WAVE ENERGY

Kinetic energy: K.E $=\frac{1}{2} m q^{2}$
Potential ":P.E. $=m g h$
$\frac{\text { Total Energy }=T \cdot E .=k \cdot E+P \cdot E \cdot \cdot}{\frac{1}{2} m q^{2}+m g h}$

$$
\begin{aligned}
& \int_{\forall \text { lice }} d m \frac{q^{2}}{2}+d m g z \\
& d m=\rho d \forall \\
& \text { T. E. slice }=\int_{\text {slice }}\left(\rho y z+\frac{\rho}{2} q^{2}\right) d \forall
\end{aligned}
$$

Perspective view of a plane progressive wave

$$
\begin{aligned}
& T \cdot \epsilon_{\text {stab }}=\int_{\text {Slab }}^{(\overbrace{\rho g z+\rho \frac{q^{2}}{2}}^{\text {WAVE ENERGY }}(\underbrace{}_{d})}=\underline{b \cdot d x \cdot d z}\left[\rho g z+\rho \frac{q^{2}}{2}\right] \\
& \begin{aligned}
T \cdot E_{\text {slice }} & =\int_{-d}^{\eta} \rho\left[g z+\frac{q^{2}}{2}\right] \frac{d z b d x}{}= \\
& =b \cdot d x \int^{\eta} \rho\left[g z+\frac{q^{2}}{2}\right] d z
\end{aligned} \\
& =b \cdot d x \int_{d}^{\eta} \rho\left[g z+\frac{q^{2}}{2}\right] d z
\end{aligned}
$$

$$
\begin{aligned}
& \text { or specificeneryy } \\
& \text { of the slice }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAVE ENERGY } \\
& \left.\bar{E}_{\text {slice }}^{k}=\int_{-\alpha}^{\eta} \rho \frac{q^{2}}{2} d z=\int_{-\alpha}^{\text {WAVE ENERGY }} \rho \frac{a^{2} \omega^{2}}{2} e^{2 k z} d z\right) \\
& \text { In deep } \mathrm{H}_{2} \mathrm{O} \Rightarrow q=a w e^{k z} \\
& \leftrightarrow \rho \frac{a^{2} \omega^{2}}{2} \frac{1}{2 k} \int_{-d}^{\eta} e^{2 k z} d(2 k z)=\left.\rho \frac{a^{2} \omega^{2}}{4 k} e^{2 k z}\right|_{-d} ^{\eta}=
\end{aligned}
$$

$$
\begin{aligned}
& =g \text { (dispersion } \\
& \begin{array}{l}
\text { velationshiphr } \\
\text { deep } H_{2} D
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\rho g \frac{a^{2}}{2} \frac{1+\cos (2 k x-2 \omega t)}{2}=\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2} \\
=\rho g \frac{a^{2}}{4}[1+\cos (2 k x-2 \omega t)]
\end{array} \\
& \text { Let's take } x=0 \leadsto \quad \bar{E}_{\text {slice }}^{p}=\rho g \frac{a^{2}}{4}[1+\cos (2 \omega t)] \\
& \text { Average over time: } \\
& \bar{E}_{\text {slice }}^{P}=\rho g \frac{\sigma^{2}}{4} \\
& \left.=\rho g \frac{a^{2}}{4}\right)+\rho g \frac{a^{2}}{4} \cos (2 \omega t)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{\text {slice }}=\bar{E}_{\text {seice }}^{p}+\bar{E}_{\text {stice }}^{k}=\rho g \frac{a^{2}}{2} \\
& \bar{E}_{\text {slice }}=\bar{E}_{\text {slice }}^{k}=\rho g \frac{a^{2}}{4}
\end{aligned}
$$

The potential energy (P.E.) under a sinusoidal wave

The formula $E=\frac{\rho g H^{2}}{8}$ applies to transitional and shallow water as well.

WAVE POWER

$\rho=1,025 \mathrm{~kg} / \mathrm{m}^{3}$ WAVE POWER/EXAMPLE
A sea-water wave tank at the U.S. Army Coastal Engineering Research Center is 193 m long, 4.57 mi de, and 5 m deep. Assume that the wave energy is fully absorbed at the opposite end of the wave generator. What power is required to generate 4 -second waves which are 1 m high, assuming that the wave generator is 40% efficient?

WAVE POWER/EXAMPLE
A sea-water wave tank at the U.S. Army Coastal Engineering Research Center is 193 m long, 4.57 m wide, and 5 m deep. Assume that the wave energy is fully absorbed at the opposite end of the wave generator. What power is required to generate 4 -second waves which are 1 m high, assuming that the wave generator is 40% efficient?

$$
C=\frac{L}{T}=\frac{22.2}{4}=5.55 \mathrm{~m} / \mathrm{s}
$$

$$
\text { Table c-1 with } \frac{d}{L 0}=0.2002 \Rightarrow n=0.6675
$$

$$
C_{g}=n \cdot C=0.6675 \times 5.55=3.705 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& P_{\text {waves }}=\frac{1,025 \times 9.81 \times 1^{2}}{8} \times 3.705 \times 4.57=21,282 \mathrm{~W} \\
& \rightarrow=21.3 \mathrm{~kW} \\
& 0.4=\text { efficiency }=\frac{\text { useful power }}{\text { given power }}=\frac{\text { waves }}{\text { Pen }} \\
& \sim P_{\text {gen }}=\frac{P_{\text {waves }}}{0.4}=\frac{21.3}{0.4}=53.2 \mathrm{~kW}
\end{aligned}
$$

Mean Wave Power (KW/m)

Lewis, A., S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez, 2011: Ocean Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 6.1

In practice $P_{2}=x P_{1} \quad 0<x<1$ G If losses are important

WAVE SHOALING
Special application:

WAVE SHOALING COEFFICIENT

WAVE SHOALING - EXAMPLE
Ex. Prob. 6 from SPM p $2-27$

We know $H_{0}=2 m, T=10 \mathrm{sec}$
a) Find H at $d=3 \mathrm{~m}$

$$
\begin{aligned}
& \text { Find } H \text { at } d=3 \mathrm{~m} \\
& \frac{H}{H_{0}}=k_{S} ; L_{0}=\frac{9 T^{2}}{2 \pi}=156 \mathrm{~m} \text {. }
\end{aligned}
$$

WAVE SHOALING - EXAMPLE

$$
\begin{aligned}
\longleftrightarrow \frac{d}{L_{0}} & =\frac{3}{156}=0.01923 \xrightarrow[C-1]{T} \frac{T_{0} \text { bl }}{H_{0^{\prime}}}=1.237=k_{s}\left(H_{0}=H_{0^{\prime}}\right) \\
& H=1.237 \times 2=2.474 \mathrm{~m}
\end{aligned}
$$

b) Determine the rate at which energy per unit crest width is transported toward the coastline They ask for \bar{P} !

$$
\rightarrow \begin{aligned}
& \text { one way } \\
& \text { of doing art. } \bar{P}=\frac{\rho g H^{2}}{8} c_{g}
\end{aligned}
$$

We can apply formula above at $d=3 \mathrm{~m}$ We have $H=2.474 \mathrm{~m}$, but we need $C_{g}=n C$ I can do that by using Table $c-1$ to find $L, C=L / T$, and $n \Rightarrow C y=n \cdot C$

Remember (if no losses) $\bar{P}_{0}=\bar{P}$

$$
\begin{aligned}
\bar{P}_{0} & =\frac{\rho g H_{0}^{2}}{8} \cdot C_{g_{0}} ; C_{g_{0}}=\frac{C_{0}}{2}\left(\text { dep } H_{2} 0\right) \\
C_{0}=\frac{L 0}{T} & =\frac{156}{10}=15.6 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\bar{p}_{=}=\bar{P}_{0} & =\frac{1,025 \times 9.81 \times 2^{2}}{8} \times \frac{15.6}{2}=39.2 \frac{\mathrm{kw}}{\mathrm{~m}}
\end{aligned}
$$

Easier way to solve the part of the example problem above. This way we know $C_{g o}=\frac{C_{0}}{2}$ (deep $H_{2} \mathrm{O}$) and $C_{0}=L_{0} / T$. This way requires less calculations.

if $L=100 \mathrm{~km}$ in $d=4 \mathrm{~km}$
it is a shallow $\mathrm{H}_{2} \mathrm{O}$ wave

$$
\text { since: } \frac{d}{L}=\frac{4,000 \mathrm{~m}}{100,000 \mathrm{~m}}=0.04
$$

$d=4,000 \mathrm{~m} \quad$ TSUNAMIS - EXAMPLE $\quad L=100,000 \mathrm{~m}$
An earthquake at a water depth of 4 km generates a tsunami with a length of 100 km and a height or 1 m . Determine the speed of the front (in km / h and mph) of this tsunami at the depth of 4 km and at a depth of 10 mh . What is the period (in minutes), the speed of its front, and the height of this tsunami at a depth of 10 m ? Ignore refraction and reflection.
$\mathrm{H}_{4,00 \mathrm{O}}$

$$
\frac{d}{L}=\frac{4,006}{100,000}=0.04 \quad \text { shallow } \mathrm{H}_{2} \mathrm{O}
$$

$$
C_{g, 4000}=\sqrt{g d}=\sqrt{9.81 \times 4,000}=198 \frac{\mathrm{~m}}{\mathrm{~s}}=713 \frac{\mathrm{~km}}{\mathrm{~h}}=444 \mathrm{mhh}
$$

Very high speed!
TSUNAMIS TRAVEL VERY FAST!!

TSUNAMIS - EXAMPLE
An earthquake at a water depth of 4 km generates a tsunami with a length of 100 km and a height of 1 m . Determine the speed of the front (in km / h and mph) of this tsunami at the depth of 4 km and at a depth of 10 m . What is the period (in minutes), the speed of its front, and the height of this tsunami at a depth of 10 m ? Ignore refraction and reflection.

Assume that wave is shallow at $d=10 \mathrm{~m}$

$$
c_{9,10}=\sqrt{g d}=\sqrt{9.81 \times 10}=9.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

\leftrightarrows MUst VERIFY assumption at the end!
We need to check if $\frac{d}{L}<0.04$ at 10 m

$$
\begin{aligned}
& C_{4,000}=C_{g, 4000}=198 \mathrm{~m} / \mathrm{s}\left(\text { since shallow } C_{g}=C\right) \\
& T=\frac{L}{C}=\frac{100,000}{198}=505 \text { sec }=8.41 \mathrm{mmin} \\
& C_{10}=C_{g, 10}=9.9 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\text { since we assumed shallow } H_{2} 0\right) \\
& L_{10}=C_{10} \cdot T=9.9 \times 505=5,000 \mathrm{~m}
\end{aligned}
$$

at $10 \mathrm{~m}: \quad \frac{d}{L}=\frac{10}{5,000}=2 \times 10^{-3}<0.04$

$$
\begin{gathered}
\text { n deed } \\
\text { shallow } 11 \\
\mathrm{H}_{2} \mathrm{O} \ldots
\end{gathered}
$$

$$
\begin{gathered}
\bar{P}_{10}=\bar{P}_{4,000} \\
\frac{\rho / \rho H_{10}^{2}}{8} c_{g, 10}=\frac{\rho / H_{9,000}^{2} c_{g, 4000}^{8}}{H_{10}=}=H_{4,000 \sqrt{\frac{g, 4000}{c, 10}}=1 \mathrm{~m} \sqrt{\frac{199}{9,9}} \Rightarrow}^{\text {Wave height }}{ }^{H_{10}=4.5 \mathrm{~m}}
\end{gathered}
$$

