
NOTES ON SIMILITUDE

Geometric Similarity: Wm/Wp=Hm/Hp=Lm/Lp=scale ratio $\alpha_m = \alpha_p$

Reynolds Number:
$$Re = \frac{VL}{v} = \frac{\rho L^2 V^2}{\mu VL} = \frac{Inertial\ Forces}{Viscous\ Forces}$$

Froude Number:
$$Fr = \frac{V}{\sqrt{g L}} = \sqrt{\frac{\rho L^2 V^2}{\rho g L^3}} = \sqrt{\frac{Inertial\ Forces}{Gravity\ Forces}}$$

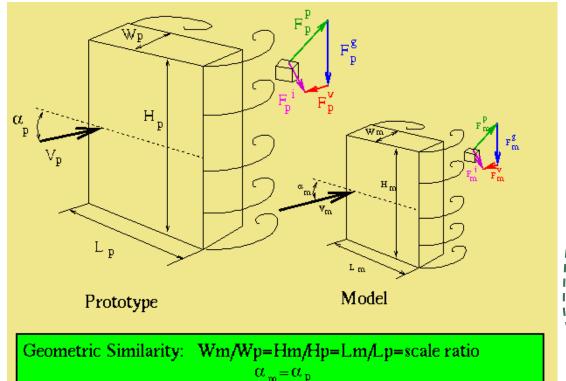
Viscous Pressure Gravity Inertial forces forces forces

$$rac{ec{F}_p^v}{ec{F}_m^v} = rac{ec{F}_p^p}{ec{F}_m^p} = rac{ec{F}_p^g}{ec{F}_m^g} = rac{ec{F}_p^i}{ec{F}_m^i}$$

$$\frac{dV}{dy}(Area) \sim \mu \frac{V}{L}L^2 \sim \mu VL$$

$$F^p \sim \Delta p(Area) \sim \Delta p L^2$$

 $F^g \sim \gamma(Volume) \sim \rho q L^3$


$$F^i \sim Ma \sim
ho L^3 rac{V}{T} \sim
ho L^3 rac{V^2}{L} \sim
ho L^2 V^2$$

$$ightharpoonup rac{\mu_p V_p L_p}{\mu_m V_m L_m} = rac{
ho_p L_p^2 V_p^2}{
ho_m L_m^2 V_m^2}$$

$$Re_p = rac{
ho_p V_p L_p}{\mu_p} = rac{
ho_m V_m L_m}{\mu_m} = Re_m$$

$$ho_p g_p L_p^3 = rac{
ho_p L_p^2 V_p^2}{
ho_m g_m L_m^3} = rac{
ho_p L_p^2 V_p^2}{
ho_m L_m^2 V_m^2}$$

$$Fr_p^2 = rac{V_p^2}{g_p L_p} = rac{V_m^2}{g_m L_m} = Fr_m^2$$

Viscous Pressure Gravity forces forces forces forces $\widetilde{F^{v}} \sim \mu \frac{\overline{dV}}{dy} (Area) \sim \mu \frac{V}{L} L^{2} \sim \mu V L$ $F^p \sim \Delta p(Area) \sim \Delta p L^2$ $F^g \sim \gamma(Volume) \sim \rho g L^3$ $F^i \sim Ma \sim \rho L^3 \frac{V}{T} \sim \rho L^3 \frac{V^2}{L} \sim \rho L^2 V^2$ $\begin{array}{ccc} & \Delta p_p L_p^2 \\ \hline \Delta p_m L_m^2 & = \frac{\rho_p L_p^2 V_p^2}{\rho_m L_m^2 V_m^2} \end{array}$

Pressure Coefficient:

$$C_P = \frac{\Delta p}{\frac{1}{2}\rho V^2}$$

$$C_{Pm} = \frac{\Delta p_m}{\frac{1}{2}\rho_m V_m^2} = \frac{\Delta p_p}{\frac{1}{2}\rho_p V_p^2} = C_{Pp}$$

Force Coefficient:

$$C_F = \frac{F}{\frac{1}{2}\rho V^2 A}$$

$$C_{Fm} = \frac{F_m}{\frac{1}{2}\rho_m V_m^2 A_m} = \frac{F_p}{\frac{1}{2}\rho_p V_p^2 A_p} = C_{Fp}$$

A: Reference Area of the Body

For the Reynolds number to be kept the same for the prototype and the model:

$$Re_p = rac{
ho_p V_p L_p}{\mu_p} = rac{
ho_m V_m L_m}{\mu_m} = Re_m$$
 $rac{V_m}{V_p} = rac{L_p}{L_m} rac{
u_m}{
u_p}$

For the Froude number to be kept the same for the prototype and the model:

$$Fr_p^2=rac{V_p^2}{g_pL_p}=rac{V_m^2}{g_mL_m}=Fr_m^2$$

For both the Reynolds and the Froude number to be kept the same for the prototype and the model:

$$\frac{L_p}{L_m} \frac{\nu_m}{\nu_p} = \sqrt{\frac{L_m}{L_p}} \qquad \qquad \frac{\nu_m}{\nu_p} = \left(\frac{L_m}{L_p}\right)^{3/2}$$

Practically impossible to achieve Reynolds and Froude number equality!

- If <u>free surface effects</u> are NOT important (fully filled pipe, fully submerged body, fluid is air), then we only equate Re numbers
- ➤ If <u>free surface effects</u> are important (open channel flow, ship), then we equate Fr numbers and account for effects of different Re numbers