PRESSURE MEASUREMENT

Methods and Applications

Overview

Pressure (P) expresses the magnitude of normal force (F-N) per unit area (A-m²) applied on a surface(Crowe et al. 2005)

$$P = \frac{F}{A}$$
 or $P = \frac{\Delta F}{\Delta A}$

Units: Pa(= N/m²⁾, psi(=lbf/in²), bar (= 10^5 Pa=100 kPa), mbar (=100 Pa=1 hPa), atm (=101.3 kPa), mmHg (or Torr), inHg, etc.

Note: For every Unit: hUnit=hectoUnit=100 Unit

$$P_{abs} = P_{atm} + P_{gage}$$

Where P_{abs}: Absolute pressure

P_{atm}: Atmospheric pressure

(standard is: 101.3 kPa =14.696 psi=760 mmHg=29.92 inHg)

P_{gage}: Gage pressure

Bourdon Gage:

Principles: change in curvature of the tube is proportional to difference of pressure inside from that outside the tube

Applications: tire pressure, pressure at the top or along the walls of tanks or vessels

Strain Gage

Principles: $\triangle P \rightarrow \triangle$ Resistance $\rightarrow \triangle$ Voltage

Applications: Sensors for internal combustion engines, automotive, research etc.

Quartz Gage

Principles: \triangle Pressure \rightarrow \triangle Charge \rightarrow \triangle Voltage

Applications: measurements with high accuracy, good repeatability, high resolution. e g. Quartz Clock

Piezoresistive Gage

Digital Manometer

Principles: Δ Pressure = Δ Charge = Δ Resistance = Δ Voltage

Applications: Very accurate for small pressure differentials e.g. Difference between indoor and outdoor pressure

U-tube Manometer

Principles: Hydrostatic Law

$$\Delta P = \rho g h$$

U-tube Manometer

http://www.armfield.co.uk/images/H12.gif

Mercury Water Manometer

Applications: air pressure, pipe pressure, etc.

Air Water Manometer

UT Manometer Applet

<u>Click here</u> to connect to UT's Interactive Fluids Applets website