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AbstractShared fully-automated, or autonomous, mobility (SAVs) is antici-
pated to be the likely choice for future urban travel. SAVs boast many
operational benefits but will add congestion in the form of unoccupied
miles. The fleet’s success further depends on service measures like the
wait times for pickup trips. Agent-based simulation tools have closely
looked at SAV operations but typically lack the integration between the
supply and demand sides when simulating a population at scale. This
paper focuses on the impact of SAV relocation on traveler wait times us-
ing a novel algorithm for repositioning. POLARIS, an agent-based tool,
is used for a case study of Bloomington, Illinois to quantify the benefits
of allowing SAV repositioning. On average, the wait times were lower
with repositioning for all adequate fleet sizes. SAVs were available more
uniformly across the region’s zones, and proportional to trip-making at
different times of day. In addition, with repositioning enable a higher
share of demands were served. Finally, the increase in empty fleet miles
from SAV repositioning may be justified with more trips being served,
and an overall improvement in SAV wait times.

Keywords— Shared Autonomous Vehicles Repositioning Agent-Based Simula-
tion POLARIS Bloomington

1 Introduction

In recent years, mobility services provided by Transportation Network Companies
(TNC) have established themselves as a convenient option for door-to-door trans-
portation in urban areas. For example, the number of trips made per day using a
TNC vehicle in New York City increased from 60,000 in 2015 to around 600,000 in
2018 [1] . This trend will probably be reinforced with the emergence of Autonomous
Vehicles (AVs), and travelers may relinquish their personal vehicles to rely on a fleet
of Shared AVs (SAVs) [2, 3, 4].

The shift to shared fleets is likely to impact urban mobility in different ways. Many
studies have shown that the number of vehicles required for all trip making in a region
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may reduce drastically. A study on Singapore’s travel showed that one SAV could
replace about three conventional vehicles [2]. Fagnant and Kockelman found that one
SAV can substitute about 10 personally-owned vehicles in the City of Austin, Texas
[3]. When travelers were simulated to pool and share their rides (i.e., dynamic ride-
sharing) in Stockholm, Sweden, each vehicle was found to be able to replace around
20 vehicles [5].

However, an on-demand service of SAVs can potentially increase the total distance
traveled since vehicles need to travel empty to pickup passengers or when relocating
to high demand areas. This empty vehicle miles traveled (eVMT) can potentially
undermine the benefits of using SAVs for mobility. There is some uncertainty on the
share of empty travel in previous studies, and the extent to which dynamic ride-sharing
can help. Bischoff and Maciejewski modeled daily trips in the City of Berlin with a
fleet of SAVs and approximated the share of empty travel time as 17% [4]. Austin
studies, with and without DRS, averaged between 6 and 15% eVMT [6, 7]. Although
these are low in comparison to current TNC operation statistics like 40.8% of empty
miles for Uber and Lyft [8], the scale of future SAV operation may still add congestion
overall and need to be controlled.

There are three sources to empty travel: (i) the distance traveled from the current
vehicle location to the traveler location; (ii) the distance traveled in the beginning and
end of a driver’s shift (or depot in the case of a SAV) to and from the area being
served, respectively; and (iii) a repositioning trip to a area with higher demand after
dropping off a traveler in order to serve more trips (only in the case of human-driven
vehicles) and reduce average customer waiting time. Repositioning trips made based
on demand typically occur due to an imbalance between pickup and dropoff locations.
This leads to a large number of vehicles accumulating in low demand areas while
dearth of vehicles is observed in high demand areas at other times of day.

Recent literature has pointed out the importance of repositioning trips with fixed-
trip datasets. One repositioning strategy lead to a 20% increase in the share of served
requests [9]. Another study proposed an assignment strategy that concurrently assigns
vehicles to travelers while also dispatching vehicles to areas with high demand based
on the expected future demand [10]. The share of repositioning miles ranged from
3 to 6% across all the simulation scenarios while the pickup miles remained around
12% of total miles. In this study, the impact of SAV repositioning is studied at scale
using an agent-based framework called POLARIS. A computationally efficient reposi-
tioning strategy for SAV operation was implemented, and the operational results for
the entire region of Bloomington, Illinois is discussed. The next section discusses the
simulation framework, SAV modeling methodology and the repositioning algorithm.
This is followed by results and discussions for the case study of Bloomington, Illinois,
and finally ends with a conclusion.

2 Simulation Framework

POLARIS [11], an agent-based framework, is used in this study to explicitly model
the demand and supply aspects of SAV operation concurrently. POLARIS is a high-
performance, open-source, agent-based modeling framework that can simulate large-
scale multi-modal transportation systems. POLARIS has integrated travel demand,
network flow, and traffic assignment models on the paradigm of agent-based-modeling.

The activity models are based on [12, 13] which defines each traveler’s decision-
making process for within-day, mid-term, and long-term time frames by taking into
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account activity types, and preferred modes and destinations. The mid-term and
within-day travel behavior decisions include the process of individual activity episode
planning and engagement. These decisions are constrained by long-term choices re-
garding home and workplace choice, and household vehicle choices, and, in turn, in-
fluence activity and travel planning.

The realized travel times and delays along the simulation period is an outcome of
traffic flow and dynamic traffic assignment models. The underlying traffic flow model is
based on the link transmission models [14] which in turn is based on Newell’s kinematic
wave model [15] with further adaptation to be able to track individual vehicles along
their journey [16]. The dynamic traffic assignment algorithm [17] assign routes to
individual vehicles using a time-dependent A* shortest path router [18] based on the
prevailing traffic condition, as well as updated skim travel times. Traveler’s routing
behavior in response to delays is also captured by allowing re-routing.

The effects of real-time information and impacts of connected and automated ve-
hicles - from both demand and supply sides - are also captured. This allows for
exploratory studies on the impact of connected and automated vehicles in the overall
transportation networks [19], as well as the impact of shared mobility services in the
presence of connected and automated vehicles [20].

POLARIS uses three separate mode-choice models depending on the activity pur-
pose: home-based work/school, home-based other and non-home based, similar to
traditional modeling. The nested-logit formulation used to model mode choice in-
clude nine modes: drive alone, TNC use, ride as passenger, walk, bike, bus with walk
access, bus with drive access, rail with walk access, and rail with drive access. Road-
network density and activity density of the destination zone are used to capture the
characteristics of land use and the transportation network. The TNC-specific LOS
variables used in the model include in-vehicle travel time and wait time (obtained
from the simulation), and input fare. The TNC fare comprises of a fixed cost per trip,
a distance-varying component, and a time-varying component. The model is devel-
oped and calibrated against the household travel survey data collected from the local
region’s metropolitan planning organization.

3 SAV Simulation

Shared mobility simulation implemented in POLARIS [20] is extended here to test
repositioning. SAVs are modeled to mimic operations that are currently observed in a
TNC by using a central operator. The operator assigns requests to individual vehicles
depending on the assignment strategy and monitors demand-to-supply ratio to deter-
mine if repositioning is required. SAVs execute the pickup, dropoff and repositioning
tasks depending on the instruction received from the operator. SAVs are able to store
requests that are being executed and those that need to be executed in the future.

3.1 Operator

When a SAV trip request is made, the fleet operator attempts to assign it to the closest
available vehicle in order to reduce total eVMT, as well as to minimize the traveler
waiting time. Two assignment strategies are included in POLARIS: a coordinate-
based search, and a zone-based architecture similar to Bischoff and Maciejewski [4],
the latter of which was used in this study.
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The zone-based architecture is generated using the traffic analysis zones (TAZs)
for the region which is available in POLARIS. The SAV operator constructs an array
of all neighboring zones, for each zone in the region, in ascending order of travel times
defined with respect to a reference zone. This array is truncated using a predefined
threshold for wait times so that a minimum level of service is maintained by the SAV
service. By definition, the first zone in each array is the reference zone itself, which
would mean minimal wait time. When a trip is requested, the operator checks for
any available vehicle, starting from the origin zone and in the same order defined by
the array, and assigns an unoccupied vehicle from the first neighboring zone that has
a vehicle available. Within a given zone array there is no distinction between the
specific distance of each vehicle to the customer. Therefore, the assigned vehicle is not
necessarily the closest. Nevertheless, the area of each zone is relatively small enough
so the additional travel time is minimal if the assigned is not the closest.

3.2 Vehicle Operation

Once the request is assigned, the SAV handles the remainder of the request. Each
vehicle stores a sorted list of tasks to be performed. A pickup and a dropoff operation
is added to this list for every request assigned to the vehicle. Each task in the list
involves the vehicle moving between its location to either the pickup point or the
dropoff point. Depending on the task, the SAV identifies the path from its current
location to the next operation location. At the end of each trip, the total trip distance,
travel time and empty travel, are computed and recorded. At the SAV’s destination
after dropoff, it may receive a new set of tasks and repeat the same process again. If
there is no task to be performed, the vehicle stays idle at the last task’s destination
and awaits new trip assignment.

3.3 Repositioning Strategy

Typically, the pattern of origins and destinations of trip requests are spatially uneven
and varies by time of day. In the morning peak, trip requests tend to the end at the
Center Business District (CBD) whereas in the evening peak the trip requests tend to
end in the suburban areas. The areas that are common trip destinations accumulate
vehicles whereas areas that are common trip origin have no vehicles around to serve
future incoming requests. For this reason, it is necessary that vehicles located in low
demand areas move to areas with higher demand to serve the incoming requests.

The repositioning strategy should balance two conflicting objectives. If vehicles
are relocated to high demand areas, it reduces the waiting times for the customers.
However, this additional trip can add significant eVMT which is not desirable. There-
fore, the repositioning strategy should find an equilibrium between low wait times and
low eVMT and avoid relocating vehicles to locations where vehicles will be idle for a
long time due to low demand.

This strategy is in line with the assignment strategy, and is implemented based
on the zone-level variables. For each zone i, the desired number of vehicles, di, is
computed as:

di =
Di + αAi∑
∀j
(
Dj + αAj

)S, (1)

where S is the available fleet size, Di is the number of requests in zone i, and Ai is
the area of zone i. The number of requests per zone is calculated as a moving average
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over the preceding K hours. The constant α is a weight variable to control the extent
to which the repositioning strategy is enforced, that is a uniform relocation when α is
large (α→ ∞) or based on the past demand when α is small (α→ 0). Similarly, when
there is no information on prior demand at the beginning of simulation as Di is close
to zero, the controller will attempt to distribute the vehicles evenly in the network
(Di << αAi). As Di increases, especially closer to the peak times, the controller will
be more sensitive to the incoming demand.

Next, the supply of vehicles in a zone, si, is computed by counting the vehicles
idling in a zone i or those performing a task (pickup, dropoff, repositioning) with their
final destination in i. Note that

∑
∀i si = S. Finally, for each zone the following ratio

is computed:

ri =
si
di
, (2)

Vehicles in zones with high ri and si−1
di

> 1 are expected to reposition to zones
with r1 < 1. For each of these zones that have an excess of vehicles, a fixed set Vi of
potential destination zones are generated. The number of elements in set Vi is equal
to nv, an input parameter. That is, instead of considering all the zones in the network,
only a number of nv zones will be considered. For each zone j ∈ Vi a score to rank
potential destinations is necessary, and is computed as:

uj =
1

rjti,j
, j ∈ Vi (3)

where ti,j is the estimated travel time from zone i to zone j.
In summary, all repositioning decisions are undertaken at fixed time step, T , at

which the following tasks are performed:

1. Compute di, si, and ri for each zone.

2. For all zones with si−1
di

> 1, generate a set Vi of potential destination zones.

3. While si−1
di

> 1, pick a destination zone j from set Vi from a random draw with
probabilities proportional to uj .

4. Update si, dj , and uj according to equations (1),(2), and (3).

The probabilistic assumption made here is designed to resemble the current TNC
operation, and to serve as a baseline for more sophisticated strategies that are expected
in the future. The strategy can be tuned through four parameters: the weight on the
area of a zone, α, the update interval, T , and the number of elements, nv, in the set
Vi and the window size used as a moving average for aggregating requests, K.

4 Case Study of Bloomington, Illinois

The repositioning strategy outlined above was tested for the Bloomington region in
Illinois. The network contains 185 zones, 7000 links, and 2500 nodes. The mode
choice parameters are tuned to the current travel trends and yielded around 30,000
trip requests for the 24 hour simulation period. Three different fleet sizes of 650, 700,
and 750 SAVs were tested with, and without, repositioning.

For all cases, the maximum waiting time is set to 10 minutes (i.e., the maximum
pickup time for a SAV is 10 minutes as estimated before the start of the pickup
trip. The realized travel time might be higher if traffic conditions changes). When
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Figure 1: Share of served and unserved trips for the three fleet sizes with and
without repositioning enabled.

repositioning is enabled, 36 potential destinations zones are considered (nv = 36), with
an update interval of 5 min (T = 5), a moving average window of 2 hr (K = 2) for
aggregating requests, and a weight of α = 10−8 m-2.

Table 1 presents the key metrics for each scenario. Without repositioning, the
share of empty miles lies around 30% and it increased to around 40% in the cases
in which repositioning was enabled. On the other hand, the share of served trips at
peak time has increased for all fleet sizes. In addition, the repositioning algorithm
also achieves lower average wait time by around 20% for the three different fleet sizes
which confirms that the repositioning method is moving vehicles closer to the incoming
demand.

Table 1: Summary of the results for the three different fleet sizes with and
without repositioning. Pickup VMT is labeled as pVMT, repositioning vmt as
rVMT and empty VMT as eVMT.
Fleet Size VMT % pVMT % rVMT % eVMT % Requests Served at Peak Wait Time (min)

Without Repositioning
650 205,189 29.8 0.0 29.8 80.9 4.43
700 206,497 29.2 0.0 29.2 86.5 4.31
750 205,888 28.4 0.0 28.4 90.7 4.09

With Repositioning
650 255,898 25.9 17.0 43.0 93.3 3.54
700 266,371 24.7 19.3 44.0 97.7 3.37
750 268,965 24.1 20.2 43.7 98.3 3.31

The share of trips that were served and unserved over the 24 hr time period for
all fleet sizes is depicted in Figure 1. Blue and orange lines correspond to the scenario
without repositioning, and the green and red lines correspond to the scenario with
repositioning. The fleet sizes are 650, 700, and 750 from the left to right. In all cases,
enabling repositioning led to an increase in the share of served trips with the difference
being larger for smaller fleets.

The repositioning method also lowers waiting time. Figure 2 depicts the distribu-
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Figure 2: Histogram of waiting times for different fleet sizes with (red) and
without (blue) repositioning.
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Figure 3: Distribution of vehicles by zone at the of the simulation period without
(left) and with (right) repositioning.

tion of waiting time for fleet sizes of 650 (left), 700 (middle), and 750 vehicles (right)
with (in red) and without (in blue) repositioning. The vertical lines in red and blue
highlight the average waiting time for each case, respectively.

Figure 3 visualizes the spatial distribution of SAVs for the the scenarios without
and with repositioning at the end of the simulation period. The use of a repositioning
strategy shows a more uniform distribution of vehicles in the city, with a concentration
of vehicles in the CBD. This directly impacts the reduction in wait times as SAVs are
available in all zones that have had a sizable demand in the previous K hours.

The efficiency of an SAV fleet can be observed by assessing the daily operation
profile. Figure 4 shows the share of SAVs idle, or performing pickup, dropoff or
repositioning for the two scenarios with and without repositioning. When repositioning
is enabled, the entire fleet is utilized at peak times of day, if necessary. This is not
true in the absence of repositioning when SAVs are idling at low demand areas.
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Figure 4: Fleet Operation Profile without (left graph) and with (right graph)
repositioning enabled for S = 650.

5 Conclusion

A novel method for SAV fleet repositioning that uses the relationship between the
supply and demand of each zone was presented. Vehicles in zones with larger supply
compared to its past are repositioned to zones with lower supply. In experiments for a
medium-sized network, enabling the repositioning strategy lead to an increase in the
share of served requests as well as in a reduction in waiting times. The benefits occurs
at expense of higher empty distance traveled. For future work, we plan to perform a
thorough performance analysis using larger networks like that of the Chicago region.
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