝑥 is the frequency shift in the 𝑥 direction; 𝛼𝑦, 𝛽𝑦, and
𝜔𝑦 are the corresponding quantities along the 𝑦 direction. In addition,
we define 𝐁𝑥 = 𝐋𝑥𝐍𝑢, 𝐁𝑦 = 𝐋𝑦𝐍𝑢, 𝐁𝜗 = 𝐋𝜗𝐍𝜗, and 𝐁𝜑 = 𝐋𝜑𝐍𝜑, where

𝐋𝑥 =

⎡

⎢

⎢

⎢

𝜕
𝜕𝑥 0

0 0
𝜕

⎤

⎥

⎥

⎥

, 𝐋𝑦 =

⎡

⎢

⎢

⎢

0 0
0 𝜕

𝜕𝑦
𝜕

⎤

⎥

⎥

⎥

. (A.13)
⎣

0 𝜕𝑥 ⎦ ⎣ 𝜕𝑦 0
⎦



Soil Dynamics and Earthquake Engineering 177 (2024) 108414B. Guidio et al.

A

o
o
S

𝐐

w

𝐊
𝐋

𝑎

r

𝐌PML = ∫𝛺CFS−PML

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝐴2𝐍T
𝑢𝐍𝑢 𝟎 𝟎 𝜌𝐴2𝐍T

𝑢𝐍𝜂

𝟎 𝛾2𝐍T
𝜗𝐍𝜗 𝟎 𝟎

𝟎 𝟎 𝛿2𝐍T
𝜑𝐍𝜑 𝟎

𝟎 𝟎 𝟎 𝐵2𝐍T
𝜂𝐍𝜂

⎤

⎥

⎥

⎥

⎥

⎥

⎦

d𝛺, (A.5)

𝐂PML = ∫𝛺CFS−PML

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝐴1𝐍T
𝑢𝐍𝑢 𝟎 𝟎 𝜌𝐴1𝐍T

𝑢𝐍𝜂

−
(

𝛿1 −
𝛼𝑦
𝛼𝑥
𝛾1
)

𝐍T
𝜗𝐋

T
𝜗𝐁𝑥 𝛾1𝐍T

𝜗𝐍𝜗 𝟎 𝟎

−
(

𝛾1 −
𝛼𝑥
𝛼𝑦
𝛿1

)

𝐍T
𝜑𝐋

T
𝜑𝐁𝑦 𝟎 𝛿1𝐍T

𝜑𝐍𝜑 𝟎

𝐵1𝐍T
𝜂𝐍𝑢 𝟎 𝟎 𝐵1𝐍T

𝜂𝐍𝜂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝛺, (A.6)

𝐊PML = ∫𝛺CFS−PML

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑦
𝛼𝑥

𝐁T
𝑥𝐁𝑥 +

𝛼𝑥
𝛼𝑦

𝐁T
𝑦𝐁𝑦 + 𝐁T

𝑥𝐁𝑦 𝐁T
𝑥𝐁𝜗 𝐁T

𝑦𝐁𝜑 𝜌𝐴0𝐍T
𝑢𝐍𝜂

+𝐁T
𝑦𝐁𝑥 + 𝜌𝐴0𝐍T

𝑢𝐍𝑢

−
(

𝛿0 −
𝛼𝑦
𝛼𝑥
𝛾0
)

𝐍T
𝜗𝐋

T
𝜗𝐁𝑥 𝛾0𝐍T

𝜗𝐍𝜗 𝟎 𝟎

−
(

𝛾0 −
𝛼𝑥
𝛼𝑦
𝛿0

)

𝐍T
𝜑𝐋

T
𝜑𝐁𝑦 𝟎 𝛿0𝐍T

𝜑𝐍𝜑 𝟎

𝐵0𝐍T
𝜂𝐍𝑢 𝟎 𝟎 𝐵0𝐍T

𝜂𝐍𝜂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d𝛺. (A.7)

Box I.
𝐔

w
t

𝐔

R

ppendix B. On the compact discrete operators 𝐐 and 𝐝 of (6)

The discrete forward operator 𝐐 results from the standard second-
rder semi-discrete equations of motion (3), following the introduction
f the average acceleration implicit Newmark time-integration scheme.
pecifically, it can be shown that:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐈 0 0 0 0 0 … 0 0 0 0 0 0
0 𝐈 0 0 0 0 … 0 0 0 0 0 0
𝐊 𝐂 𝐌 0 0 0 … 0 0 0 0 0 0
𝐋1 𝐋2 𝐋3 𝐊eff 0 0 … 0 0 0 0 0 0
𝑎1𝐈 𝐈 0 −𝑎1𝐈 𝐈 0 … 0 0 0 0 0 0
𝑎0𝐈 𝑎2𝐈 𝐈 −𝑎0𝐈 0 𝐈 … 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 … 𝐋1 𝐋2 𝐋3 𝐊eff 0 0
0 0 0 0 0 0 … 𝑎1𝐈 𝐈 0 −𝑎1𝐈 𝐈 0
0 0 0 0 0 0 … 𝑎0𝐈 𝑎2𝐈 𝐈 −𝑎0𝐈 0 𝐈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(B.1)

here:

eff = 𝑎0𝐌 + 𝑎1𝐂 +𝐊, 𝐋1 = −𝑎0𝐌 − 𝑎1𝐂,

2 = −𝑎2𝐌 − 𝐂, 𝐋3 = −𝐌,

0 =
4

(𝛥𝑡)2
, 𝑎1 =

2
𝛥𝑡

, 𝑎2 =
4
𝛥𝑡

,
(B.2)

with 𝛥𝑡 denoting time step. The vector 𝐝̂, which encompasses the space–
time discretization of the unknown nodal quantities at all time steps, is
defined as:

𝐝̂ =

⎡

⎢

⎢

⎢

⎣

𝐔̂
̇̂𝐔
̈̂𝐔

⎤

⎥

⎥

⎥

⎦

, (B.3)

where 𝐔̂, ̇̂𝐔, ̈̂𝐔 are the space–time discretization of displacement-like
quantities 𝐔(𝑡), the velocity-like 𝐔̇(𝑡), and the acceleration-like 𝐔̈(𝑡),
17

espectively. Specifically:
̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐔𝑖0

𝐔𝑑0

𝐕0

⋮

𝐔𝑖𝜏

𝐔𝑑𝜏

𝐕𝜏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ̇̂𝐔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐔̇𝑖0

𝐔̇𝑑0

𝐕̇0

⋮

𝐔̇𝑖𝜏

𝐔̇𝑑𝜏

𝐕̇𝜏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ̈̂𝐔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐔̈𝑖0

𝐔̈𝑑0

𝐕̈0

⋮

𝐔̈𝑖𝜏

𝐔̈𝑑𝜏

𝐕̈𝜏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.4)

here subscripts 0… 𝜏 indicate time steps, with 𝜏 denoting the final
ime step; in the above, 𝐔(𝑡) is defined as in (4):

(𝑡) =
[

𝐔𝑇
𝑖 (𝑡) 𝐔𝑇

𝑑 (𝑡) 𝐕𝑇 (𝑡)
]𝑇

=
[

𝐔𝑇
𝑖 (𝑡) 𝐔𝑇

𝑑 (𝑡) 𝐖𝑇
𝑒 (𝑡) Θ𝑇 (𝑡) Φ𝑇 (𝑡) 𝐇𝑇 (𝑡)

]𝑇 . (B.5)
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