

- Is a quick-response, computationally efficient tool that approximates full-scale planning model results, while providing a comprehensive picture of project impacts.
- Impacts include traveler welfare, emissions, crash counts (by type), travel time reliability, & toll revenues.

Outline

- To evaluate many project types, including road capacity expansion & road pricing (by mode and/or time of day), as well as many operations strategies (e.g., ATIS, shoulder use, ramp metering, speed harmonization & incident mgmt).
- Allows for sensitivity analysis (of all impacts, including B/C ratios & NPVs) using Monte Carlo simulation & optimal multi-project budgeting.

Just What is this Toolkit?

The Toolkit...

Toolkit Software Design

Software Modules

- Excel spreadsheet: For data storage, manipulation, & visualization
- C++ programs: Travel demand estimation (estimating trip tables & network flow patterns across modes, times of day & routes)
- VBA macros: Data & parameter communication between Excel & C++ programs

Excel spreadsheet	
Data sets	
↓ ↑	
VBA macros	
C++ programs	

O-D Trip Matrix Estimation (2)

- This ME problem is solved by using a modified version of the Frank-Wolfe algorithm with column generation:
- Step 0: Find a feasible initial O-D matrix (x_{ij,t}).
- Step 1: Find an auxiliary matrix (y_{ij,d}) by solving:

 $\min\left(\sum_{IJ} y_{ij,t} ln(x_{IJ,t}^n)\right) \qquad s.t. \sum_{IJ} \sum_{T} f_{ij,t,t} \theta_{IJ,T}^n - \theta_{n,t}$

- Step 2: Find optimal step size for $\theta \in (0,1)$.
- Step 3: Update solution: $x_{ijt}^{n+1} = x_{ijt}^n + f(y_{ijt} x_{ijt}^n)$

Step 4: Test for convergence (& return to Step 1 till converged).

TEXAS

Incremental Logit Model

Piles - Andeline Zee Files - Andeline

- where provide the base probability for each mode m, traveler class k (with differing VOTTs, etc.) & OD pair ij.
- λ_m is mode-choice scale parameter.
- A state is the change in generalized costs between the base case & alternative scenario.
 - A very similar equation used model TOD shifting.

TEXAS

Sensitivity Analysis

- 21 parameters allowed to vary
- 65 values assessed (B/Cs & NPVs, crash counts, emissions totals, key-link volumes, toll revenues, etc.).
- Average ± 1 SD values summarized (& analyst has access to all runs' predictions).
- Toolkit assumes lognormal distribution of parameters.
- Up to 100 trials may be conducted during sensitivity testing.

- Toolkit provides framework for maximizing traveler benefits from a selection of available projects.
- Constraints may include:
 - Budget constraints
 - Regional constraints optional (ex: each region assigned min. \$)
 - Project type constraints optional (ex: non-motorized, capacity, safety)
 Total cost

Toll Reve

TEXAS

How are performance measures and Impacts calculated?

Travel Demand Growth

- Assumed exponential (though analyst can specify linear).
- All nodes serve as potential origins & destinations.
- Analyst can vary expected growth for each individual node (e.g., high growth in developing areas & low growth in built-out neighborhoods).

Impact Assessment Over Time

- Impacts are assessed for every scenario, in the Initial Year (of project) & (final) Design Life Year.
- Impacts are exponentially interpolated for Interim Years by answering the question,
- "At what rate do impacts need to grow in order to reach the final year value?"

Traveler Welfare Estimation

- User Surplus: Amount of money that travelers are willing to pay for new travel context (relative to base case context), approximated by Rule of Half (applied to each O-D pair, for each TOD, User Class & Mode).
- RoH is applied on the O-D level.
- Calculated based on a combination of travel time (\$/hr) & operating costs (\$/mi).
 Old travel cost user classes) & different operating costs (light vs. heavy vehicles).

Fuel Efficiency

General fuel efficiency relation to speed:

vehicles) and average fuel efficiencies.

Fuel Use & Tolling Revenues

- Fuel use is based on vehicle speeds & average fleet fuel efficiency by year (including heavy trucks).
- Toll revenues help determine project financing feasibility.
- Reported for analyst use (but not included as individual components in B/C, NPV & other summary measures).
 - Fuel use reflected in operating costs & emissions.
 - Tolling costs reflected in traveler welfare.

Advance Traveler Information Systems (ATIS)

н.

- Includes Variable Message Signs, Hwy Advisory Radio, Internet-based ATIS, In-vehicle route guidance, etc.
 - Travel time savings estimate = # of crashes per year × # of major incidents per crash
 - × % of incidents during congested times
 - × # of travelers on road exposed to ATIS strategy
 - × % of those travelers who change route & save time
 - × Avg. time savings per traveler who changes route.
- Final \$ Benefit = Avg. VOTT * Total Travel Time Savings

ATIS, Speed Harmonization & Incident Management

- These strategies are assumed to influence nonrecurring events & therefore the model assumes that these strategies will not significantly impact travel patterns.
- Therefore, analysts do not re-run the demand model to evaluate these strategies.
- Frequency of events estimated based on # crashes per year, on the impacted links, as predicted by the Toolkit.
- Assessed impacts are in the form of changes in emissions, travel times & crashes, depending on the strategy.

Project Costs & Capacity Benefits

Scenario	Project Cost	Added Maint. Costs	Section Capacity
Base Case (No Build)	\$0	\$0	3080 veh/hr
Freeway Upgrade	\$71.8 M	\$430 k/yr	7640 veh/hr
Tollway Upgrade	\$80.5 M	\$1,200 k/yr	7640 veh/hr
Tollway w/ var. Pricing	\$80.5 M	\$1,200 k/yr	7640 veh/hr

Results: Impacts over Time – Relative to Base Case: Traveler Welfare

Results: Fatal & Injury Crashes

Results: Summary Measures Preferred Alternative: Freeway Upgrade

However both the Tollway Upgrade or the Tolling by Vehicle class alternative scenarios deliver substantial traveler benefits while providing funds to finance the project.

	Base Case:	Freeway	Tollway	Tolling by
	No Build	Upgrade	Upgrade	Veh. Class
Total Initial Costs	\$0	\$71.8 M	\$80.5 M	\$80.5 M
Change in Maint. & Operations Costs	\$0	\$0.43 M	\$1.18 M	\$1.18 M
Interim Project Cost	\$30 M	\$0	\$0	\$0
Interim Project Year	2020	N/A	N/A	N/A
Net Present Value	\$0	\$734 M	\$223 M	\$378 M
Internal Rate of Return	N/A	90%	17%	30%
Benefit / Cost Ratio	N/A	14:1	4:1	6:1
Payback Period	N/A	2.3 years	10.9 years	6.1 years
Economic Summar	ry Measures	s of Projec	ct Alternati	ves
				THE UNIT
				TE

Results: Net Benefits by Category

- Main impacts come from Traveler Welfare & Reliability.
- Safety values are small . in comparison.

Note: Safety changes

represent Market or Economic Costs only

(not pain & suffering or value of life).

	Base Case: No Build	Grade Sep. Freeway	Grade Sep. Tollway	Tolling by Veh. Class
Initial Year Monetary Benefits	\$0 M	\$31 M	\$0.9 M	\$12 M
Traveler Welfare	\$0	\$23.7	-\$0.1	\$5.0
Reliability	\$0	\$7.0	\$0.4	\$6.3
Crashes	\$0	\$0.7	\$0.6	\$0.7
	Base Case: No Build	Grade Sep. Freeway	Grade Sep. Tollway	Veh. Clas
	Base Case:	Grade Sep.	Grade Sep.	Tolling by
Design Life Year				
Monetary Benefits	\$0 M	\$130 M	\$85 M	\$98 M
Traveler Welfare	\$0	\$77	\$22	\$49
Poliability	\$0	\$52	\$62	\$47
reliability				

Project Financing Evaluation

		290 Freeway	290 Tollway	290 Tolling by
Project Financing (\$M)	No Build	Upgrade	Upgrade	Vehicle Class
NPV of New Tolling Revenues	\$0	\$1.6	\$216	\$209
NPV of Initial and Future Project Costs	\$0	\$56	\$73	\$73
Project Financing Perspective NPV	\$0	-\$56	\$144	\$136
Project Financing Perspective IRR	N/A	N/A	24.1%	22.8%
Project Financing Perspective PP	N/A	> 20 years	6.1	6.5
NPV of Project Impacts	\$0	\$790	\$295	\$450
Agency Perspective NPV	-\$18	\$736	\$440	\$587

- 290 Tolleop Flacte Tollingging and the galances of the back scaling
 byget for a flag type to the still
 byget for a flag type to the still
- plansichedinegerekkerstuerstijnelth die dereipuppier oproject costs.

Sensitivity Testing: B/C Ratios

 600 Iterations Conducted on the Freeway Upgrade & Tollway Upgrade (by veh. Class).

Unintended Consequences?

VMT falls on I-35, but Increases system-wide.

Crashes and Emissions Increase

Caused by increased VMT, but also by traffic to arterials which have greater emissions (due to more stop-and-go traffic) & crashes (due to more vehicle conflicts).

What Happened?

 Instead of foregoing trips or switching to better times of day or modes, travelers took longer, alternate routes to reach their destinations.

Break: Coffee & Snacks

TEXAS

Part 3: Using the Toolkit

TH UNIVESTIVO TEXAS

Toolkit Components (2)

- Trip Table Estimator (application, tdm_matrix.exe)
 - Estimates a base Trip Table based on the existing network & traffic volumes.
- Network Flow Estimator (application, *tdm_flow.exe*)
 Estimates traffic flows by user class, mode & time of day.
 Estimates traveler welfare.
- Toolkit Upload File (Excel, Upload_toolkit_file.xls)
- Source file for user inputs to be automatically uploaded to Main Toolkit File.
- Contains reference cells for network & new parameter value source documentation.

Toolkit Components

measures.

results.

Main Toolkit File (Excel, sketch_toolkit.xlsm)
 Holds transportation network, parameters, & project costs.
 Calls Trip Table Estimator & TDM to estimate traffic flows & TW.

Develops summary measures & presents results.

Estimates reliability, crashes, emissions, fuel use & summary

Operational Toolkit File (Excel, op_sketch_toolkit.xlsm)
Used for Speed Harmonization, Incident Management & ATIS.
Similar to Main Toolkit file, but does not use a TDM.
Utilizes Main Toolkit File network, AADTs & formulas to estimate

Facilitates sensitivity testing processes.

- Budget Allocation Module (Excel *budget_allocation_module.xlsx*)
 Used to assess best allocation of funds among multiple potential project candidates.
- Sensitivity Testing I/O Folders (STInputs & STOutputs)
 Folders for storing sensitivity testing files & results.

Toolkit Color Coding • White Labels & Equations • Green Parameters • Blue User Inputs • Yellow Key Results • Pink Travel Demand Model Outputs

Toolkit Navigation

- There are over 70 worksheets in the Main Toolkit File
- The Navigation Panel allows for easy Toolkit navigation

Attraduction	Summary input information	Output Summary	Volume Output Initial Year Rose Case
Project Evaluation Toolkit Home	YOP Splits	Summary Charts	Volume Output Design Year Base Case
Delput Sensmary	Report Growth Autors	tensitivity festing	Volume Output Initial Year Alt Scenario J
Summary Charts	Anse Cover Highway Unit Configuration	Prestly Confis	Volume Output Design Year Alt Scenario J
Sensitivity Vesting	Alternative Scenario 1 Highway Link Configuration	Remailier Sceneto I Remeiler Weifare Scenetary	
A Go To New every Too	lgation Panet button is I lkit sheet	ocated in the uppe	er-left corner of

TEXAS

Developing Projects in the Main Toolkit File Project Types: Capacity Expansion (incl. new links) Roadway Pricing Reversible Lanes

- Managed Lanes
- Shoulder Lane Use
- Traffic Safety Enhancement
- Ramp Metering
- Speed Limit Changes (via. FFS)

Project Development in the Main Toolkit File **Step 1: Verifying Parameters** Key Project Inputs

- General Project Information Initial year, project life, base growth rate, discount rate
- Capacity & Reliability Parameters
 - Free flow speeds, BPR alpha & beta, heavy veh. psg. car equiv. (PCE)

Step 1: Verifying Parameters

- Operating Costs, User Groups & Modes Values of time & reliability, avg. veh. occ., pop. distributions
- Safety Parameters
- Crash valuation, severity distributions
- Temperature, Emissions & Fuel Use
- Summer & winter temperatures, fuel use-speed relationship Sensitivity Testing
- Varying parameters & # of iterations

TEXAS

TEXAS

- User Classes each assumed a base % of population with unique ue of Time and Re
 - VOTTs and VORs Heavy truck driver

Wor	k-rela	ited	trave	

Commuter

Traveler - non-work-related

Vehicle Modes - each User Class assigned a base probability of selecting a given mode

lity (\$/

\$30.00 \$10.00 \$5.00

0.012 0.012 0.012 0.012 0.012 0.296 0.296 0.296 0.296

10% 20% 65%

0%

\$30.00

\$5.00

HOV 2 HOV 3

0.333

0.333 0.333

\$0.20 \$0.20 \$0.50 \$0.50

Step 3: Developing the Base Network (2)

- For each link, the analyst *must* enter:
 - From Node, To Node, Length, Class (Freeway, Arterial, Collector, Ramp), Area Type (Urban, Suburban, Rural), # Lanes, Land Use & Median (arterial only), Capacity, TOD Reference
- For each link, the analyst *may* enter:
 - Free Flow Speed, Crash Mod. Factor (CMF), Var. Capacity, # Entr. & Exit Ramps (FW), and Time of Day-Specific Capacity

1 10 </th <th>A AN AN AND THE LOOP A</th> <th>1.1</th> <th>100</th> <th>55</th> <th>11</th> <th>1</th> <th>1650</th>	A AN AN AND THE LOOP A	1.1	100	55	11	1	1650
5 10 35 103 terri-tanee. 28 1 1 06 12 3 0000 6 135 32 103 terri-torpi. 28 1 1 55 12 3 0000	4 10 1 123 Long 3-1745	7,8	1.1	- 15	1.5	1	75000
. All a dispersion of the second s	6 15 10 15 183 Long 1 - Long 1 6 15 10 183 Lamar - Loop 1	2.9	1.1	55	3.2	3	69500
							1000000

Step 5: Adding Intersections, Example

Step 5: Adding Intersections, Example (2)

Project Development in the Main Toolkit File

Now that the Base Case Scenario has been developed, it is time to develop Alternative Scenarios

<text><list-item><list-item><text><text><text><list-item>

Step 6: Modify the Alternative Scenario Network (2)

- Important note:
 - If adding a link or a node in an alternative scenario, be sure to also add it in the base case scenario.
 - Analyst may use capacity & AADT of 1 for the new link in the base case scenario.

Step 7: Modify Alternative Scenario Intersections

- Go to Alternative Scenario 1 using the Navigation Panel.
- Copy the Base Case Intersections.
- Then modify control type, crash modification factors or other link characteristics, as desired.
- If adding an intersection, ensure that the intersection physically does not exist in the base case scenario.
- If removing an intersection, ensure that the intersection is physically being removed (e.g. via grade separation or street closure).

Step 8: Modify Alternative Scenario Tolling Rates

- Go to Alternative Scenario 1 Tolls using the Navigation Panel.
- Copy the Base Toll Settings.
- Then modify tolling rates, by time of day & vehicle class, as desired.

Step 9: Develop Project Cost Estimates

- Go to Ingineer's Estimate Using the Navigation Panel.
- Enter Initial costs for each scenario.

	Lane Miles	Const Cost per Lane Mile	ITS / Signal / Electrical	Bridges & Structures	Utility & Other Fixed Costs	Construction Subtotal	Traffic Control	Environmenta Construction
No Build	0.0	50	50	50	50	\$0	0.0%	0.0%
290 Freeway Upgrade	20.4	\$3,200,000	30	50	30	\$45,280,000	0.0%	0.0%
290 Totled Freeway	20.4	\$3,200,000	\$7,900,000	50	\$0	\$78,180,000	0.0%	0.0%
290 Tolling by Vahicle Class	20.4	\$3,200,000	\$7,900,000	50	50	\$73,180,000	0.0%	0.0%
	Design as % of Const Costs	Design	ROW Purchase	Construction	Construction Engineering	Contingencies	Contingencies	Overhead & Indirect Costs
Ne Build	30%	50	50	0.0%	50	0.0%	\$0	0.0%
190 Freeway Upgrade	10%	\$6,528,000	50	0.0%	50	0.0%	50	0.0%
290 Tolled Freeway	20%	\$7,310,000	50	0.0%	50	0.0%	50	0.0%
NAME OF ALL ADDRESS OF A DESCRIPTION OF	100	57 318 000	65	0.0%	55	0.0%	5.8	0.0%

If only a **single value** is needed, you can use Fixed Costs only.

Step 9: Develop Project Cost Estimates (2)

- Enter Additional Annual Maintenance costs & Salvage Value.
- If a Maintenance & Rehabilitation project is required, enter the year and M&R project cost.

	Design	ROW Purchase	Construction Engineering	Construction Cest	Contingencies	Overhead & Indirect Costs	Total Initial Project Costs
No Build	50	\$0	50	50	50	50	50
290 Freeway Upgrede	\$6,528,000	50	50	\$65,280,000	50	50	\$71,808,000
290 Tolled Freeway	\$7,318,000	\$0	\$0	\$73,180,000	\$0	\$0	\$80,498,000
290 Tolling by Vehicle Class	\$7,318,000	50	50	\$73,160,000	50	50	\$80,498,000
	Add. Annual Maintenance	Salvage Value	Maint & Rehab Project Year	Maint & Rehab Project Cost			
No Build 290 Freeway Upgrade 290 Tolled Freeway 290 Tolling by Vehicle Class	50 5409,233 51,130,263 51,130,263	\$0 50 50 \$0	2020	\$30,000,000			
						Т	EXAS

Step 10: Estimate Projected Travel Growth

- If certain areas are predicted to grow faster than other areas, navigate to rever forware forware
- All traffic will assume growth at the base rate, unless otherwise specified by the analyst.
- Traffic Growth estimated at average of production & attraction rates.

Node	Base Initial Growth	Growth	Base Initial Growth	Growth	Alternate Growth Rate	Growth	Alternate Growth Rate	Growt
1	5.0%	5.0%	5.0N	5.0%	1.000	22.7%	(marked)	22.7%
2		0.0%	1000	0.0%	2.0%	48.6%	2.0%	48.65
3		0.0%		0.0%	2.0%	48.6%	2.0%	48.65
								TH

Step 11: Running the Travel Demand Model

 Now that the alternative Scenarios have been developed, navigate to <u>Tooktrawe</u> and review the Input Summary Checklist:

umman	y Input Information	TOO Spl	ts .	Hwy Lin	k Configuration - Alt Scenario 1
3	Number of Scenarios	5	# TOD Periods	OK	From Link Entered on All Links
2010	Initial Year	6	# TOD Ref. Stations	OK.	To Link Entered on All Links
20	Design Life (Years)	OK	Non-zero TOD Period	OK	Link Lengths Entered on All Link
1.0%	Annual Growth Rate	OK	Non-zero split in TOD reference	OK.	Road Class Entered on All Links
76	Summer Temperature			OK	Area Type Entered on All Links
56	Winter Temperature			OK	# Lanes Entered on All Links
7	# of Summer Months			OK.	Capacity Entered on All Links

 If everything is OK, and parameters look properly set, you can begin the Travel Demand Modeling process.

Check and set the Travel Demand Modeling Settings:

Break: Coffee & Snacks

Project Development in the Main Toolkit File Step 12: Interpreting Results

- 6 types of Toolkit Output results:
 - Toolkit Output Summary
 - Summary Charts
 - Traffic Link Comparisons
 - Impact Category Summaries
 - Individual Scenario Sheets
 - Sensitivity Testing Results

Step 12: Interpreting Results Output Summary

 Reports scenario cost information (taken from user entry)

			5	cenarios	
		No Build	290 Freeway Upgrade	290 Tolled Freeway	290 Tolling by Vehicle Class
Initial	Right of Way	50	50	50	50
Project Costs	Design	50	56,528,000	57,318,000	57,318,000
	Construction	50	\$65,280,000	\$73,180,000	\$73,180,000
	Other	\$0	\$0	\$0	\$0
Total Initial Co	otal Initial Costs		\$71,808,000	\$80,498,000	\$80,498,000
		No Build	290 Freeway Upgrade	290 Tolled Freeway	290 Tolling by Vehicle Class
Total Initial Ye	ar Costs	50	\$71,808,000	\$80,498,000	\$80,498,000
Change in Ann	ual Maint, & Operations Costs	50	\$409,233	\$1,130,263	\$1,130,263
Annualized En	d of Life Salvage Value	\$0	\$0	\$0	\$0
Interim Projec	rt Cost	\$30,000,000	50	50	50
		2010			

Step 12: Interpreting Results Output Summary (3)

 Contains project financing measures, comparing scenario cost information against projected revenues.

		No Build	290 Freeway Upgrade		
Annual Tolling Revenues (Thousands S)	Initial Yr	Design Yr	Initial Yr	Design Yr	
Total	\$122,046	\$141,480	\$122,046	\$141,636	
Change vs No Build Scenario	\$0	50	\$0	\$156	
				290 Tolling by Vehi	
Project Financing (Thousands \$)	No Build	290 Freeway Upgrade	290 Tolled Freeway	Class	
NPV of New Tolling Revenues	SO	\$782	\$199,087	\$231,440	
NPV of Initial and Future Project Costs	\$17,540	\$73,246	\$90,080	\$90,080	
Project Financing Perspective NPV	-\$17,540	-\$72,464	\$109,007	\$141,361	
Project Financing Perspective IRR	N/A	N/A	22.2%	26.6%	
Project Financing Perspective PP	N/A	>20 years	6.6	5.5	
NPV of Project Impacts	\$0	\$505,259	\$188,735	\$220,107	
	\$17,540	6422 705	\$207.742	\$361.467	

Step 12: Interpreting Results Output Summary (2)

Reports monetary benefits & summary measures

	No Build	250 Freeway Upgrade	290 Tolled Freeway	290 Tolling by Vehicle Class
Initial Year Monetary Benefitz	\$0	\$22,262,068	\$2,289,177	\$1,959,30
Traveler Welfare	50	\$14.250.951	-\$5,706,191	-\$6.015.09
Reliability	\$0	\$7,296,550	\$7,298,079	\$7,297,62
Crashes	50	\$719,567	\$697,290	\$676,76
	1			290 Tailing by Vehici
	No Build	290 Freeway Upgrade	290 Tolled Freeway	CTass
Design Life Year Monetary Benefits	50	\$75.178.848	\$43.636.550	\$53.175.19
Traveler Welfpre	\$0	\$29,713,993	\$3,279,426	\$7,081,03
Reliability	50	\$44,429,506	\$39,317,391	\$45,002,7
Crashes	50	\$1,035,348	\$1,039,732	\$1,091,40
Net Present Value	50	\$449,553,640	\$116.195.343	\$147.567.5
Internal Rate of Return	N/A	53.77N	13.57%	14.90
Benefit / Cost Ratio	ti/A	9.07	2.60	3.0
Res Arrest Review	A1 7 A	2.2	11.7	

Step 12: Interpreting Results Output Summary (4)

 Reports changes in crashes & emissions, measures that the analyst may choose to not monetize, or fully monetize (e.g. value of life).

			ID BUILD	5AO HASSMAA ODELSOS		
Average And	ual Crash Changes	Initial Yr	Design Yr	Initial Yr	Design T	
Severity	fatal	0	0	-0.2	-0.3	
Category:	Major Injury	0	0	-0.6	-0.9	
	Minor Injury	0	0	-5.4	-7.8	
	Possible Injury	0	0	-11.1	-16.1	
	Property Damage Only	0	0	-26.9	-39.0	
Total Injury	+ Fatal	0	0	-17.3	-25.0	
			in fluidd	290 [rear	av Unerada	
Average Ann	ual Emissions Changes (tons)	Initial Yr	Design Yr	Initial Yr	Design Y	
Emissions	HC	0	0	-83.3	-849.2	
(Tons)	co	0	0	142.4	-484.6	
	NOx	0	0	10.8	0.5	
	CO2	0	0	7.9	-775.6	
	PM10	0	0	0.0	0.0	

Step 12: Interpreting Results Output Summary (5)

 Reports travel behavior changes, for time of day and mode splits.

Step 12: Interpreting Results Traffic Link Comparisons

- May be used to quickly compare traffic volumes & speeds on certain links across scenarios.
- Reports AADT, Avg. Speed, PM Peak Speed & Changes vs. Base Case Scenario.

nitial Y	ear				ALCT				Average Daily Link Speed			
-	From Node #	To Node #	Link Name	Larget.(m)	Base Case	290 freeway Upgrade	290 Toiled Freeway	290 foiling by Vehicle Class	Base Case	290 Preaway Upgrade	290 Tolled Alexandry	
141	17	19	290 35-Dessey/Camarin	0.5	30367	30947	約347	30367	\$3.2	\$8.2	\$3.2	
142	19	17	290 Dessey/Cemerse - 35	0.5	31001	83005	#100x	83005	53.2	99.2	\$3.2	
343	19	20	290: Dessau / Cemeron - 183	1.1	29501	29501	29901	29901	53.6	\$3.6	12.6	
244	20	19	290 183-Desseu/Cameron	1.3	29901	29501	29505	29501	\$2.6	\$1.6	\$2.6	
245	20	21	290 183-Springdale	1.2	20500	20500	20500	20500	25.4	54.8	54.8	
148	23	20	290 Springstale - 183	1.2	20600	20507	20500	20500	35.4	54.8	54.8	

Enter Link #'s here to see different link comparisons.

u	U	N	v	RS	in	OF	
ŕ	τ	1	٦	r	٨	C	
	L	2	Δ	١.	71	3	
1	λ.1		A U	15.7	11N		

Step 12: Interpreting Results Impact Category Summaries

Reports estimated costs in each year for a given impact category including

	V					
sast sategoi	,	Tear	Base Cond 1	14.1	512	563
		0	\$236	\$230	\$230	\$23
Traveler Welfare		3	\$249	\$245	\$242	\$24
indiferent in onlare		2	\$262	\$255	5254	\$25
Reliability		3	5275	5266	5266	526
rendonity			5289	3279	5282	528
Crachee			6250	1200	5297	631
orasiics		2	5216	\$323	5828	582
Emission			\$354	\$339	\$346	\$34
		\$372	\$354	\$364	\$36	
Fuel Lise Tolls &	2 VMT	10	\$391	\$374	5383	\$38
		11	\$411	\$392	\$403	\$40
			1 × 1 × 1		7.47.6	
1		12	3455	2414	3474	542
Base Condition	Annual Reliability Costs	12	5455	\$433	5447	544
Base Condition Initial Year Costs	Annual Reliability Costs \$236.45 (Millions)	12 13 14	5455 5455 5475	5433 5454	5447 5470	542 544 540
Base Condition Initial Year Costs Design Year Costs	Annyal Reliability Costs \$236.45 (Millions) \$647.37 (Millions)	12 13 14 15	5455 5455 5479 5503	5433 5454 5477	5447 5470 5495	542 544 546 549
Base Condition Initial Year Costs Design Year Costs Average Annual Costs	Annual Reliability Costs 5236.45 (Millions) 5647.37 (Millions) 5409.68 (Millions)	13 13 14 15 15	5455 5455 5475 5503 5529	5433 5454 5477 5501	5447 5470 5495 5521	542 544 546 549 552
Base Condition Initial Year Costs Design Year Costs Average Annual Costs Reliability Cost Growth Rate	Annual Ratiability Costs 5286.45 (Millions) 5647.37 (Millions) 5409.60 (Millions) 5.164	12 13 14 15 15 17	5455 5475 5503 5529 5557	5433 5454 5477 5501 5526	5447 5470 5495 5521 5548	544 546 546 548 552 554
Base Condition Initial Year Costs Design Year Costs Average Annual Costs Reliability Cost Growth Rate	Annual Raitability Costs \$236.45 (Millions) \$647.37 (Millions) \$409.60 (Millions) \$.16%	12 13 14 15 16 17 18	5455 5455 5475 5503 5529 5557 5585	5433 5454 5477 5501 5526 5526	540 5470 5495 5521 5548 5577	\$42 \$44 \$46 \$49 \$52 \$52 \$54 \$557
Base Condition Initial Year Costs Design Year Costs Average Annual Costs Reliability Cost Growth Rate 290 Freeway Upgrade	Annual Astability Costs \$236.45 (Millions) \$447.37 (Millions) \$409.06 (Millions) \$.1616 Annual Fallability Costs	12 13 14 15 16 17 17 18 19	5455 5455 5479 5503 5529 5557 5585 5636	5433 5454 5477 5501 5526 5526 5552 5579	5447 5470 5495 5521 5548 5548 5577 5607	\$42 \$44 \$46 \$46 \$49 \$52 \$52 \$54 \$57 \$80
Base Candition Initial Year Costs Design Year Costs Average Annual Costs Reitability Cost Growth Rate 290 Preeving Upgrade Initial Year Costs	Annual Aniastiloy Costs \$236.45 (Millions) \$647.37 (Millions) \$499.68 (Millions) \$.36% Annual Reliastiloy Costs \$229.57 (Millions)	12 13 14 15 15 15 17 18 19 20	5455 5455 5475 5503 5529 5557 5585 5585 5585 5585 5585	5433 5454 5477 5501 5526 5526 5552 5579 5605	5447 5470 5470 5495 5541 5541 5541 5541 5547 5607 5631	542 544 546 549 552 554 554 557 560 563
Base Candition Initial Year Costs Design Year Costs Average Annual Costs Raitability Cost Growth Rate 290 Praeway Upgrade Initial Year Costs Design Year Costs	Annual Reliastity Costs \$238.45 (Millions) \$647.37 (Millions) \$409.06 (Millions) \$.36% Annual Reliability Costs \$223.57 (Millions) \$600.35 (Millions)	12 13 14 15 16 17 18 19 20	5455 5455 5475 5503 5529 5557 5545 5616 5647	5433 5454 5477 5501 5526 5552 5579 5608	5447 5447 5495 5521 5546 5577 5667 5639	542 544 546 549 552 554 557 560 563
Bese Canditian Initial Tear Costs Design Year Costs Average Annual Costs Residuinty Cost Growth Rate 290 Preevay Upgrade Initial Year Costs Design Year Costs Average Annual Costs	Annual Ratiability Costs S226.45 (Millions) S647.37 (Millions) S407.06 (Millions) S109 Annual Ratiability Costs S225.57 (Millions) S200.25 (Millions) S200.25 (Millions)	12 13 14 15 16 17 18 19 20	5455 5455 5475 5503 5529 5557 5545 5647	5412 5433 5454 5477 5501 5526 5526 5526 5552 5579 5608	5447 5447 5495 5521 5545 5545 5545 5545 5639 THU	542 544 546 552 554 557 560 562
Bese Canditian Initial Tear Costs Design Vear Costs Average Annual Costs Reirability Cost Growth Rate 390 Preeway Upgrade Initial Year Costs Average Annual Costs Average Annual Costs	Annual Astability Costs S236.45 (Ulliona) S647.37 (Ulliona) S447.37 (Ulliona) S449.00 (Milliona) S.16W Annual Ratlability Costs S229.57 (Milliona) S200.19 (Milliona) S200.19 (Milliona) S18.50 (Milliona)	12 13 14 14 15 15 17 14 19 20	5455 5455 5475 5503 5529 5557 5585 5625 5647	5433 5454 5477 5501 5526 5552 5552 5552 5552	5447 5447 5495 5521 5540 5577 5667 5639 THU	542 546 546 552 554 554 557 560 563

Step 12: Interpreting Results Individual Scenario Sheets

Each sheet estimates impacts for a given scenario & year

- Volume Outputs
 - Foundation of all other results
 - Receives link-volume TDM results & TW estimates
 - Estimates fuel use, speeds & reliability
- Link Crashes
- Intersection Crashes
- Emission
- CAUTION: Please refrain from reporting these results! The Toolkit is intended to be much more accurate at the aggregate level than at the link-specific level.

Step 12: Interpreting Results Individual Scenario Sheets (2)

Volume Outputs

TEXAS

Step 12: Interpreting Results **Developing Projects in the Operational Sensitivity Testing Results Toolkit File** Results provided for 65 key measures Project Types: Also provides individual trial outcomes for further analysis (for н. example, histograms) B/C Ratio Advance Traveler Information Systems Total # Cra Impacts: Travel time savings Incident Management tial Year E Impacts : Travel time savings & emissions (Daily Sur Speed Harmonization Impacts : Crash reduction 7 outcomes 7-15 Analyst can accept the probable 1 outcome 24 1 outcome 702 range, or explore what caused the outliers. 1 outcome -5.7 TEXAS

Developing Projects in the Operational Toolkit File Step 1: Code the Network in the Main Toolkit File

- In order for the Operational Toolkit File to run properly, the targeted links must be coded in the Main Toolkit.
- Users must input link information for the base case scenario, including traffic volumes, # of lanes, etc.
- Record the link numbers, then close the Main Toolkit File.

	Line B Node # Sode # Line Name	Langth (mi)	
A	1 1 1.2.3. Nort Time. THIS 3 1 1.2.3. TTRE Large 1 4 2.3 1.2.3. TTRE Large 1 4 2.3 1.2.3. TTRE Large 1 6 2.3 1.2.3. TTRE Large 1 6 2.4 2.3. Large 1.2. However 6 2.3 2.3.2. Large 1.2. However 7 2.5 2.4.3. Large 1.2. Large 1.2. 8 2.6 2.4.2. And 1.2.	1 73 73 73 73 73 73 73 73 73 73 73 73 73	
			THE UNIVERSITY OF TEXAS

Step 2: Verify the Summary Input Information

Step 4: Modify link-specific characteristics If individual links are assumed to have different characteristics than the default, they may be modified by the analyst.

17

Step 5: Develop the Engineer's Estimate

 Cost information layout is identical to the Engineer's Estimate in the Main Toolkit File.

	100000	Carst Cost /	ITS/Signal/	Bridges &	Utility & Other	Construction		Inconnettal	Additional Cents	Construction
	Lane Milles	Cane Mile	Dectrical	Structures	Fixed Costs	Subtotal	Traffic Control	Construction	Subtotal	Cost Total
No Build	0.0	50	50	50	50	50	0.0%	0.0%	\$0	50
4715	0.0	50	\$100,000	\$0	50	\$100,000	0.0%	0.0%	\$0	\$100,000
Incident Management	0.0	50	\$100,000	\$0	30	\$100,000	0.0%	0.0%	\$0	\$100,000
Speed Harmonization	0.0	50	\$100,000	50	50	\$100,000	0.0%	0.0%	\$0	\$\$20,000
	Design as % of			Construction	Construction	-		Overhead &	Overhead &	1
	Const Cests	Design	ROW Purchase	Engineering	Engineering	Contingencies	Contingencies	Indirect Costs	Indirect Costs	
Not Build	0%	50	50	0.0%	50	0.0%	50	0.0%	\$0	
4710	0%	50	50	0.0%	50	0.0%	50	0.0%	50	
Incident Management	0%	50	50	0.0%	- 50	0.0%	50	0.0%	\$0	
Ipeed Harmonization	0%	50	50	0.0%	50	0.0%	50	0.0%	\$0	
			Construction	Construction		Overhead &	Total Initial	1		
	Design	ROW Purchase	Engineering	Cest	Contingencies	Indicect Costs	Project Costs			
No Build	50	50	50	50	50	50	50			
4715	\$0	50	\$0.	\$100,000	\$0	50	\$300,000			
Incident Management	50	50	50	\$100,000	50	50	\$300,000			
Speed Harmonization	\$0	50	50	\$100,000	10	\$5	\$200,000			
	Add Annual		Maint & Robelt	Maint & Rubah						
	Maintenance	Selvere Value	Project Year	Project Cost						
No Build	50	\$0								
4718	\$100,000	50								
Incident Management	\$100.000	\$0								

Step 7: Review Results

 Project Summary Sheet is similar to that in the Main Toolkit File.

Alpini	Right of Way	30	\$0	\$0	\$0
Voiect Costs	Design	30	50	50	50
	Construction	50	\$100,000	\$100.000	\$100.000
	Other	50	50	50	50
fotal Initial Costs		\$0	\$100.000	\$100,000	\$100,000
		No Burld	A719	Incident Management	Ipeed Harmonuation
fatal Initial Year Co.	tii	\$0	\$100,000	\$100,000	\$100,000
Change in Annual M	aint, & Operations Costs	50	\$100.000	\$100.000	\$100,000
Annualized End of Li	le Salvage Value	50	\$0	50	50
Interim Project Cost		50	50	50	50
Interim Project Tear		0	0	0	
		No Build	ATIS	Incident Managament	Speed Harmonization
initial Rear Monetan	y Benefits	50	\$141,919	\$3,328,832	\$469,479
Travel Time Savings	1.9 × 10	50	\$143.919	\$1,328,832	50
Drashes		\$0	\$0	50	\$469,479
		No Build	ATIS	Incident Managament	Sound Harmonization
Design Life Year Mo	atory Benefits	\$0	\$161.692	\$17,672,281	\$502,447
Travelar Walfare		\$0	\$161,692	\$17,672,281	50
Drashas		\$0	50	50	\$\$02,447
Net Present Value	1	\$0	\$264,763	\$66.611.051	54,909,104
internal Rate of Rec	27. State	R/A	> 100%	> 100%	> 100%
Senafit / Cost Ratio	Sin	N/A	1.52	81.19	4.81
Payback Pariod		N/A	<1 year	c 1 year	e 1 year

How are different **Project Types** modeled?

Capacity Addition

 Elderhögkellinks ön the (abstracturplandsligddapfaeisvay. time of day.

Road Pricing

- Tolls can be set vary by time of day & by vehicle class for each highway network link.
- Adjust Base Toll Settings as applicable.

1			ttings	ay Toll Se	Midt	-	AM Toll Settings				
Vehicle Class 2	Vehicle Class 1	Vehicle Class 5	Vehicle Class 4	Vehicle Class 3	Vehicle Class 2	Vehicle Class 1	Vehicle Class 5	Class 4	Class 3	Class 2	Vehicle Class 1
\$0.13	\$0.25	\$0.75	\$0.00	\$0.13	\$0.13	\$0.25	\$0.75	\$0.00	\$0.13	\$0.13	\$0.25
\$0.13	\$0.25	\$0.75	\$0.00	\$0.13	\$0.13	\$0.25	50.75	\$0.00	\$0.13	\$0.13	\$0.25
\$0.18	\$0.35	\$1.05	\$0.00	\$0.18	\$0.18	\$0.35	\$1.05	\$0.00	\$0.18	\$0.18	\$0.35
\$0.18	\$0.35	\$1.05	\$0.00	\$0.18	\$0.18	\$0.15	\$1.05	\$0.00	\$0.18	\$0.18	\$0.35
\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20
\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20
\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20	50.60	\$0.00	\$0.10	\$0.10	\$0.20
\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	\$0.20	\$0.60	\$0.00	\$0.10	\$0.10	50.20

Ramp Metering & Shoulder Lane Use

- Ramp Metering:
 - Reduce on-ramp link capacity (to protect main-lane flow).
- Reflects extra time required to access freeway.
- Shoulder Lane Use:
 - Increase Freeway Capacity during peak periods using variable capacity feature of Toolkit.

Experiences with Shoulder Lane Use Use

	Strategy	Location	Capacity Increase Observed	
	11.5' lanes & 10' shoulders	Hessen, Germany	Increase of 1150 vph in each direction	
A	Four 11.5' lanes & 6.5' shoulders converted to one 10' lane & four 10.5' lanes.	Paris, France	660 vph in one direction & 1070 vph in the other.	
1	11.5' lanes w/10.5' shoulders	Netherlands	Up to 50% capacity increase (similar to regular lane add).	THE UNIVERSITY C
				TEXAS

Future Work (2)

- Develop a transit module
 - Fixed routes and stops, variable service frequency, bus capacity and comfort, and more realistic cost structures.
 - Mixed assignment of highway-transit traffic assignment.
- Desired Other Work
 - Rely on MOVES emissions rates.
 - Implement HSM & historical crash rates for crash prediction.
 - Non-motorized travel.

TEXAS

Future Work

- Recognize fixed node-specific costs
 - Analysts to specify parking costs, access times & headways.
- Testing & Verification
 - Test more scenarios to ensure results make intuitive sense.
 - Compare Toolkit results to full-scale, demand model results.
- **Texas Implementation**
 - Code additional networks for Texas cities & regions.
 - Conduct toolkit training for on-site planning staff.
 - Enable MPO-model predictions as inputs to NPV calculations.

Conclusions

- With shrinking budgets and expanding needs, we must invest our transportation funds wisely.
- The PET allows one to anticipate & compare a variety of operational & capacity expansion strategies' outcomes.
- PET evaluates project impacts in the form of travel time savings, operating costs, reliability, crashes & emissions.
- PET quickly identifies project alternatives with greatest . potential to positively impact transport systems.
- For capacity-expansion projects, emissions & crash benefits appear dwarfed by traveler welfare & travel-time reliability impacts.

