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SOME ACTUAL SAMPLE WAVE RECORDS 
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TWO WAYS TO ANALYZE RANDOM SEAS: 
 

A: Via Fourier Analysis of Wave Record )(tη  at a location in the ocean: 
 

 
 

)(tη can be expressed in terms of a series of sinusoidal waves with progressively decreasing 
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remember:    ( ) nnn tntntn ϑωϑωϑω sin)sin(cos)cos(cos +=−  
 
( nnH ϑ,* ) or ( nn ba , ) depend on the form of )(tη . 
 
Other notations: 
 

01 ωωω == =fundamental frequency or st1 harmonic 
ωω ⋅= nn = multiple of fundamental frequency or thn harmonic 

 
The Fourier coefficients can be determined from the following integrals: 
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Note:  In general there is a constant term [ 0a ] too, i.e.: 
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With    ηη =∫= dtt
T

a T )(1
0  = mean value of η  over T                               (7) 

 
 

In the case of wave profiles η  is defined with respect to the SWL, thus:  00 == aη  
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Example:   

 
(you may also use the MULTICOMPONENT WAVE APPLET) 
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It can be shown that the total energy under a given wave record is equal to the sum of the 
energies of its components (based on Parseval’s theorem) 

Remember: Specific Energy for each harmonic: 8
)( 2*HgE ρ=  or after dividing by gρ  

we define: 8
)( 2*

* HE =
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B: Via Probabilistic Analysis of Wave Height Observations: 
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Rayleigh Probability Density Function (PDF) P (H)  
(Longuet-Higgins, 1952) 
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Root Mean Square (RMS) of observed wave heights Hrms : 
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Rayleigh PDFs for different Hrms : 

 
Cumulative Distribution Function: P(H) =probability that HH ≤′  
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Define:  )(* HP = (probability that ⇒−=≥′ )(1) HPHH  

2

)((eedence))'(y Probabilit)(* 







−

==≥= rmsH
H

eHexcHHHP    (10) 
 

Note that:  

2
2

2
1

)'(y Probabilit 21









−








−

−=≤≤ rmsrms H
H

H
H

eeHHH  
 
Example: If we wish to design a structure for a design height Hd, for which: 

Prob (H>Hd)=exc(Hd)=1%=0.01 then:  ⇒=
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This structure will exceed the design loading 0.01*[24*365*3600 = # of secs in 1 
year]/10=31,536 times (assuming an average period of 10 secs), and this information can be 
used to enter into a fatigue diagram to assess failure in fatigue. 
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Example  
 

The following wave heights were recorded in a fixed location in the ocean over a 12 hour 
period: 
 
Range of H (m) 0-1.5 1.5-3.0 3.0-4.5 4.5-6.0 6.0-7.5 7.5-10.5 
Number of wave  
height observations (n) 

4000 6000 2000 500 300 60 

 
Determine the PDF for the above waves. Find the rmsH and compare the PDF with the 
Rayleigh PDF. 
 
We need to plot )(HP that corresponds to our samples. To do that we take as: 
 

2
21 HH

H
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=                                                               (11) 

 
where 1H and 2H are the boundaries of each interval 

Then:    
12
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nHP
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Because we want:  
totalN
nHHP =∆)(  

where n=number of heights such that: 21 HHH <<  and N=total number of heights 
 
In our case: 
 
 

860,1260300500000,2000,6000,4 =+++++=totalN  
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21 HH ÷  n/Ntotal 12 HHH −=∆  ( )
2

21 HHH +
=  )(HP  

actual 
)(HP  

Rayleigh 
0÷1.5 0.311 1.5 0.75 0.207 0.192 

1.5÷3.0 0.466 1.5 2.25 0.311 0.309 
3.0÷4.5 0.155 1.5 3.75 0.104 0.148 
4.5÷6.0 0.039 1.5 5.25 0.026 0.032 
6.0÷7.5 0.023 1.5 6.75 0.015 0.0034 

7.5÷10.5 0.005 3.0 9 0.0017 3.4×10-5 
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The Rayleigh PDF is then evaluated, using the following formula, with Hrms=2.69m and 
the values are shown on the Table above. 
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The Significant Height HS 
 
Traditional Definition : Average of the top 1/3 of wave heights 
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As  ∆H→0, 

3
1H  becomes (note the denominator goes to 1/3, due to the definition of 

3
1Ĥ ): 

 
 
 
 
 
 
 
 
and for Rayleigh PDF: 
 
 

 
 

Example: 
 

a) Determine, in the case of Raleigh PDF, an expression for exc(H) in terms of Hs 
 

( ) 22 )/(2/)()'(y  Probabilit srms HHHH eeHexcHH −− ===≥  
 

 
     Given that:  

 
 

Note the above equation can be generalized as follows: 
 

bHsHaeH )/()(exc −=  
Where a and b are appropriate parameters to match measurements.  
 
 a=2, b=2 for Rayleigh; a=2.28 & b=2.13 (Krogstad); a=2.26 & b=2.126 (Forristall) 

 
b) Determine exc(Hs) for Rayleigh PDF:  
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Generalization of 
3

1H  

 

 
 

NnH /  = average of the highest n heights out of the total N heights. 
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NnH /

ˆ  and NnH /  are given in Fig. 3-5 of SPM as a function of n/N 
(assuming Rayleigh PDF) 
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How well the Rayleigh PDF agrees with collected data? (Fig. 3-4 from SPM) 

 
(the exc(H) is shown on the vertical axis) 
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Relationship between sH with 0M  
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(remember: rmss HH 2=  for Raleigh PDF) 

                                                                  
                (20) 

 
 
 
 
The above definition of Hs is more general and does NOT depend on the probability 
density function that the wave height observations might follow. 
 
 
However, in the event the Rayleigh PDF applies, then the traditional definition of Hs=H1/3, 
and the one above will define the same significant height. 
 
The above is also shown in the next page: 
 
 

∫
∞

===
0

0 )(442 ωω dSMHH rmss  



Ocean Waves:  Theory and Applications 19 ©S.A. Kinnas, 2023 
 

 
Fundamentals of Offshore Structures & Design of Fixed Offshore Platforms                                  OTRC/UT Austin, May 15-19, 2023 

 

 
 
 

 
 

 



Ocean Waves:  Theory and Applications 20 ©S.A. Kinnas, 2023 
 

 
Fundamentals of Offshore Structures & Design of Fixed Offshore Platforms                                  OTRC/UT Austin, May 15-19, 2023 

 
 

The Significant Frequency and Period: 
 

 
 

sT =  significant period (also called peak period PT  );   
s

Ps TT
ω
π2

==  

sω  = significant (or dominant) frequency (also called peak frequency Pω )    
         (corresponds to angular frequency of the wave harmonic with the largest amplitude) 
 

sH = significant height = 04 M  
 

Typical Wave Spectra: 
 

 
NOTE: Some wave spectra use f=ω/2π instead of ω. In that case: S(f)=2πS(ω), 
so that the area under S(f) represents the same amount of energy. 
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Pierson-Moskowitz Spectrum: 

(For Fully Developed Seas – FDS Equilibrium Spectrum) 
(see also p. 3-42 of SPM) 
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It can be shown that: 
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209.02 =
U
gH s      Note: Hs~U2                                                   (23) 

16.7=
U
gTs       Note: Ts~U                                                   (24) 

 
where Hs and Ts are the significant height and period, respectively. 
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                             FDS Wave Spectra for various wind speeds 

 
Note Area under Spectrum ~ Hs

2 ~ U4  
 

 
 

1 knot=1 nautical mile/hour = 1.151 mph = 0.514 m/s 
1 nautical mile = 1,852 m 

1 (statute) mile = 1,609.35 m 
 

Q: Can you explain why the peak of the wave spectrum moves to the 
“left” as the significant height (or the wind speed) increases? 

 
Some other common wave spectra: 
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(made non-dimensional so that area under wave spectrum is equal to 1) 
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As we will see in the lecture on Wave Forces, an offshore structure 
must be analyzed subject to an incoming mono-chromatic wave of 
height Hmax and period Tm corresponding to the 100-year storm. We 
assume that this is the worst-case scenario. 
 
 

Big Question: 
 
How can I determine Hmax (height of 100-year storm) and Tm (period 
of the 100-year storm) for a certain location in the ocean?  
 

Answer: 
 
If the location has been already known and developed (e.g. GOM, 
those parameters are given in API, as we will see on the section on 
Wave Forces). IMPORTANT NOTE: These parameters can be 
revised, based on information from recent STRONGER storms (e.g. 
Ivan, Rita, Katrina, etc.) 
 
If it is a new location, then measurements, hindcasting can provide us 
with estimates for Hs (significant height) and Tp (peak period) over 
many past years. These collected data from the past years, theory 
(usually adjusted empirically), regression analysis, and extrapolations, 
can provide us estimates for Hmax and Tm, as described in the lectures 
on Design Parameter Specifications in this course. 
 
Problem 5 from the next list of problems and solutions presents an 
attempt to relate the maximum wave height to the significant wave 
height. 
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Some Example Problems on Random Waves and Their Solutions: 
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…and their solutions: 
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Note in the case of Forristall, it can be shown that:   
47.0

max 26.2
ln





=

NHH s  

 
For example if N=1,000, then Hmax=1.86Hs  from the former, and Hmax=1.69Hs , 
from the latter formula. 


