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1.0 Introduction 
 
Urban development results in changes to land use and land cover and, consequently, to 
biogenic and anthropogenic emissions, meteorological processes, and processes such as 
dry deposition that influence future predictions of air quality.  This study examines the 
impacts of alternative regional development patterns using Austin, Texas as a case study. 
 The Austin – Round Rock Metropolitan Statistical Area (MSA), shown in Figure 1.1, is 
located in Central Texas and includes Travis, Williamson, Hays, Bastrop and Caldwell 
Counties.  The Austin MSA is among the most rapidly growing urban areas in the United 
States with a current population of approximately 1.7 million concentrated in Travis 
County.  Williamson (5th), Hays (26th), Bastrop (30th), and Caldwell (51st) Counties 
were among the 100 fastest growing counties by percent change in the country, while 
Travis (32nd) County was one of 100 fastest growing counties by numeric change in the 
country between 2000 and 2001. 
 

 
Figure 1.1.  The five-county Austin MSA with an enlarged view of Williamson, Travis, 
Bastrop, Hays, and Caldwell Counties. 
 
The objectives of this study included: 
1. Applying an integrated transportation-land use model (ITLUM) to investigate the 

impacts of regional development scenarios on the magnitude and spatial distribution 
of emissions of ozone precursors.  ITLUM-based forecasts were contrasted with four 
pre-determined urban growth scenarios developed through a regional visioning 
initiative known as Envision Central Texas (ECT). 

2. Comparing the air quality impacts of regional development scenarios on predicted 
ozone concentrations and human exposure patterns using a photochemical grid 
model. 

3. Testing the hypothesis that predicted human exposure patterns based on ITLUM 
emission forecasts will differ from those based on the U.S. EPA’s post-Clean Air Act 
Amendment emission scenario projections. 

4. Testing the hypothesis that changes in land use and dry deposition patterns have at 
least as significant an impact on future air quality as changes in on-road vehicle 
emission control technologies. 
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Urban growth scenarios evaluated in this study were developed using two distinct 
approaches: visioning and mathematical modeling.  Visioning is a highly community-
oriented planning technique used to create regional land use and transportation goals 
(FHWA 1996).  It is typically performed as a cooperative, inclusive process among 
business owners, community residents, interest groups, and local officials and results in 
broad goals and principles which can guide future policies and plans.  In contrast, land 
use models are based on historical trends and attempt to forecast or predict what future 
land use patterns will look like based on those trends (along with changes in any policy, 
land use, travel cost or other variable that the analyst has incorporated into the model).  
They are typically driven by technical experts, relying on data for calibration and model 
specification, and result in a set of probable future trends and indicators which can guide 
the implementation of growth management strategies.  Consequently, direct comparisons 
of results for the two methods are not really relevant.  However, it is important to 
understand both approaches offer their own relative advantages from a planning 
perspective and the visioning and modeling processes appear quite complementary 
(Lemp et al. 2008).   
 
Both regional visioning and land use modeling approaches can provide key inputs to 
models of travel demand, emissions, and air quality.  Air quality modeling in this study 
was performed using the Comprehensive Air Quality Model with extensions (CAMx), 
which is currently the photochemical model used by the State of Texas for attainment 
demonstrations.  Austin was among the first areas to prepare an Early Action Compact 
(EAC) or voluntary State Implementation Plan (SIP) under the National Ambient Air 
Quality Standard (NAAQS) for ozone concentrations averaged over 8-hours.  As part of 
the EAC, the September 13 – 20, 1999 multi-day high ozone episode with projected 2007 
emissions was developed for use in CAMx (CAPCOG 2004a, 2004b).  For this study, 
projected emission inventories were developed for the year 2030 for each urban growth 
scenario and used with the identical meteorological data and CAMx configuration 
developed for the 2007 EAC case (referred to in this report as the Base Case) in order to 
evaluate impacts on future air quality. 
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2.0 Envision Central Texas Scenarios 
 
2.1 Background 
 
Four urban growth scenarios were developed through a community-driven regional 
visioning initiative known as Envision Central Texas (ECT 2004).  The ECT process 
engaged state and local government, business, environmental, and community 
development organizations, and elected leaders from the five counties.  Based on 
information discussed in public workshops, the ECT process projected a set of four 
possible growth scenarios.  All of the scenarios are based on a doubling of population in 
20 to 40 years from 2001, but assume different types of growth.  ECT Scenario A 
assumes low-density, segregated-use development based on extensive highway provision; 
ECT Scenario B assumes concentrated, contiguous regional growth within 1-mile of 
transportation corridors; ECT Scenario C concentrates growth in existing and new 
communities with distinct boundaries; ECT Scenario D assumes high-density 
development in existing towns and cities with balanced-use zoning.  Figure 2.1 shows 
land use development patterns for each of the four scenarios.   
 
As part of the visioning process, Fregonese Calthorpe estimated households and average 
household size by county for each ECT scenario as shown in Table 2.1.  Because direct 
estimates of human population by county were not available, the households and average 
household size data developed by Fregonese Calthorpe were obtained from Smart 
Mobility Inc. and used to estimate population for each ECT scenario for this study.  
Human population estimates among the ECT scenarios, shown in Table 2.2, differed by 
0.3 - 1%.   
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Figure 2.1.  ECT Scenarios: maps indicating land use changes that will occur for each of 
the growth scenarios.  2001 developed land and counties within the Austin-Round Rock 
MSA are identified for reference (Song et al. 2008) 
 
Table 2.1.  2001 housing units and projected households for each ECT scenario by 
county 

Households 
2001 

(U.S. Census 
Housing Unit) 

ECT A ECT B ECT C ECT D 
Average 

Household 
Size 

Bastrop 22,723 52,621 72,309 92,180 72,108 2.87 

Caldwell 12,188 24,171 41,742 59,652 41,698 2.98 
Hays 37,946 81,690 84,607 90,271 85,005 2.92 
Travis 353,272 556,367 507,621 447,476 494,382 2.53 
Williamson 98,120 215,637 222,604 235,980 226,335 2.88 

Total 524,249 930,486 928,883 925,559 919,528 - 
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Table 2.2.  2001 human population and projected human population for each ECT 
scenario by county 

Population 2001 
(U.S. Census) ECT A ECT B ECT C ECT D 

Bastrop 61,480 151,023 207,527 264,555 206,950 

Caldwell 33,808 72,029 124,390 177,762 124,261 
Hays 104,514 238,536 247,051 263,590 248,215 
Travis 842,638 1,407,609 1,284,282 1,132,114 1,250,786 
Williamson 276,749 621,035 641,099 679,622 651,846 

Total 1,319,189 2,490,231 2,504,349 2,517,644 2,482,059 
 
 
2.2 Emissions Inventory Development 
 
Future air quality is most often assessed using photochemical models with projected 
anthropogenic emissions, but land cover is typically presumed to remain constant.  
However, previous analyses (Vizuete et al. 2002; McDonald-Buller et al. 2001; 
Wiedinmyer et al. 2001) have shown that changes in land cover can have substantial 
impacts on biogenic emissions, deposition velocities, surface albedo, soil moisture and 
other physical parameters.  Biogenic and anthropogenic emission inventories, along with 
land cover estimates for estimation of dry deposition velocities, were developed for each 
of the four ECT scenarios.   
 
2.2.1 Biogenic Emissions and Dry Deposition 
 
Biogenic Emissions Model 
The Global Biogenic Emissions and Interactions System (GloBEIS) version 3.1  
(Yarwood et al., 1999, 2003) was used to develop biogenic emissions inventories for the 
ECT scenarios.  GloBEIS requires data on temperature, photosynthetically active 
radiation (PAR), wind speed, humidity, and land use/land cover (LULC).   
 
Hourly ambient surface temperatures were developed by spatially interpolating 
temperatures measured by National Weather Service (NWS) and other weather stations 
throughout eastern Texas (Vizuete et al. 2002).  Estimates of PAR flux were based on 
calculations done by the University of Maryland and the National Oceanic and 
Atmospheric Administration (NOAA) for the Global Energy and Water Cycle 
Experiment (GEWEX) Continent Scale International Project (GCIP).  NOAA uses a 
modified version of the GEWEX (2005) surface radiation budget (SRB) algorithm 
(version 1.1) to calculate radiation flux fields from Geostationary Operational 
Environmental Satellite (GOES-8) data.  Wind speed and humidity estimates were 
derived from simulations using the fifth generation NCAR/Penn State Mesoscale Model 
(MM5).  
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The LULC input data required by GloBEIS were derived from a number of databases.  It 
is important to distinguish between land use and land cover data and their relative roles in 
emissions and air quality modeling.  Land use categories describe how humans use or 
intend to use the land, e.g., high or low density, rural or urban.  Land cover describes the 
physical features that occur on the land surface, such as water, vegetation, bare soil, rock 
and built features, or more specifically vegetation species.  The first LULC database, 
shown in Figure 2.2, was developed by Wiedinmyer et al. (2000, 2001) in order to 
improve the characterization of land cover in Texas.  These data contain emission factors 
for 156 different vegetation types; 41 types are identified at the species level (e.g. 
Quercus alba), 80 types are identified according to genera (e.g. Quercus), and 35 are 
defined as broad land cover types (e.g., Pecan Elm forest).  The 1-km data were 
aggregated to the 4-km resolution used in the photochemical modeling for the purposes 
of this study.  The other LULC databases were derived from each of the ECT scenarios 
and contain various land use classes (10 land use types for Scenario A and 16 for the 
other scenarios).   
 
In contrast to the Wiedinmyer et al. database, the ECT land use classifications include 
assumptions concerning impervious ground cover but no information on vegetation types.  
Therefore, the ECT land use scenarios were overlaid on the original land cover data from 
Wiedinmyer et al. and used to modify the original vegetation density.  ECT planners 
estimated the fraction of impervious cover for each ECT land use type, which was used in 
this study to adjust the fraction of original vegetation expected to exist in that land use 
category.  For example, areas which are designated to develop as “Downtown” are 
assumed to have 95.4% impervious cover, leaving 4.6% pervious cover remaining.  It 
was estimated that half of that cover would remain, leaving 2.3% of the original 
vegetation types, the rest being converted to ornamental or other uses.  These 
assumptions were based on visual studies of development impacts on tree cover using 
orthophotography from 1995 and 2002, and on local knowledge of development 
practices.  Table 2.3 shows the assumed fraction of original vegetation remaining for 
each land use type for the ECT scenarios.  The biogenic emissions modeling was a 
collaborative effort with EPA Project RD83145201, Impacts of Climate Change and 
Land Cover Change on Biogenic Volatile Organic Compounds (BVOCs) Emissions in 
Texas, which was also conducted by the University of Texas at Austin.  
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Figure 2.2.  Base case land cover types for the Austin MSA described by Wiedinmyer et 
al. (2001) 
 
Table 2.3.  Assumed fraction of vegetative cover remaining for each development type 
used to estimate biogenic emissions for the four ECT scenarios 

Assumed Fraction of Vegetative Cover Remaining 
Development Type 

ECT Scenario A ECT Scenarios B,C, and D 

1 Downtown 0.023 0.023 
2 Downtown Commercial  0 
3 Downtown Residential  0.055 
4 City 0.146 0.146 
5 City Neighborhood  0.193 
6 Town 0.171 0.171 
7 Residential Subdivision 0.363 0.363 
8 Large Lot 0.493 0.492 
9 Rural Housing 0.763 0.763 

10 Conservation Rural 0.827 0.827 
11 City Commercial  0.011 
12 New Town  0.148 
13 Activity Center 0.042 0.041 
14 Highway Commercial 0.023 0.023 
16 Office Park 0.144 0.144 
17 Industrial  0.025 
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D epositionry D  Model 
Dry deposition, which is the dominant physical loss mechanism for air pollutants in 

odel 

  

central Texas, is a strong function of land use/land cover type.  The dry deposition m
used in most air quality simulations was developed using algorithms based on the work of 
Wesely (1989) and Walmsley and Wesely (1996).  Deposition rates are estimated as a 
series of mass transfer resistances to deposition.  These resistances are due to 
aerodynamic transport, diffusion across a quasi-laminar sub-layer, and surface uptake.
The dry deposition flux is calculated as: 
 

zdc CVF ⋅=          (2.1) 

 
where Fc is the dry deposition flux of the gas of interest, Vd is the dry deposition velocity, 
and Cz is the concentration or mixing ratio at the mid-point of first vertical layer height in 
CAMx.  For gases, the dry deposition velocity is calculated as: 
 

sda
d rrr

V
++

=
1         (2.2) 

 
here ra is the aerodynamic resistance above the surface, rd is the deposition layer (or 

ver is classified as urban or barren, the rate of deposition is controlled 

an 

 

 

 

w
quasi-laminar sub-layer) resistance and rs is the bulk surface (or canopy) resistance 
(Wesely 1989).  
 

hen the land coW
by aerodynamic transport and diffusion across the quasi-laminar sub-layer.  Deposition 
rates for other land cover categories are dominated by the resistances due to surface 
uptake.  Because different resistances can dominate, deposition rates for different land 
cover types can have different magnitudes and diurnal patterns.  For example, dry 
deposition velocities for forest land covers are a factor of 2-2.5 higher than those of urb
and barren land during the daytime.  Eleven land use/land cover categories are used in 
CAMx which are urban land, agricultural land, range land, deciduous forest, coniferous 
forest, mixed forest including wetland, water, barren land, non-forested wetland, mixed 
agricultural/range land, and rocky open areas with low-growing shrubs.  To estimate 
deposition rates, CAMx land use files assign the areal fractional distribution (0 to 1) of 
eleven land use categories in each individual grid cell.  In this study, the land cover data
from Wiedinmyer et al. (2001) were mapped to one of the eleven land use/land cover 
categories used by the dry deposition module in CAMx (McDonald-Buller et al., 2001). 
For the ECT scenarios, the remaining vegetation for each development type was 
classified as the original land cover, and the area fraction of newly developed land was 
classified as urban.  Table 2.4 shows the fraction of each of the eleven land use/land 
cover categories for the Base Case and the ECT scenarios as well as the percent of 
vegetative cover converted to urban land use.  ECT A, which continues the current 
pattern of low-density development, had the largest reduction in vegetative cover as
compared to the Base Case. 
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Table 2.4. Area fraction of eleven land use categories for the Base Case and ECT 

enarios (Song et al. 2008) 
unty area 

sc
Area Fraction of Land Use Category across the five-coLand Use Category Base Case ECT A ECT B ECT C ECT D 

Urban 0.07 0.23 0.14 0.13 0.10 
Agricultural 0 0 0 0 0 
Rangeland 0.06 0.04 0.05 0.05 0.05 

Deciduous st 0.26 0.24 0.25 0.25 0.26 Fore
Coniferous st Fore 0 0 0 0 0 

Mixed Forest 0.34 0.28 0.32 0.32 0.33 
Water 0.01 0.01 0.01 0.01 0.01 

Barren Land 0 0 0 0 0 
Non-forested etlands W 0 0 0 0 0 

Mixed ange 0.27 0.20 0.23 0.24 0.25  Agricultural/R
Rocky, with Low Shrubs 0 0 0 0 0 
Percentage of reduced  

vegetation (%)  17 7 6 4 

 
2.2.2 Anthropogenic Emissions 

hic, employment and land use patterns have complex 
fluences on emission forecasts.  Anthropogenic emissions are typically classified into 

 

cal 

road mobile sources that are described below, 
e 2007 future year anthropogenic emission inventories developed for Austin’s Early 

d-
apital 

e 

  
r the 

 
Changes in population, demograp
in
four sectors: (a) on-road mobile sources, (b) non-road mobile sources, (c) area sources 
and (d) point sources.  Projections of emissions from mobile sources are based on engine
technology, fleet turnover and activity.  Projections of emissions from area and point 
sources are typically developed through the application of socioeconomic growth factors 
and models of economic activity dynamics, in the absence of factors generated from lo
economic and demographic activity data.  
 
With the exception of emissions from non-
th
Action Compact served as the Base Case for this study (CAPCOG 2004a, 2004b).  
Emissions from stationary point sources for 2007 were developed by the Texas 
Commission on Environmental Quality (TCEQ) for the Houston-Galveston area Mi
Course Review and were supplemented with local activity projections from the C
Area Council of Governments (CAPCOG).  Because forecasts of growth of point sourc
emissions have been small relative to changes in mobile source emissions and because 
the assessment of future energy needs in Texas is on-going, point source emissions 
remained constant between the 2007 Base Case and ECT future development scenarios.
The methodology used to develop emission estimates for mobile and area sources fo
ECT scenarios is described below. 
 
On-road Mobile Source Emissions 
On-road mobile source emission inventories were developed for each of the ECT 

nd model output from the Envision Central Texas 
ission 

 

scenarios by combining travel dema
Transportation Model (ECTTM) for the 5-county Austin area link network with em
factors from the EPA’s MOBILE6.2 model (EPA 2003a).  The ECTTM was developed
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by Smart Mobility Inc. (2003), with support from the Capital Area Metropolitan Planning 
Organization (CAMPO).  The ECTTM follows the general four-step modeling 
framework used by CAMPO and most other Metropolitan Planning Organizations in the 
United States, consisting of trip generation, trip distribution, mode choice, and t
assignment, but includes a number of enhancements that make it sensitive to 
transportation infrastructure and land use.  These include: (a) an auto availability model 
that is sensitive to residential density and transit service, (b) a walk/bike trip m
sensitive to residential density, employment density, and the balance between jobs and 
housing, (c) a mode choice model that is sensitive to land use and (d) feedback of 
congested travel times to affect traveler behavior.  Transportation characteristics for eac
of the ECT scenarios are summarized in Table 2.5 (ECT 2004, CAMPO 2005).  
 
 Table 2.5. Transportation characteristics for the ECT scenarios 

rip 

odel that is 

h 

Scenario Daily VMT Auto  Transit Bike and Commuter 
d  

Light 
rail 

Bus rapid 
transit per capita trips trips walk trips rail an

(%) (%) (%) toll roads 
2000 26.4 94 3 3 No No No 

ECT A 34.3 No Yes 
ECT B 

92 4 4 Yes 
30.1 90 6 4 Yes Yes No 

ECT C 29.0 88 4 8 Yes No Yes 
ECT D 27.4 85 6 9 Yes Yes No 

 
For each ECT scenario, output of the ECTTM includes vehic iles traveled (VMT) and 
ongested travel speeds by link direction for each of four time periods: Morning Peak 

for 

stin area 
 

om 

actors (grams mile ) for volatile organic 
ompounds (VOC), carbon monoxide (CO), and nitrogen oxides (NOx) by hour of day, 

ch 

 

le m
c
(6:30am – 9:00am), Afternoon Peak (3:00pm – 7:00pm), Off-peak (9:00am – 3:00pm and 
7:00pm -9:00pm), and Overnight (9:00pm – 6:30am).  VMT was apportioned by hour 
each of four day-types: Weekday (average Monday through Thursday), Friday, Saturday, 
and Sunday.  Day-type and hourly VMT adjustment factors were based on Austin area 
automatic traffic recorder (ATR) data collected by the Texas Department of 
Transportation (TxDOT) and used by the Texas Transportation Institute (TTI 2003) to 
develop the on-road mobile source emission inventories in support of the Au
Early Action Compact.  The hourly VMT on each roadway type link was disaggregated
into each of the 28 MOBILE6.2 vehicle types by using VMT mix factors developed fr
TxDOT vehicle classification count data, vehicle registration data, and MOBILE6.2 
default gasoline/diesel fractions (TTI 2003). 
 
MOBILE6.2 was used to calculate emission f -1

c
by vehicle type, and by road type (or drive cycle).  Local input values for parameters su
as ambient temperature and humidity, fuel characteristics and fleet characteristics were 
used when available.  For each ECT scenario, disaggregated link VMT was matched with 
corresponding pollutant-specific MOBILE6.2 emission type factors tabulated by speed, 
hour, vehicle type, and roadway type in order to obtain link-level emission estimates.  
Since the ECT scenarios are based on a projected doubling of population within 20 to 40
years from 2001, emission factors which include default federal motor vehicle control 
programs (FMVCP) were developed for the year 2030.  The EPA’s FMVCP rules 
regulate fuel characteristics and require increasingly lower exhaust and evaporative 
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standards for new vehicles.  The most recently adopted FMVCP rules modeled in 
MOBILE6.2 include the Tier 2 and the heavy-duty 2007 rules (EPA 2001).  As a 
consequence of fleet turnover which occurs over the span of decades, the number o
vehicles with less effective pollution controls which are still on the road will decre
resulting in an overall cleaner fleet for the ECT scenarios as compared to the Base Case.  

 
On-road mobile source emissions were then processed through the Emissions 

f older 
ase 

Preprocessor System 2 software (EPA 1992) to provide emissions in the appropriate 
d IV 

 

le Source Emissions

format for CAMx.  Chemical speciation profiles developed for the Carbon Bon
mechanism (CB-IV) were assumed not to change for the ECT scenarios relative to the 
Base Case.  Spatial and temporal allocation of on-road mobile source emissions using
EPS2 was not necessary since the on-road mobile source emissions were specified by 
link and hour. 
 
Non-road Mobi  

he 2007 non-road mobile source emission inventory that was developed for Austin’s 
ot used for this study.  Instead, population and 

 
 of 

 

ta 

r airport, Austin-Bergstrom International Airport, and 
ilitary base, Camp Mabry, which is the headquarters of the Texas State Military Forces.  

Ox 

e by 
s 

n inventories for agricultural, commercial, construction, 
dustrial, lawn and garden, and recreational equipment were developed for each of the 

T
Early Action Compact analysis was n
households from 2001 that served as the base year for the visioning process by Envision
Central Texas and land use and parcels data, that had become available from the City
Austin and CAPCOG since the development of the original 2007 non-road inventory, 
were used in conjunction with the EPA’s NONROAD Model version 2005 (NONROAD
2005) to project a new 2007 non-road inventory.  Emissions from aircraft, military 
service operations, locomotives, and residential and commercial gas cans were estimated 
separately outside of the framework of the NONROAD model using local survey da
(CAPCOG 2004a, 2004b).   
 
Austin currently has one majo
m
Although airport and military operations may experience future growth, it is highly 
uncertain, and consequently, no additional growth was assumed between 2007 and 2030.  
Although no additional growth was also assumed for locomotives, required federal N
emission reductions of 40% were included in the projections (ERG 2004, CAPCOG 
2004c).  Residential and commercial gas can emissions for 2030 were projected from 
2007 emissions using household trends data with assumptions based on a survey don
NuStats, Inc. (ERG 2002).  A control factor of 62.4% with a 100% compliance rate wa
applied for projected VOC emissions from gas cans for 2007 and 2030 to address 
controls that are under consideration for adoption in the Austin area (EPA 2007a).  Due 
to the absence of Source Classification Codes (SCC) for gas cans, their estimated 
emissions were added to those from the lawn and garden equipment category obtained 
from the NONROAD model.   
 
Non-road mobile source emissio
in
ECT scenarios using the NONROAD2005 model (EPA 2005).  NONROAD 2005 
estimates total VOC, CO, and NOx emissions by county, and by day.  In the model, 
exhaust emissions are estimated as: 
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EExhaust NPLAEFExhaust ⋅⋅⋅⋅=        (2.3) 

 
where Eexhaust is the exhaust emission inventory (tons day-1), EFexhaust  em
factor (tons hp-1 hr-1 vehicle or equipment type-1), A is the equipment activity (operating 

er 

 

, 

ent temperature data, equipment population, and activity data 
ere developed by the TCEQ and CAPCOG.  National to county-level spatial allocation 

 

luded 
s for 

, 

plex 
ty 

allocation needed to be considered: first, spatial allocation factors 
corporated within the NONROAD model used to allocate state-level equipment 

for the 
e-

 of 
rs 

it 

d 

 is the ission 

hr yr-1), L is the loading factor which is described as average proportion of rated pow
used during operation (%), P is the average rated power (hp), and N is the equipment 
population (number of vehicles or equipment type).  In order to estimate and spatially 
allocate emissions, the NONROAD model requires data on fuel specification, ambient
temperature conditions, deterioration factors, emissions factors, equipment population 
and county-level spatial allocation, equipment activity, average lifetime, growth factors
and technology types.  
 
Fuel specification, ambi
w
factors in the model were adjusted with local data and demographic projections for the
ECT scenarios.  For most other modeling parameters, default values derived from 
national averages were used.  Given the uncertainty involved in estimating future 
equipment populations for each ECT scenario, it was assumed that the non-road 
equipment population follows the national growth rate and emissions standards inc
in the EPA’s NONROAD model (EPA 2004).  The spatial allocations of emission
each ECT scenario differ, for example according to population and number of households
but equipment population growth rates for each ECT scenario are the same, which may 
not be representative of future conditions.  Changes in equipment populations would be 
expected to be affected by local changes in land use; for example, differences in the 
population and activity of road construction equipment between urban sprawl versus 
high-density mixed-use development.  However, quantifying these differences is com
and further study is needed to address the scaling of equipment populations and activi
to reflect future land use patterns within the framework of the NONROAD model.  
Unanticipated future federal or state emission controls may also result in additional 
emission reductions. 
  
Two levels of spatial 
in
populations to county-level equipment populations, and second, spatial surrogates for 
allocating county-level emissions to each grid cell in the CAMx modeling domain 
five-county Austin area.  A variety of spatial allocation factors are used to allocate stat
level equipment populations to county-level equipment populations in NONROAD2005.  
For example, state-level emissions from residential lawn and garden equipment are 
allocated by the number of single- and double-family households; whereas state-level 
emissions from commercial lawn and garden equipment are allocated by the number
employees in landscaping services.  Among the most important spatial allocation facto
are human population and numbers of single- and multi-family households.  Housing un
and population estimates for 2001, the base year for the ECT visioning process, were 
obtained from the U.S. Census Bureau and used in the NONROAD model with national 
growth factors (EPA 2004) to obtain projections of emissions in 2007.  Households an
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population data for the ECT scenarios are summarized in Table 2.1 and Table 2.2, 
respectively. 
 
Non-road mobile source emissions were then processed through the EPS2 software to 
rovide emissions in the appropriate format for CAMx.  Chemical speciation and 

 to 
 Case 

s Forest; 

llocate the 

in 
omain.  

ls 

lds in Table 2.1 were allocated 
 grid cells based on the development pattern from Smart Mobility Inc.  Human 

ions 

p
temporal allocation profiles were assumed not to change for the ECT scenarios relative
the Base Case.  County-level non-road mobile source emissions for the 2007 Base
and the four ECT scenarios were allocated to each model grid cell using spatial 
surrogates.  EPS2 includes fifteen surrogate categories: 1-County Area; 2- Population; 3-
Households; 4-Urban; 5-Agriculture; 6-Range; 7-Deciduous Forest; 8- Coniferou
9-Mixed Forest; 10-Water; 11-Barren; 12-Non-forested Wetlands; 13-Mixed 
Agriculture/Range; 14-Rocky with Lichens; 15- Rural.  The fraction of each category 
within the county (i.e., area of specific grid cell / county area total) is used to a
county-level emissions to grid cells in the modeling domain.  For the 2007 Base Case, 
population and household distributions (categories 2 and 3) were based on demographic 
data from the U.S. Census Bureau’s 2000 TIGER/Line® files.  These population and 
household data were combined with the grid domain definition using Geographic 
Information Systems (GIS) software, and redistributed using an area weighting to obta
the total population and number of households for each grid cell in the modeling d
For the remaining EPS2 surrogate codes (i.e., categories 4 through 15), a composite 
LULC database, shown in Figure 2.3, was developed for the 2007 Base Case by merging 
the following: (a) a 2003 land use dataset from the City of Austin (2003); (b) a parce
dataset developed by CAPCOG (2005); and (c) the USGS 1992 National Land Cover 
Dataset (1992).  With the use of GIS, the composite dataset was overlaid with county 
boundary files and the gridded 4-km × 4-km modeling domain.  The area for each 
polygon in each grid was calculated, and the gridded dataset was exported for use as 
surrogates in EPS2.  LULC codes from the exported dataset were assigned to the 
surrogates recognized by EPS2 as shown in Appendix A. 
 
For each of the 2030 ECT scenarios, county-level househo
to
population in Table 2.2 was assumed to follow the spatial allocation of households.  
Spatial surrogates for the remaining categories were developed by overlaying the 
composite LULC database developed for the Base Case on the ECT land use 
development patterns using an approach similar to that used for the biogenic emiss
estimation in which newly developed areas were classified as urban; the remaining land 
use/land cover was classified as the original category.  Emissions estimates for the four 
ECT scenarios were processed to obtain chemically speciated, spatially and temporally 
allocated, gridded emissions suitable for input into CAMx. 
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Figure 2.3.  Composite LULC database used to develop spatial surrogates for Austin area 
 
 
Area Source Emissions 
Area sources include stationary point sources that are too small or numerous to be 
surveyed and characterized individually.  Emissions from these sources are estimated 
collectively and spatially allocated according to surrogates such as population or income.  
Area source emission inventories for each ECT scenario were developed by projecting 
2007 base year area emissions using human population growth.  Federal and state 
emission standards for architectural coating operations, auto-body refinishing, degreasing 
operations, and Stage I and Stage II controls were included (CAPCOG 2004a, 2004c).  
Uncertainties with the projection exist, and other growth factors, such as gasoline/oil 
consumption, may show different growth patterns relative to human population.  
Unanticipated future federal or state emission controls may also result in additional 
reductions.  Area sources were processed through the EPS2 software using the same 
approach as for the non-road emissions, including the use of spatial surrogates. 
 
2.2.3 Emissions Inventory Summary 
 
A summary of NOx and VOC emissions from biogenic and anthropogenic sources for the 
2007 Base Case and each ECT scenario is presented in Table 2.6.  Disaggregation of 
these estimates by individual source categories as well as plots showing differences in the 
spatial distribution of emissions are included in Appendix B (Song et al. 2008).   
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Table 2.6. Emissions of VOC and NOx (tpd) for the 2007 Base Case and each ECT 
scenario 

Note: ECT scenario emissions are calculated for a future year of 2030. 

2007 Base Case 
VMT = 44.5* 

ECT A 
VMT = 82.4* 

ECT B 
VMT = 72.2* 

ECT C 
VMT = 69.5* 

ECT D 
VMT = 65.9* 

Categories 
VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx 

On-road 
mobile 33.8 62.1 22.0 18.4 19.2 16.0 18.8 15.6 17.0 14.3 

Non-road 
mobile  22.2 21.7 23.2 9.5 24.0 9.6 24.0 9.6 23.2 9.5 

Area  110.7 10.2 214.3 20.6 237.7 22.1 261.6 23.6 236.2 22.1 

Point 3.0 2.8 3.0 2.8 3.0 2.8 3.0 2.8 3.0 2.8 

Biogenic 211.2 20.2 198.8 20.2 205.2 20.2 205.3 20.2 207.6 20.2 

*VMT is given in units of 106 miles per day in the 5-county Austin area. 
  
Biogenic sources and, because they have been projected using human population, area 
sources are predicted to remain the most significant sources of VOC emissions in the 
five-county area.  Emissions from most on-road and non-road mobile source categories, 
with the exception of those from lawn and garden equipment, decreased for the ECT 
scenarios relative to the Base Case due to more stringent federal motor vehicle emission 
control programs, including the EPA’s Tier 2 and heavy-duty 2007 rules and Tier 4 
engine standards (EPA 2003b).  Emission reductions are concentrated in the urban core 
and along major transportation corridors, while emissions increase relative to the Base 
Case in newly developed areas.  Differences between ECT D and ECT A were smaller 
than the differences between these two scenarios and the Base Case.  In general, ECT D 
resulted in lower anthropogenic emissions than ECT A.   
 
2.3 Air Quality Modeling Predictions 
 
Air quality modeling in this study was performed using the Comprehensive Air Quality 
Model with extensions (CAMx), a publicly available Eulerian photochemical grid model 
developed by ENVIRON (2004).  Photochemical modeling was conducted using the 
September 13-20, 1999 CAMx modeling episode that was developed for Austin’s Early 
Action Compact.  As shown in Figure 2.4, nested regional and urban scale domains were 
used: a 36-km regional domain, a 12-km East Texas subdomain, and a 4-km Central 
Texas subdomain.  CAMx was used to predict the spatial and temporal patterns of ozone 
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concentrations for each ECT scenario, and the results were contrasted with the 2007 Base 
Case to evaluate impacts on future air quality.  
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Regional Domain:  

 36km 
East Texas Subdomain:  

 12km 

Austin Subdomain:  

 4km 

 
Figure 2.4. Air quality modeling domain 

 
The focus of the work with the ECT scenarios was to examine the response of biogenic 
emissions, air pollutant deposition velocities, and overall regional air quality, as 
represented by ozone concentrations, to land use development.  The ECT scenarios were 
compared based on their impact to daily maximum 1-hour ozone concentrations, hourly 
episodic ozone concentrations, and population exposure.  The influences of changes in 
biogenic emissions and deposition velocities from each of the four ECT scenarios on 
daily maximum 1-hour ozone concentrations and hourly episodic ozone concentrations 
were considered both separately, and in tandem for the five-county Austin area.  The 
influences of changes in anthropogenic emissions from area and non-road mobile sources 
and on-road mobile sources were also considered separately and in tandem. 
 
2.3.1 Daily Maximum 1-hour Ozone Concentrations 
 
Predicted 1-hour averaged daily maximum ozone concentrations for the 2007 Base Case 
ranged from 72 ppb to 90 ppb across the episode.  Differences in daily maximum 1-hour 
ozone concentrations due to the combined changes in dry deposition, biogenic emissions, 
and anthropogenic emissions from on-road mobile, non-road mobile and area sources 
ranged from -11 ppb to -2 ppb with typical values of -6 ppb as shown in Table 2.7.    
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Table 2.7. Daily maximum 1-hour ozone concentrations for the Base Case and 
differences in the daily maximum ozone concentrations relative to the Base Case 

Episode 
Day 

Base Case 
Daily Max. 
O3 Conc. 

(ppb) 
ECT A ECT B ECT C ECT D 

9/15 80.5 -4.7 -4.9 -5.3 -5.3 
9/16 72.0 -1.8 -2.0 -2.0 -2.1 
9/17 85.8 -6.9 -6.9 -6.9 -6.9 
9/18 86.2 -4.1 -4.1 -4.1 -4.1 
9/19 90.4 -5.8 -6.0 -6.6 -6.7 
9/20 90.5 -9.7 -9.9 -10.3 -10.8 

 
For ECT scenarios A and D which represent the two most extreme development 
scenarios, Table 2.8 shows results segregated by changes due to the impacts of 
urbanization on biogenic emissions and dry deposition only, on anthropogenic emissions 
only, and on the combined effects of biogenic emissions, dry deposition, and 
anthropogenic emissions. 
 
Table 2.8. Daily maximum 1-hour ozone concentrations for the Base Case and 
differences in the daily maximum ozone concentrations relative to the Base Case for ECT 
A and ECT D. 

ECT A: 
Difference in Daily Max O3 Conc. 

from Base Case 
(ppb) 

ECT D: 
Difference in Daily Max O3 Conc. 

from Base Case 
(ppb) 

Episode 
Day 

Base Case 
Daily Max. 
O3 Conc. 

(ppb) Bio Anthro Combined Bio Anthro Combined 
9/15 80.5 0.0 -4.6 -4.7 0.0 -5.3 -5.3 
9/16 72.0 0.1 -2.1 -1.8 0.1 -2.2 -2.1 
9/17 85.8 -0.1 -7.0 -6.9 0.0 -6.9 -6.9 
9/18 86.2 -0.4 -4.1 -4.1 -0.2 -4.1 -4.1 
9/19 90.4 -0.6 -5.5 -5.8 -0.1 -6.7 -6.7 
9/20 90.5 -0.9 -9.2 -9.7 -0.1 -10.7 -10.8 

Note that: (1) ‘Bio’ indicates impacts of urbanization due to changes in biogenic emissions and dry 
deposition only; (2) ‘Anthro’ indicates impacts of urbanization due to changes in on-road, non-road, and 
area source emissions only (point source emissions did not change); and (3) ‘Combined’ indicates impacts 
due to changes in both ‘Bio’ and ‘Anthro’. 
 
Changes in daily maximum 1-hour ozone concentrations relative to the Base Case due to 
decreases in biogenic emissions alone ranged from -0.02 ppb to -1 ppb among all four 
ECT scenarios, with a typical value of -0.3 ppb for the Austin area.  The decreases in 
ozone concentrations were consistent with the loss of vegetative cover in developing 
areas and reductions in biogenic emissions.  Changes in daily maximum 1-hour ozone 
concentrations relative to the Base Case due to differences in dry deposition velocities 
alone ranged from 0 ppb to 0.3 ppb.  In Wesely’s model, dry deposition velocities for 
mixed agricultural/range land or forests are higher than for urban areas during the 
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daytime, but lower at night during mid-summer conditions (Song 2007).  Consequently, 
loss of vegetative cover due to urbanization leads to less removal of ozone during the 
afternoon and higher maximum daily ozone concentrations, but decreases in ozone 
concentrations during the night.  Changes in daily maximum 1-hour ozone concentrations 
relative to the Base Case due to the combined impacts of changes in biogenic emissions 
and dry deposition ranged from -0.9 ppb to 0.1 ppb among all four ECT scenarios, with 
typical values of -0.2 ppb for the Austin area.  Although these impacts appear small, they 
are comparable in magnitude to some commonly employed air pollution control measures 
that were adopted as part of Austin’s Early Action Compact. 
 
Changes in daily maximum 1-hour ozone concentrations relative to the Base Case due to 
changes in area and non-road mobile source emissions only ranged from -0.1 ppb to 0.8 
ppb among all four ECT scenarios, with typical values of 0.2 ppb for the Austin area.  
Changes in daily maximum 1-hour ozone concentrations relative to the Base Case due to 
changes in on-road mobile source emissions only were substantially larger.  Reductions 
in on-road mobile source emissions, resulting from implementation of federal motor 
vehicle control programs, led to changes in area-wide daily maximum hourly ozone 
concentrations for the ECT scenarios of up to -10 ppb.   
 
2.3.2 Hourly Episodic Ozone Concentrations 
 
In addition to differences in area-wide daily maximum 1-hour ozone concentrations 
between the ECT scenarios and the Base Case, maximum and minimum differences in 1-
hour ozone concentrations that occurred across the region regardless of time of day or 
magnitude were investigated.  Figure 2.5 shows the range of changes in 1-hour ozone 
concentrations between the ECT scenarios and the Base Case due to changes in (a) 
biogenic emissions and dry deposition, (b) non-road mobile and area source emissions, 
(c) on-road mobile source emissions, (d) anthropogenic emissions, and (e) biogenic 
emissions, dry deposition, and anthropogenic emissions.  Changes in ozone 
concentrations due only to changes in biogenic emissions and dry deposition are 
relatively smaller than the changes due to anthropogenic emissions.  Both significant 
increases and decreases in ozone concentrations were associated with changes in 
anthropogenic emissions, and the spatial patterns of ozone changes with urbanization 
were heterogeneous.  Maximum differences in hourly ozone concentrations were 
predicted between ECT A and the Base Case for the changes due to biogenic emissions 
and dry deposition  alone (+0.7 ppb to -1.4 ppb), anthropogenic emissions alone (+22 ppb 
to -14 ppb), and both in tandem (+22 ppb to -14 ppb).  As shown in Figure 2.6, decreases 
occurred in the afternoon in eastern Travis County and western Bastrop County, while 
increases were primarily due to reductions in on-road mobile source emissions along 
transportation corridors in the Austin urban core which resulted in less titration of ozone 
by NOx emissions during the early morning hours.  The range of differences in hourly 
ozone concentrations between the other ECT scenarios and the Base Case were generally 
within 1-2 ppb of the range of differences between ECT A and the Base Case. 
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(d) ‘Anthropogenic’ 

(e) ‘Biogenic’+‘Anthropogenic’ 

Changes in Hourly Ozone Concentrations  
Figure 2.5. Range of changes in hourly ozone concentrations (ppb) between the ECT 
Scenarios and the Base Case across the 5-county Austin area due to changes in (a) 
biogenic emissions and dry deposition only, (b) non-road mobile and area source 
emissions only, (c) on-road mobile source emissions only, (d) anthropogenic emissions 
only, and (e) biogenic emissions, dry deposition and anthropogenic emissions. (Song et 
al. 2008) 
 
 

(a) (b)(a) (b)

 
Figure 2.6. Differences in hourly ozone concentrations on one episode day (September 
20) between ECT A and the Base Case due to changes in anthropogenic emissions at (a) 
1400 and (b) 0600 
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These results are consistent with previous studies that have shown that ozone formation 
in the Austin area is generally NOx-limited with VOC-limited conditions near the I-35 
corridor in central Travis County (CAPCOG 2004b).  Consequently, as part of its Early 
Action Compact, the Austin area has pursued NOx control strategies as more effective 
than VOC strategies for reducing ozone levels.  The responsiveness of hourly peak 
ozone concentrations to anthropogenic NOx reductions in the Austin area is predicted 
to continue with future patterns of urbanization.  Figure 2.7 shows the differences in 
hourly ozone concentrations between ECT A and the Base Case versus the Base Case 
across all grid cells and episode days due to the combined changes in biogenic 
emissions, dry deposition, and anthropogenic emissions.  Figure 2.7 indicates that 
decreases in ozone concentrations are primarily associated with high ozone 
concentrations.  Plots for the other ECT Scenarios showed similar trends.  Both 
reductions in high ozone concentrations and increases in lower ozone concentrations 
were due primarily to reductions of emissions from on-road mobile sources in the 
future scenarios.     
 

 
Figure 2.7.  Difference in hourly ozone concentrations between ECT A and the Base 
Case versus hourly ozone concentrations for the Base Case across all episode days and 
grid cells in the five-county Austin area due to changes in biogenic emissions, dry 
deposition, and anthropogenic emissions. 
 
Differences in hourly ozone concentrations between the ECT scenarios and the Base Case 
were much greater than differences between the ECT scenarios due to the large changes 
in emissions between the Base Case and future year projections.  For all of the ECT 
scenarios, changes due to biogenic emissions and dry deposition were relatively smaller 
than changes due to anthropogenic emissions.  Maximum differences in hourly ozone 
concentrations between ECT D and ECT A, shown in Figure 2.8, ranged from -3.0 ppb to 
4.5 ppb.  Figure 2.9 shows an example of the spatial differences in predicted ozone 
concentrations between ECT D and ECT A.  Overall the doubling of population and 
implementation of new federal mobile source standards produced greater changes in 
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emissions and air quality than differences in spatial patterns due to different types of 
regional development implying that controlling the environmental impacts of 
urbanization involves multi-faceted strategies. 
 
 

(a) ‘Biogenic’ 

(b) ‘Nonroad + Area’ 

(c) ‘On-road’ 

(d) ‘Anthropogenic’ 

(e) ‘Biogenic’+‘Anthropogenic’ 

-25                -20              -15                -10                -5                  0                  5                 10                15                20                

Changes in Ozone Concentrations (ppb)  
Figure 2.8. Range of changes in hourly ozone concentrations (ppb) between ECT D and 
ECT A across the 5-county Austin area due to changes in (a) biogenic emissions and dry 
deposition only, (b) non-road mobile and area source emissions only, (c) on-road mobile 
source emissions only, (d) anthropogenic emissions only, and (e) biogenic emissions, dry 
deposition and anthropogenic emissions. (Song et al. 2008) 
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Figure 2.9.  Differences in hourly ozone concentrations between ECT D and ECT A at 
1400 on one episode day (September 20) 
 
2.3.3 Population Exposure 
 
In addition to changes in hourly ozone concentrations, a characterization of air pollutant 
exposure was examined.  Total daily population-weighted exposure above a threshold 
ozone concentration (ppb) (Wang 2006) was characterized using the following metric:  
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Note that the population doubles from approximately 1,250,000 people in the Base Case 
to 2,500,000 people in the ECT scenarios.  This metric was evaluated for various 
threshold values and estimated for each grid cell, summed over the Austin area modeling 
domain, and over all hours of the day.  
 
Evaluating daily population exposure, in addition to differences in hourly ozone 
concentrations, provides additional information about the magnitude and spatial 
distribution of changes due to urban development and can be particularly relevant in the 
context of environmental equity.  Total daily population-weighted exposure, described 
above, was estimated for the Base Case and the two ECT scenarios that represent the 
most extreme differences in development patterns: (1) ECTA, which is consistent with 
Austin’s historical pattern of low-density, segregated-use development based on 
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extensive highway provision, and (2) ECT D, which is high-density development and 
balanced-use zoning.  Figure 2.10 shows the total daily population-weighted exposure for 
the Base Case and ECT Scenarios A and D using threshold values of 40 ppb, which is a 
value typical of clean background conditions, 60 ppb, and 80 ppb, respectively.  For a 
threshold value of 40 ppb, all ECT scenarios show greater exposure than the Base Case 
due to additional increases in ozone and population in newly developed areas.  For higher 
threshold values, Figure 2.10 shows the variation in exposure over the episode with 
typically lower exposure values for ECT Scenario D and higher values for the Base Case.  
For example, for a threshold value of 80 ppb, the Base Case shows greater exposure than 
the ECT scenarios since daily maximum ozone concentrations were lower for the ECT 
scenarios. 
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Figure 2.10. Total daily population-weighted exposure using a (a) 40 ppb, (b) 60 ppb, 
and (c) 80 ppb threshold for ECTA, ECTD and the Base Case. 
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2.4 Comparison of ECT Results with U.S. EPA’s post-Clean Air Act Amendment 
Emission Scenario Projections 
 
A goal of this study was to test the hypothesis that predicted human exposure patterns 
based on ECT and ITLUM emission forecasts would differ from those based on the U.S. 
EPA’s post-Clean Air Act Amendment emission scenario projections, however the 
county-level data required for this comparison was not publicly available from EPA in 
time to include in this study.   
 
2.5 Comparison of ECT Results with changes in On-road Mobile Source Controls 
 
A goal of this study was to test the hypothesis that changes in land use and dry deposition 
patterns have at least as significant an impact on future air quality as changes in on-road 
vehicle emission control technologies.  The Energy Independence and Security Act of 
2007, which focuses on improving vehicle fuel economy and reducing U.S. dependence 
on foreign oil, includes a mandatory Renewable Fuel Standard which requires significant 
increases in the use of biofuels through 2022.  For at least the next few years, it is 
expected that the majority of this mandate will be met by corn ethanol.  E85 is a blend of 
85% denatured fuel ethanol and 15% gasoline that can be used in flex fuel vehicles 
(FFVs). 
 
A photochemical modeling run was performed in which on-road mobile source emissions 
for ECT A were modified to simulate use of E85 by 30% of the gasoline fleet.  Total 
VOC, CO, and NOx emissions were adjusted using factors from Jacobson (2007)  
Relative to gasoline-fueled vehicles, E85-fueled vehicles were assumed to emit 30% less 
NOx, 5% greater CO, and 19.6% greater VOC (non-methane hydrocarbons).  
Additionally, the data presented by Jacobson were used to develop a VOC chemical 
speciation profile for E85 using the Carbon Bond IV mechanism (CB-IV) (Gery et al. 
1989).  The CB-IV mechanism speciates organic compounds into a set of eleven 
components based on their structure; OLE (Olefin), PAR (Paraffin), TOL (Toluene), 
XYL (Xylene), FORM (Formaldehyde), ALD2 (Higher aldehyde), ETH (Ethene), 
MEOH (Methanol), ETOH (Ethanol), ISOP (Isoprene), and UNR (Unreactive Species).  
The gasoline exhaust VOC profile used in EPS2 was developed from exhaust 
composition measurements in the Washburn Tunnel in Houston during the Texas Air 
Quality Study (TexAQS) in 2000 (McGaughey et al. 2004).  A hybrid approach was used 
to develop an E85 VOC speciation profile based on the original gasoline exhaust profile.  
For species listed explicitly by Jacobson, the compounds in the original gasoline profile 
were multiplied by the corresponding adjustment factors and supplied to Carter’s 
speciation database (2008).  The remaining species in the original gasoline profile (except 
MTBE which was replaced with ethanol) were supplied to Carter’s database and 
speciated into lumped bond groups.  Adjustment factors for corresponding bond groups 
from Jacobson were then applied to the speciated mixture.  The explicit and lumped 
profiles were combined using a mass-weighted approach into a single profile for E85: 
ETOH 64%, ETH 3.7%, FORM 2.3%, TOL 1.3%, XYL 1.8%, ISOP 0.1%, ALD2 8.1%, 
OLE 1.4%, PAR 8.3%, MEOH 0% and UNR 9.2%. Thus for the composite E85 profile 
that was developed based on available data, approximately 64% of VOC emissions by 
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mass are speciated as ethanol. In contrast, the original gasoline profile was speciated as 
ETOH 0.2%, ETH 6.0%, FORM 1.8%, TOL 7.7%, XYL 10.4%, ISOP 0.3%, ALD2 
3.9%, OLE 3.1%, PAR 51.9%, MEOH 0.2%, and UNR 14.5%. 
 
It should be noted that the method used to develop the E85 profile for this study is 
indirect, and while generally consistent with emission summaries provided by Jacobson, 
it is only an approximation.  Additionally, as with gasoline emissions, exhaust and 
evaporative VOC profiles for E85 are likely to vary.   
 
Total on-road mobile source VOC emissions for the ECT A scenario assuming 30% 
conversion to E85 increased from 22.0 tons per day (tpd) in the unmodified ECT A 
scenario to 23.2 tpd.  Total on-road mobile source NOx emissions in the E85 scenario 
decreased from 18.4 tpd to 16.8 tpd.  Figure 2.11 shows reductions in daily maximum 1-
hour ozone concentrations for the E85 scenario and ECT scenarios B, C, and D relative to 
ECT A.  Changes in daily maximum 1-hour ozone concentrations relative to ECT A due 
to the introduction of E85 ranged from -0.4 to 0.0 ppb, with typical values of -0.2 ppb for 
the Austin area.  Although these impacts appear small, they are comparable in magnitude 
to some commonly employed air pollution control measures that were adopted as part of 
Austin’s Early Action Compact.  Figure 2.12 shows the maximum and minimum 
differences in 1-hour ozone concentrations relative to ECT A that occurred across the 
region regardless of time of day or magnitude.  Differences in hourly ozone 
concentrations due to the introduction of E85 are relatively smaller than changes due to 
development patterns.  Maximum differences in hourly ozone concentrations between the 
E85 scenario and ECT A ranged from -0.6 ppb to 0.8 ppb.  Use of E85 fuel will also 
impact emissions and exposure to air toxics, particulate matter, and greenhouse gases, 
however evaluation of these impacts was beyond the scope of this study. 
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Figure 2.11.  Reductions in daily maximum 1-hour ozone concentrations relative to 
ECTA 

Range of Maximum and Minimum Differences in 1-hour 
Ozone Concentrations Relative to ECTA
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Figure 2.12. Range of changes in hourly ozone concentrations (ppb) relative to ECT A  
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3.0 Integrated Transportation Land Use Model (ITLUM) Scenarios 
 
3.1 Introduction 
 
Urban land use models (LUMs) seek to predict a region’s future spatial distribution of 
households and employment, and provide key inputs to models of travel demand, 
emissions, and air quality.  Integrated transport-land use models (ITLUMs) allow 
analysts to anticipate system response to new policies, preference functions, economic 
conditions and other scenarios.  With increasing computational power and theoretical 
advances, many operational LUMs have been developed, and several studies have 
summarized and compared existing models (e.g., Miller et al. 1998, PBQ&D 1999, US 
EPA 2000, and Dowling et al. 2005).  The general consensus is that many limitations 
remain.  However, innovative research in this area is still emerging due to the complexity 
of transport-land use systems.   
 
The year 2030 travel conditions and household and employment distributions for the 
Austin-Round Rock Metropolitan Statistical Area (MSA) of Texas were predicted using 
two ITLUMs.  The first utilizes a variation of Steven Putman’s Integrated Transportation-
Land Use Package (ITLUP), and the second involves a new style of land LUM developed 
to examine land use change at the parcel level and apply systems of equations for land 
use intensity (household and employment counts by type) at the level of travel analysis 
zones (TAZs).  Both ITLUMs include a travel demand model (TDM) that is largely based 
on Smart Mobility’s specification.  However, this model was modified in order to 
consider travel costs in the distribution and network assignment of personal trip-making, 
as described in Appendix C.  In addition, Appendix D provides more technical details 
related to commercial travel (or truck flows), as deduced from the GIS-DK code 
developed by Smart Mobility. Appendix H presents models for decisions in different 
stages of the passenger vehicle cycle of ownership and use, capturing the effects of 
household demographics and location on fleet evolution across the Austin region. 
 
3.2 Existing Land Use Models 
 
To date, many operational LUMs have been developed based on different theoretical 
framework.  The appropriateness and usefulness of any tool varies by context.  Lemp et 
al. (2008) summarized four major theoretical constructs underlying the majority of 
LUMs: gravity allocation, cellular automata, input-output, and discrete response 
simulation.  This summary is a bit simplistic and is based on models’ primary features; 
some advanced models attempt to combine advantages of two or more approaches, but 
their key attributes determine where they stand in the family of land use models. 
 
In gravity models, regional transportation accessibility is core to the spatial allocation of 
jobs (by type) and households (by category).  Zone-based specifications generally include 
lagged jobs and households, as well as some measure of land availability and land use 
conditions.  Other influential factors, such as price adjustments, presence of built space, 
zoning restrictions, and topographic conditions are overlooked.  Gravity models tend to 
use regional totals to adjust forecasts across all zones, and have been found to perform 
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less well with disaggregate zone systems and/or sparse zone activity levels (PBQ&D 
1999).   
 
A representative gravity model is the Federal Highway Administration-sponsored 
Transportation Economic and Land Use Model (TELUM), which enjoys a user-friendly 
graphical user interface and is freely downloadable at http://www.telus-
national.org/index.htm.  However, its code is not shared, zone count is limited, and some 
key documentation is missing in its User Manual (2006) (e.g., parameter calibration, 
objective functions and land consumption variable definitions).  A more flexible, open-
source version of this model has been written in MATLAB and applied in this study1. 
 
Cellular automata (CA) models are a class of artificial intelligence (AI) methods.  Other 
AI methods include neural networks and generic algorithms, which also have been used 
to simulate and/or optimize land use change (Raju et al. 1998, Balling et al. 1999), but 
the CA-based SLEUTH model (Slope, Land use, Exclusion, Urban extent, Transportation 
and Hill shade) is the most widely applied (Clarke et al. 1997, Silva and Clarke 2002, 
Syphard et al. 2005).  It represents a dynamic system in which discrete cellular states are 
updated according to a cell’s own state, as well as that of its neighbors.  However, 
SLEUTH relies on just five coefficients, and is calibrated in a rather ad hoc fashion2. 
While CA models may mimic many aspects of the dynamic and complex land use 
systems, they generally lack behavioral foundations to explain the process.  Moreover, 
they emphasize land-cover type, not land use intensity, so post-processing is needed to 
generate employment and household count patterns (which are, of course, critical to 
travel demand modeling). 
 
Spatial input-output models are used to anticipate the spatial and economic interactions 
of employment and household sectors across zones, using discrete choice models for 
mode and input-origin choices.  Production and demand functions consider transport 
disutility between zones, and people (and generally freight) move from one location to 
another in order to equilibrate supply and demand.  Representative models include 
TRANUS (see, e.g., Johnston and de la Barra 2000), PECAS (e.g. Hunt and Abraham 
2003), and RUBMRIO (e.g., Kockelman et al. 2004).  PECAS has introduced a 
disaggregate version of space development submodel, which models the actions of 
developers at either the level of land parcels or grid cells (e.g., PECAS 2007, Hunt et al. 
2008).  This advance made PECAS a hybrid of spatial input-output (on its activity 
allocation submodel) and random utility maximization techniques, but PECAS is still 
classified into this category because its key component, activity allocation module, is 
based on market clearing at zonal level.  Trade-based spatial input-output models are 
most suitable for larger spatial units (e.g., countries, regions, states and/or nations), so 
spatial resolution can be poor.  Good trade and production data are also difficult to come 
by.  
 

                                                 
1 The open source code is available at http://www.ce.utexas.edu/prof/kockelman/G-
LUM_Website/homepage.htm 
2 The model is calibrated by minimizing a variety of discrepancy measures, using historical data to 
initialize the runs and current data for comparison. 

29 



Random utility maximization for discrete choices (McFadden 1978) is the basis of most 
microsimulation models.  Waddell’s UrbanSim (Waddell 2002, Waddell et al. 2003, 
Waddell and Ulfarsson 2004, Borning et al. 2007) simulates location choices of 
individual households and jobs, while anticipating new development on the basis of such 
models.  In some contrast, Gregor’s LUSDR (Land Use Scenario DevelopeR) emphasizes 
fast model runs and the stochastic nature of results, seeking a balance between model 
completeness and practicality (Gregor 2007).  Allocating groups of residential and 
business development on the basis of mostly multinomial logit (MNL) equations, 
LUSDR does not model price adjustments.  The rationale behind utility maximization is 
defensible, but these choice-based models tend to require extensive data and composed of 
several submodels.  The interactions among these model components make it hard to 
discern effects of a policy-decision variable, and uncertainties of one submodel could be 
easily passed to other parts of the model system.  In addition, numerous factors affect 
decisions of individual households and firms, and these factors interact in an intrinsic 
way; therefore, improvement opportunities always exist.  For example, UrbanSim does 
not recognize the effects of travel distance, time or cost on location decisions for 
individual households.  Many studies (Van Ommeren et al. 1999, Rouwendal and Meijer 
2001, Clark et al. 2003, and Tillema et al. 2006) have suggested significant impacts of 
commute time (or cost) on residential and/or job site location decisions. 
 
3.3 Gravity Land Use Model 
 
Putman’s ITLUP has three components: a Disaggregated Residential Allocation Model 
(DRAM® 3), an EMPloyment Allocation model (EMPAL®) and LANd CONsumption 
model (LANCON).  While specification of our gravity-LUM (G-LUM)’s three 
components was designed to mimic Putman’s ITLUP and to follow Putman’s published 
materials as closely as possible (e.g. Putman 1983, TELUM 2007), actual model 
equations are no doubt slightly different from the trademarked, proprietary software.  
Therefore, these coded components are referred to as RESLOC, EMPLOC, and 
LUDENSITY.  A reasonably standard sequential TDM was linked externally to the LUM 
system in order to update travel conditions and provide a well-defined, series of related 
steps to all future household and employment forecasts (at five-year intervals).  
 
In this integrated modeling framework, the EMPLOC model runs before the RESLOC, 
followed by LUDENSITY and the TDM.  The EMPLOC model output (employment by 
category by zone) serves as an input to the RESLOC.  Predicted household and 
employment levels (by category/type) are LUDENSITY’s primary inputs.  A TDM was 
applied right after allocating households and jobs (and estimating land consumption 
levels), in order to update travel times between zones and the relative attractiveness of 
each zone.  Figure 3.1 shows the interactions between these components. 

                                                 
3 DRAM and EMPAL are trademarks of S.H. Putman Associates, Inc.  
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Figure 3.1. Model Logic of the Gravity Land Use Model 
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3.3.1 G-LUM Specification 
 
RESLOC presumes that current household distribution is determined by current 
employment locations (jobs), land availability (helping avoid excessive assignment of 
new households to small and well-developed zones), travel impedances between all zones 
(as a function of travel cost and time), and prior-year distribution of households.  Future-
year household allocation/assignment is guided by the residential attractiveness of each 
zone, measured as a function of (a) each zone’s presently vacant yet developable land, (b) 
the proportion of developable land that already has been developed, (c) residentially 
developed land, and (d) current numbers of residents by type.  The importance of these 
variables is determined by model calibration, using least squares, maximum likelihood 
estimation (MLE), maximum entropy (ME) or other methods.  The specification is 
largely non-linear in nature, and calibration requires two time points of data on household 
and employment distribution, with associated land use maps. 
 
Similarly, the EMPLOC model forecasts the spatial distribution of jobs by category 
(basic, retail and service).  Employment allocation is based on zonal attractiveness, as 
measured by prior-year employment and zone size.  Prior-year population and travel 
impedances (to all zones) also impact employment distribution.  
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Finally, the LUDENSITY model uses three log-linear multivariate equations to estimate 
land consumption by type (residential, basic and commercial) in each zone.  Variables 
determining land consumption include the forecasted spatial distributions of households 
and employment, and prior-year land use conditions.  Key equations for all three models 
are detailed in Appendix E. 
 
Essentially, the G-LUM model formulation follows FHWA’s freely available 
Transportation Economic and Land Use Model (TELUM) in its TELUM-RES and 
TELUM-EMP components, and Caliper’s land use module in its land consumption 
component.  Both TELUM’s and Caliper’s programs are representative applications of 
Steven Putman’s ITLUP, as it is documented in available publications.  TELUM has 
several restrictions that cannot be overcome due to its “black box” nature.  Fist, the 
model is limited in the geographies it can consider by restrictions on the average 
population per zone, which must lie above 3,000 persons (and is recommended to lie 
below 10,000 persons).  Second, the documentation is incomplete, neglecting to cover 
details of the LANCON model and the parameter calibration process.  Caliper’s land use 
module does not (yet) allow users to estimate model parameters, so this must be done 
outside the model.  To overcome such restrictions, complete Matlab code was developed 
for model calibration and application in this study.  
 
Of course, there are countless ways that the base ITLUP models can be modified.  For 
example, Krishnamurthy and Kockelman (2003) calibrated and applied a variation for 
Austin.  In addition to slight differences in the specifications of household and 
employment allocation models, they enforced strict land use constraints by using 
maximum density values as caps on job and household allocations (to each zone).  They 
were not aware of the LANCON model at the time, and so did not include such 
equations.  In fact, LANCON represents a relatively recent innovation, and many others, 
such as North Central Texas Council of Governments (NCTCOG), do not use it. 
 
3.3.2 Data Sets Used in the G-LUM 
 
To be consistent with the Envison Central Texas (ECT) scenarios, the model system 
predicts the spatial distributions of six household types (categorized by number of 
workers (0, 1 and 2+) and presence of children) and three employment categories (basic, 
retail and service jobs).  Table 3.1 provides the household and employment 
classifications.  Three other employment types (namely Airport, K-12 Education and 
Higher Education) were assumed to follow ECT’s trend scenario (Scenario A, as 
generated by the Fregonese Calthorpe Associates)4, because these three employment 
types vary significantly over space yet are relatively stable over time (at least for all 
zones that have non-zero employment counts).  
 
Table 3.1. Employment and Household Classification 
Category Definition 
Type I Household 0-worker household, with at least one child under 18 years of age 
                                                 
4 These three types of employment account for 4.7% of total jobs in ECT’s trend scenario. 
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Type II Household 1-worker household, with at least one child under 18 years of age 

Type III Household 2 or more-worker household, with at least one child under 18 
years of age 

Type IV Household 0-worker household, with no children 
Type V Household 1-worker household, with no children 
Type VI Household 2 or more-worker household, with no children 

Basic Employment 

Division A (agriculture, forestry, and fishing) 
Division B (mining) 
Division C (construction) 
Division D (manufacturing) 
Division E (transportation, communications, electric, gas, and 
sanitary services) 
Division F (wholesale trade) 

Retail Employment Division G (retail trade) 

Service Employment 
Division H (finance, insurance and real estate) 
Division I (services) 
Division J (public administration) 

 
Here, the RESLOC, EMPLOC, and LUDENSITY models were calibrated using 2000 and 
2005 demographic data (jobs and households, by type) and 2005 land use data 
(development type) for Austin’s five-county MSA.  The Capital Area Metropolitan 
Planning Organization (CAMPO) provided the 2000 household counts and 2007 
projections at the level of traffic analysis zones (TAZs).  Total zonal household counts 
for year 2005 were interpolated using the 2000 and 2007 data, and households by type 
were calculated using the household type proportions evident in ECT’s trend scenario.  
 
High-quality land use data for the entire MSA is quite limited, and only one set of land 
use data (in year 2005) could be obtained (via the Capital Area Council of Governments 
[CAPCOG]).  The data was refined using the City of Austin’s (CoA’s) relatively accurate 
2003 land use data base, along with year 2004 orthophotos (to fill in over 3,000 parcels 
that lacked a land use code).  Overlapping parcels were eliminated, and missing parcels 
were added manually.  Obtaining a second historical land use data to calibrate the models 
presently is highly impractical.  Therefore, land use conditions for the year 2000 were 
backcast in each travel analysis zone (TAZ), using 2000 and 2005 household and 
employment counts (along with the 2005 land use data).  
 
3.3.3 G-LUM Calibration 
 
Two common goodness-of-fit measures can serve as the objective function (to be 
maximized or minimized) as part of model calibration.  These are the R2 and the data 
set’s likelihood.  Due to the nonlinearities embedded in the model specification, non-
linear least squares (NLLS) techniques are needed here (as described in Greene [2000]).  
Putman (1983) explained that least-squares techniques tend to seek the optimum over a 
relatively flat surface, while the likelihood tends to enjoy a steeper surface.  However, 
comparisons of results from applications of our Matlab code and TELUM for Austin and 
Waco, Texas case studies reveal that the optimization surface for such gravity-based land 
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use models is highly irregular and non-convex (Valsaraj et al. 2007), which compromises 
the alleged advantage of maximum likelihood estimation methods (or their equivalent, 
entropy maximization).  NLLS techniques are easier to understand and implement.  For 
these reasons, NLLS techniques were used for parameter calibration in this study.  Tables 
E.1 through E.3 in Appendix E provide the estimated parameter values and their 
corresponding t-statistics.   
 
The model calibration results reveal that past counts of households and jobs (Δt = 5 
years) are strong predictors of current counts of all household types, as well as basic and 
retail employment, because the estimated η ’s and λ ’s are close to zero; so the estimated 
coefficients of (and reliance on) the historical counts are close to one.  In general, rising 
travel times reduce a zone’s relative attractiveness for new residential development, as 
shown by the negative signs of α ’s and β ’s.  However, for job distributions, the role of 
travel time appears mixed.  Moreover, many coefficients in the attractiveness function 
(Function 4) for household allocations are statistically insignificant, especially the ones in 
the following multiplicative function:  
 

∏ ∑
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

−

−

' 1,

'
1,

'

1
n

b

n

n
ti

n
ti

n
n

N
N

               (3.1) 

 
This suggests the possibility of over-specification of the household attractiveness 
function.  However, in order to maintain the model specification of the Gravity-LUM, 
statistically insignificant coefficients were retained in final model specification.  
 
In terms of land consumption, the amount of developable land in each zone is a valuable 
predictor of residential, basic and commercial development, with a high level of 
statistical significance.  The ratios of developed, basic and commercial uses to 
developable land are more statistically significant, as compared to the ratios of 
households by type to the total household counts in predicting residential uses.  The ratio 
of residential use to developable land is statistically insignificant in basic and commercial 
developments. 
 
3.3.4 G-LUM Application 
 
The models were applied every five years (partly because the data required for parameter 
calibration were available in five year intervals).  The year 2030 regional households 
were assumed to be 931,000 (rather than 476,000 in year 2000) and employment 
(including basic, retail and service) was assumed to be 1,348,000 jobs (rather than 
614,000 in 2000).  Each household type and employment category was assumed to follow 
an exponential growth pattern, and the intermediate region-wide totals controlled the 
LUM behavior.  The control totals are necessary in order to predict a level of households 
and employment in year 2030 that is comparable to the visioning approaches. 
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Technical Details in the Land Use Model 
If some household types or employment categories in a TAZ have zero values in the base 
year, they will remain so because of the multiplicative nature of the RESLOC and 
EMPLOC model specifications.  However, it is often desired that these household types 
or employment categories can move to such a zone in the future.  Therefore, small values 
(e.g., 1) were added to TAZ counts of households or jobs in each category, to serve as 
“seeds”.  When the initial counts of households or jobs were smaller than the pre-
specified seed value, the seed value was added before applying the models (Equations 
E.1 through E.7 in Appendix E).  After applying the models, the seed value was deducted 
from the corresponding results (before the systematic adjustment using regional control 
totals).  If any forecasted counts of households or jobs became negative due to the seed 
value deduction, a zero value was used.  
 
Residuals from model calibration represent some unobserved factors that influence the 
spatial distributions of households and employment.  In order to take these unobserved 
factors into account, residuals should be added to the model applications (or forecasts of 
household and employment distributions).  It is argued that the influence of unobserved 
factors should diminish over time (TELUM 2007).  So, a linear deduction of residuals 
was applied in this study, with zero impacts in year 2030 (e.g., 1.0, 0.75, 0.5, 0.25, and 
0).  
 
In order to ensure reasonable population and jobs forecasts, certain rules were 
implemented in the model application.  First, households and jobs in one TAZ were not 
allowed to decrease by more than 5% in any one five-year time interval.  Second, 
increases in household and job counts were limited by land availability.  For each 
household type, the maximum increase in the ratio of counts between two periods in any 
given zone was assumed to be the ratio of developable land to residentially developed 
land.  For each job category, the maximum increase was set as the ratio of developable 
land to the sum of basic and commercially developed land.  Third, in fully developed 
TAZs, households and jobs were not allowed to increase by more than 5% per time 
interval5.  TAZs that violated the first rule were marked, and then the corresponding type 
of households or jobs was “drawn” from the un-marked TAZs, in proportion to their 
original, forecasted counts.  Similarly, TAZs that violated the second rule were marked, 
and then the “extra” households or jobs were re-allocated to the un-marked TAZs, in 
proportion to their original counts.  This re-allocation process was run interactively until 
all TAZs satisfied the two rules. 
 
The multiplicative nature of LUDENSITY model requires positive values for the 
numbers of households (by type and total) or jobs (by category and total) and the 
amounts of developed, residential, basic, commercial and developable land.  Therefore, 
zero or extremely small values were adjusted to 0.0001 (for counts of households and 
employment) or 1E-10 (for acres of land).  Like household and employment forecasts, the 
residential, basic and commercial land were not allowed to fall by more than 5% in any 
5-year interval; and in fully developed TAZs, residential, basic, and commercial lands 
                                                 
5 This decision-rule relaxes the second decision-rule for fully developed zones in order to allow for infill in 
those zones. 
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were not allowed to increase by more than 5% in one time interval.  In addition, the 
minimum land per job or household depended on two additional factors: land 
consumptions in the previous period, and a pre-specified minimum land required per 
household, basic job or commercial job.  These were assumed to be 500, 250, and 1000 
square feet (per person or job), respectively.  When projected new development needed 
more than the available land, the forecasted sizes of residential, basic and commercial 
development were proportionally reduced.  
 
Transportation and Land Use Policies 
The land use and transportation effects of four distinctive policies were investigated here.  
These include a business-as-usual (BAU or base) scenario, a road pricing scenario 
(congestion pricing plus a per-mile-traveled carbon tax, CPCT), a density floor scenario 
(no new low-density development), and an urban growth boundary (UGB) scenario 
(prohibiting new development in presently peripheral, largely undeveloped zones).  
 
The Road-Pricing scenario (congestion pricing plus a carbon tax) required modifications 
to the model system’s TDM component.  A congestion charge was set to equal the 
difference between the marginal cost and average cost of using each link in the network.  
The social marginal cost (MC) and average private cost (AC) of using a link, in terms of 
travel time, are defined as follows: 
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where VOTT  is the value of travel time (assumed to be $6.75/hour6, as suggested by 
Appendix C,   is the free-flow travel time for the link, is demand volume for the 
link (in vehicles per hour), is the link’s capacity (also in vehicles per hour), and

( )fft v
c μ and 

ϕ  (assumed to be 0.83 and 5.5) are the coefficients in the well-known Bureau of Public 
Roads (BPR) formula, which are used to calculate link speeds and thus link performance 
under a given demand.  When another vehicle enters the roadway, it raises v by 1 unit, 
causing both MC and AC to rise.  The added cost endured by others, and thus not 
perceived by the new traveler, is the different between these.  When converted to dollars, 
via VOTT, one has the recommend link-specific congestion toll, as follows: 
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6 VOTTs are $9/hour for work and airport trips and $4.5/hour for non-work trips in destination and mode 
choice. The average of the two was used in trip assignment. 
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The carbon tax is assumed to be 4.55 cents per mile on all links in the network, and this 
number was calculated as follows: 
 

tonlbs
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Here, it was assumed that every gallon of gasoline emits 26 pounds of carbon dioxide 
(EPA 2007b), the removal cost of carbon is 70 dollars per ton7, and the average fuel 
efficiency is 20 mile per gallon of gasoline. 
 
Since tolling technology (overhead gantries, variable message signs, and communications 
equipment for link use and customer accounts) is pricey (see, e.g., Gulipalli and 
Kockelman [2008]), only links that are classified as freeway (by CAMPO) were assessed 
a congestion toll.  Two networks were used in this study: one represents the network 
configuration and capacities until year 2015, while the other represents a somewhat 
expanded network, after 2015.  Figures 3.2 and 3.3 depict these two networks and their 
freeways (which are tolled in the road pricing scenario). 
 

 
 Figure 3.2. Austin Network with Toll Roads Highlighted for Years 2010 & 2015 
                                                 
7 Using different discount rates, risk values and distributions of carbon savings, Tol (1999) estimated a 
wide range of possible carbon emissions – from just $1 or $2/ton to over $300/ton.  $70 per ton 
corresponds to Tol's (1999) median cost estimate with a discount rate of 3%.  Based on recent trends, 
estimates lie closer to $50 per ton (see e.g., Fischer et al. 2007, U.S. Environmental Protection Agency 
2008, CRAI 2008). 
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Figure 3.3. Austin Network with Toll Roads Highlighted for Years 2020, 2025 & 2030 
 
The Density-Floor Scenario required minimum densities for new development in each 
zone to be 2 households per added, residentially developed acre or 5 jobs per new 
commercially/industrially developed acre; otherwise, such development was not 
permitted.  This policy was implemented in the model’s LUDENSITY component.  Since 
LUDENSITY only provides direct feedback to the RESLOC, EMPLOC employment 
allocation was not directly affected by this policy. 
 
The Urban Growth Boundary (UGB) scenario restricted all types of new development to 
a pre-defined set of largely contiguous zones, centered on existing population centers.  
Lands outside of this “boundary” were not permitted any new residential, basic or 
commercial development.  Developable zones were defined as TAZs who have 2 or more 
job-equivalents8 per acre, and any TAZs touching their boundaries (essentially to ensure 
adequate lands for 25 more years of Austin’s development).  Figure 3.4 shows the set of 
zones lying within and outside the UGB used in this study. 
 

                                                 
8 One household is counted as 1.4 jobs, because the regional employment rate is 1.4 jobs per household. 
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Figure 3.4. Urban Growth Boundary 
 
3.3.5 G-LUM Application Results 
 
This section emphasizes the results of model application for the business-as-usual (BAU), 
road pricing, and urban growth boundary (UGB) scenarios in detail.  Variables like 
vehicle-miles traveled (VMT), traffic flows, volume-to-capacity ratios, speed, land use 
densities, and downtown accessibility of households and employment are summarized.  
 
The density-floor scenario is not discussed at length here because it, surprisingly, did not 
promote denser development patterns than the BAU scenario.  Instead, it generated a 
more “sprawling” residential development pattern and a relatively similar spatial 
distribution of jobs (as compared to the BAU scenario).  Several reasons contribute to 
these unexpected results.  First, as explained earlier, in the Model Application section, 
this policy was implemented in the LUDENSITY component that has only limited 
influence on the spatial distribution of households and jobs.  Implementation in the 
RESLOC and EMPLOC components may generate more concentrated development 
patterns.  Second, thanks to the positive signs of the parameters (which are specific to 
the vacant developable land in each zone), zones with more vacant developable land are 
modeled as more attractive to households.  High household densities in residentially 
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preferred zones preserve more vacant developable land, so more households prefer such 
zones, often on the City’s periphery.  Third, as evident in the model logic, LUDENSITY 
does not provide direct feedback to the EMPLOC module.  As a result, this policy 
generated a similar job distribution to the BAU scenario.  The results are not felt to be 
reasonable for the density floor set-up, so only the other three scenarios’ results are 
detailed here. 
 
Household and Employment Distributions 
Figures E.1 and E.2 in Appendix E present the forecasted distribution of households and 
jobs at the TAZ level in year 2030, assuming business as usual.  As shown by the maps, 
households and employment tended to remain concentrated in the urban areas and along 
regional freeways.  
 
The households and employment density forecasts when implementing road pricing 
(congestion pricing plus a carbon tax) are shown in Figures E.3 and E.4 in Appendix E.  
The distribution patterns are similar to the results of business as usual, using the selected 
grouping thresholds in the map legend. This suggests that the combined policy of 
congestion pricing and a carbon tax did not alter the location choices of households and 
firms in a significant way, but did affect how far people travel (as discussed in the 
following subsection, such policies significantly reduced overall VMT).  
 
Such lack of responsiveness is suspected to come from two important sources: First, 
added travel costs (4.55¢/mile for added fuel costs and another 1.5 to 3.2¢/mile for 
average congestion tolls during peak hours) are just 10 percent of underlying car 
ownership and use costs (FHWA 2001), except in highly congested corridors at peak 
times of day when demand-based tolls sometimes reach $1/mile.  Thus, locators may 
consider such cost changes to be rather negligible.  Second, and more critical for future 
scenario testing: the gravity model formulation is relatively insensitive to constant shifts 
in travel costs (Equations E.1 and E.5’s cijt).  This seems fundamentally unrealistic, since 
a lack of good regional access (e.g., all trips suddenly incur a fixed toll of $10) should 
result in more clustering at central and other nodal locations.  Of course, if speeds are all 
reduced on the network or new tolls apply per mile traveled, there will be more of a 
scaled (rather than constant) shift in travel costs and thus more centrally located zones 
will enjoy improvements in their relative attractiveness, but such relative movements 
may be insufficient to generate new preference patterns accompanying such network 
conditions.  A new paradigm/LUM specification is needed, to allow for more appropriate 
response opportunities.  A third reason for such insensitivity is that over 90 percent of 
next-period (Δt = 5 years) predictions are simply the lagged count value in each zone 
(except for basic employment), resulting in much “friction” in the system.  While not 
unreasonable for many scenarios, more dramatic scenarios (e.g., those with strong 
incentives for household-move decisions) may not keep pace with actual location 
changes, at least not in the short term. 
 
Figures E.5 and E.6 in Appendix E show household and employment density forecasts 
for the UGB scenario.  As required by the policy, all the new development (households, 
basic, retail and service employment) happens within the pre-defined zones; any 
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households and basic, retail and service jobs outside of the boundary already existed in 
year 2005.  
 
The G-LUM forecasted some extremely high values of household and employment 
densities, even with all the constraints discussed in the Model Application section.  For 
example, two TAZs close to the CoA’s downtown and three TAZs in San Marcos’s 
downtown were predicted to have more than 10,000 households/mile2 (or 15.6 
households per acre) in year 2030, assuming business as usual.  The same five TAZs 
were forecasted to have high densities under road pricing as well.  In the UGB scenario, 
the number of TAZs having such high household densities rose to 20 (most are in the 
region’s core and San Marcos’s downtown).  In terms of jobs, the BAU scenario 
predicted 4 TAZs in Austin’s downtown to have more than 100,000 jobs/mile2 (or 156 
jobs per acre) in year 2030.  When implementing road pricing, the same four TAZs were 
forecasted to have high employment densities, but with slightly different values.  In the 
UGB scenario, one additional downtown Austin TAZ, another in the northern part of the 
City, and another in San Marcos’s downtown were predicted to have more than 100,000 
jobs/ mile2.  These extreme values suggest that G-LUM, even with a series of constraints, 
may have problems running without any local knowledge and expert opinion. 
 
In order to quantify the differences between the three scenarios with a single index, an 
accessibility index (AI) for the region’s central business district (CBD) was developed as 
follows: 
 

∑=
i i

i

DistToCBD
Count

AI                 (3.6) 

 
where  is the count of households or jobs in zone i, and  is the inter-centroid 
distance (in miles) from TAZ i to one of Austin’s core TAZs (housing Texas’s capitol).  
This simple AI was calculated for both households and employment for each scenario, 
and the results are shown in Table 3.2.  The spatial distributions of households and 
employment under the UGB policy exhibit the highest AI value, indicating that the UGB 
policy generated the highest level of clustered development.  The AI values for the BAU 
scenario and the road pricing policy scenario are close, as expected.  It seems that road 
pricing may not affect locational accessibilities enough to prompt regional centralization 
of land uses, but, as discussed below, it is expected to have a strong impact on travel. 

iCount idist

 
Table 3.2. Accessibility Index for Households and Employment for Each Policy Scenario 

 Households (x 106) Employment (x 107) 
Base Scenario 1.81 6.29 
Congestion Pricing & Carbon Tax 1.53 6.32 
Urban Growth Boundary Policy 3.74 6.93 

Note: The accessibility index is computed with respect to Austin’s downtown. 
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In terms of density outcomes, the count-weighted9 average densities of households and 
employment were calculated, and are shown in Table 3.3.  Again, the BAU and road 
pricing scenarios constitute the most similar scenario pair.  As expected, the UGB policy 
generates the highest weighted densities.  Within the UGBs, the simple average (without 
using weights) densities reach 4,132 households/mile2 (or 6.5 households/acre) and 6,630 
jobs/mile2 (or 10.4 jobs/miles). 
 
Table 3.3. Count-Weighted Average Densities for Each Policy Scenario (counts/mile2) 

 Households Employment 
Base Scenario 1,483 7,995 
Congestion Pricing & Carbon Tax 1,477 8,047 
Urban Growth Boundary Policy 29,696 22,581 

Note: The count-weighted average densities for UGB policy were calculated for the entire study area. 
 
As a further demonstration of the changes in households and employment distributions 
over time, the model results were compared to the conditions in year 2005 (when the 
forecasting starts).  Figures E.7 and E.8 in Appendix E present the household and 
employment density changes from year 2005 to year 2030, assuming the business as 
usual scenarios.  Some TAZs in the CoA core were predicted to lose households over the 
next 25 years, while some TAZs at the City’s periphery, especially in the northern part of 
the CoA, were predicted to gain households during that time period.  Most TAZs were 
predicted to gain jobs between 2005 and 2030, with a few exceptions for downtown 
TAZs and TAZs in the northern part of the CoA.   
 
The change patterns for the road pricing scenario (Figures E.9 and E.10 in Appendix E) 
look very similar to the base scenario, relying on the maps’ legends.  Figures E.11 and 
E.12 in Appendix E show household and employment density changes when 
implementing the UGB policy.  As expected, household growth was predicted to 
concentrate within the predefined boundaries, though a few TAZs within the UGB were 
forecasted to lose households.  The change pattern for employment is less clear because 
three employment types (Airport, K-12 Education and Higher Education) were not 
modeled in this study; thus, they were allowed to grow outside of the UGB.  Other than 
that, the employment change pattern is similar to households in the sense that most TAZs 
within the UGB were predicted to gain jobs while a few zones within the boundary were 
predicted to lose jobs. 
 
Results of the Travel Demand Models 
Of course, the TDM results are of great interest as well.  VMT estimates, link flows, and 
mode splits for all scenarios closely relate to congestion levels as well as mobile-source 
emissions.  Table 3.4 summarizes projected VMT values for the year 2030 (by time-of-
day) across the three policy scenarios.  The results suggest that the road pricing and UGB 
policies are very effective, in terms of reducing VMT.  These two policy scenarios were 
estimated to reduce regional VMT relative to the BAU case, by 16.0% and 17.2%, 

                                                 
9 The number of households or jobs by type was used as weight in calculating the count-weighted averages. 
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respectively, resulting in reductions of 13.54 million and 14.58 million VMT per day (or 
14.5 or 15.7 VMT per household per day), respectively.  
 
Table 3.4. Vehicle Miles Traveled (VMT) in Year 2030 for Each Policy Scenario 

Time-of-Day 
  AM OP PM MID 

Total 

Base Scenario 17,010 6,463 27,176 34,146 84,795 
Congestion Pricing & Carbon Tax 14,636 5,468 22,821 28,326 71,252 
Urban Growth Boundary Policy 14,205 5,336 22,488 28,187 70,216 

Note: Values are in thousands of daily VMT. 
 
The total intra-regional personal and commercial trips in year 2030 are given in Table 
3.5.  The BAU and road pricing policies generated similar numbers of personal and 
commercial trips, while the UGB policy generated fewer of both types.  In contrast, the 
UGB policy was estimated to reduce total tripmaking by 4.8%, or 0.57 million trips per 
weekday.  Comparisons of the VMT and trip numbers across scenarios suggest that VMT 
reductions under the road pricing policy basically come from shorter trips, while VMT 
reduction under the UGB policy comes both from shorter trips and fewer trips.  The 
external-local and external-through personal trips are assumed constant, at 185,660 and 
73,461 trips per day for the three policy scenarios in each model year because we do not 
have a model for trip production and attraction outside the study area. (Readers may refer 
to Appendix H for estimates of passenger-vehicle fleet composition over similar 
scenarios.) 
 
Table 3.5. Intra-Regional Personal and Commercial Trips in Year 2030 for Each Policy 
Scenario 
  Total Person 

Trips (x106) 
Total Commercial 
Trips (x106) 

Sum 
(x106) 

Base Scenario 11.25 0.642 11.89 
Congestion Pricing & Carbon Tax 11.25 0.642 11.89 
Urban Growth Boundary Policy 10.70 0.622 11.32 

 
Table 3.6 provides the numbers of personal trips by mode (walk/bike, transit and auto), 
and Table 3.7 shows mode shares.  The road pricing and UGB policies are effective in 
promoting transit usage while reducing the number of automobile trips; however, the 
overall differences are quite slight, suggesting that not even policies as strict as these can 
shift Austinites’ reliance on the automobile.  The UGB policy enjoys the highest number 
of walk/bike trips, bettering the other two policies by 27 percent.  
 
Table 3.6. Number of Personal Trips by Mode per Day in Year 2030 for Each Policy 
Scenario 

  Walk/Bike
(x106) 

Transit 
(x106) 

Auto 
(x106) 

Sum 
(x106) 

Base Scenario 0.37 0.90 9.97 11.25 
Congestion Pricing & Carbon Tax 0.37 1.03 9.85 11.25 
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Urban Growth Boundary Policy 0.47 0.97 9.27 10.70 
 
Table 3.7. Personal Trip Mode Shares in a Weekday in Year 2030 for Each Policy 
Scenario 

  Walk/Bike Transit Auto 
Base Scenario 3.3% 8.0% 88.6% 
Congestion Pricing & Carbon Tax 3.3% 9.1% 87.5% 
Urban Growth Boundary Policy 4.4% 9.0% 86.6% 

 
Table 3.8 provides the VMT-weighted average speeds for each of the three policy 
scenarios.  It seems that the road pricing policy is the most effective in increasing average 
speed across the region’s network. 
 
Table 3.8. VMT-Weighted Average Speed for Each Policy Scenario 

VMT-Weighted Average Speed (miles/hour) 
 AM PM 
Base Scenario 47.3 52.2 
Congestion Pricing & Carbon Tax 52.0 55.1 
Urban Growth Boundary Policy 49.3 52.8 

 
Table 3.9 gives the VMT-weighted average v/c ratios for the three policy scenarios.  It 
suggests that the road pricing policy is the most effective for reducing the region’s overall 
v/c ratio (or traffic congestion level in the region). 
  
Table 3.9. VMT-Weighted Average Volume-to-Capacity Ratio for Each Policy Scenario 

VMT-Weighted Average Volume-to-Capacity 
Ratio 

 AM PM 
Base Scenario 0.692 0.592 
Congestion Pricing & Carbon Tax 0.576 0.475 
Urban Growth Boundary Policy 0.656 0.577 

 
3.3.6 Findings 
 
The estimated parameters generally have the expected signs, but some variables are not 
statistically significant.  However, in order to provide maximum consistency with a 
gravity-style model, applications described here use all publicly available formulations 
and explanatory variables (as published in Putman 1983, TELUM 2007). 
 
In addition to the base forecast scenario (assuming business-as-usual), three other policies 
were investigated using the gravity-based LUM and a standard TDM.  These are a road 
pricing policy, a density floor policy, and an urban growth boundary (UGB) policy.  The 
model results suggest that the base-case and road-pricing scenarios will result in similar 
household and employment distributions.  As required by the policy, the UGB policy will 
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allocate all the new development (households, basic, retail and service employment) 
within the pre-defined zones.  Households and employment opportunities remain heavily 
concentrated in the region’s core under each policy scenario.  An accessibility index (AI) 
for the region’s core zone was developed to quantify the differences between the three 
scenarios, for both households and employment.  The UGB policy ends up offering the 
highest AI values in 2030, generating the highest level of clustered development.  
Interestingly, the business as usual and road pricing scenarios have similar AI values.  
 
In terms of travel behavior impacts, the road pricing and UGB policies appear to be 
powerful tools for VMT reductions.  As compared to the base-case, these two policy 
scenarios were estimated to reduce regional VMT relative to the BAU case, by 16.0% 
and 17.2%, respectively.  The base-case and road pricing scenarios generate similar 
levels of personal and commercial trips, while the UGB policy generates fewer of both 
types.  This suggests that the VMT reduction of the road pricing policy basically comes 
from shorter trips, while VMT reductions under the UGB policy come both from shorter 
trips as well as fewer trips.  VMT-weighted averages for speed and volume-to-capacity 
ratio provide single-value measures for the entire study area.  The road pricing policy was 
estimated to reduce link-level and regional congestion the most.  
 
The G-LUM forecasted extremely high population and job densities in downtown Austin 
and San Marcos zones under the UGB scenario, even subject to various 
growth/development constraints included in the model.  This suggests that local 
knowledge and expert opinion may be needed to manually adjust gravity-based model 
forecasts.  In addition, the LUDENSITY component should be improved by adding a 
lagged density term to pivot off of current/past land use densities in each zone, rather 
than reflecting model averages (thus ignoring each zone’s current densities).  
Nevertheless, the restricted version of G-LUM appears to highlight interesting directions 
for land use patterns while facilitating traffic forecasts into the far future, when fast-
growing regions may head in any number of directions, depending on local land use and 
transportation policies.  Such models are another tool for anticipating the general 
direction and potential magnitude of policy and investment impacts. 
 
3.4 A Hybrid Land Use Model System 
 
In addition to the rather straightforward G-LUM, a hybrid land use model system was 
constructed and applied to the 5-county region.  It consists of two model components, 
operated on individual parcel and zonal levels.  The model system emphasizes parcel-
level applications, which offer more behavioral realism and enjoy significant potential in 
the land use modeling domain. Parcel-level data is becoming widely available, thanks to 
the advances in geographic information system (GIS) technologies.  It also relies on 
recent advances in spatial econometrics which recognize spatial autocorrelation across 
TAZs via both spatial lag and spatial error processes. 
 
3.4.1 Model System 
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Figure 3.5 shows the model components and their relationship.  The Land Use Change 
Model (LUC Model) determines how individual parcels evolve: whether an undeveloped 
parcel will subdivide into several smaller parcels during a specified time interval (e.g., 5 
years in this study) (the Subdivision Model), how big these subdivided parcels are (the 
Parcel Size Model), and what land use types will emerge on each individual parcel (the 
Land Development Model).  Land use change is generally associated with increases (or 
decreases) of land use intensity levels (household and employment counts), and the effect 
is aggregated at the level of TAZs to provide key inputs to a standard TDM.   
 
Tobler’s first law of geography states “everything is related to everything else, but near 
things are more related than distant things.” (1970, p. 236)  Therefore, changes in land 
use intensity at one TAZ correlate with the changes of its neighbors.  In addition, many 
studies have detected correlations between population and employment (e.g., Carruthers 
and Vias 2005, Boarnet et al. 2005).  A Land Use Intensity Model (LUI Model) allocates 
households and employment by type, using a seemingly unrelated regression (SUR) with 
two spatial processes.  The specifications are highly statistical in nature, and described in 
detail in Zhou and Kockelman (2006 and 2008). 
 
 

Land Use Intensity Model 

Household & 
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Transportation Network 
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Figure 3.5. Model Logic of the LUC-LUI Model System 
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3.4.2 Data Sets Used in the LUC-LUI Model System 
 
Data sets used in this LUC-LUI model system include land use parcel maps, current and 
past household counts (by category) and employment counts (by type) at the level of 
TAZs, transportation network details, and topographic data.  The following sub-sections 
discuss all data sets used in model calibration and application, as well as data challenges 
encountered and their solutions.  
 
Land Use Data 
The City of Austin’s Neighborhood Planning and Zoning Department (NPZD) provided 
land use parcel maps for years 1995 and 2000.  Parcels located in the overlay of the two 
maps were used in calibrating the LUC model, resulting in a 420-square mile study area 
centered of the City of Austin.  The parcels were classified into 14 distinct land use 
categories.  Considering ease of interpretation and data set limitations for the larger, 5-
cocunty application, these 14 categories were grouped into 10, as listed in Table 3.10.  
 
Table 3.10. Land Use Categories 
Original Land Use 
Classification Description Final 

Classification 
Large-lot single-
family 

Single-family detached, two-family attached with lot 
size bigger than 10 acres 

Large-lot 
single-family 

Single-family Single-family detached, two-family attached Single-family 
Mobile homes Mobile homes 

Multi-family Three/fourplex, apartment/condo, group quarters, 
retirement 

Multiple-
family 

Commercial 

Retail and general merchandise, apparel and 
accessories, furniture and home furnishings, grocery 
and food sales, eating and drinking, auto related,   
entertainment, personal services, lodgings, building 
services 

Office Administrative offices, financial services (banks), 
medical offices, research and development 

Commercial 
or 
Office 

Industrial Manufacturing, warehousing, equipment sales and 
service, recycling and scrap, animal handling 

Mining Resource extraction 

Industrial 

Civic Semi-institutional housing, hospital, government 
services, educational meeting and assembly, cemetery 

Civic 

Undeveloped/Rural Rural uses, vacant land, land under construction Undeveloped 

Open Space Parks/greenbelts, golf courses, camp grounds and 
open spaces set aside for preservation or protection. 

Water Water 

Excluded 

Utilities Utility services Utility 
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Transportation Railroad facilities, transportation terminal, aviation 
facilities, marina parking facilities 

Transportation

 Source: Land Use Survey Project Description, City of Austin 
 
611 parcels labeled as “unknown” were checked against 1995 and 2002 orthophotos10, 
and appropriate land use codes were determined.  In addition, a GIS shape file for 
existing protected lands, future protected lands and the region’s 100-year floodplain was 
assembled by Dr. Barbara Parmenter.  As with open space and water categories in the 
City’s dataset, the protected lands and 100-year floodplains are excluded from future 
development.   
 
Only one set of land use data (in year 2005) is available for the entire 5-county region, 
and this came from the Capital Area Council of Governments (CAPCOG).  This parcel 
map was refined using the City of Austin’s relatively accurate 2003 land use data, along 
with year 2004 orthophotos (to fill in over 3,000 parcels that lacked a land use code).  
This data set has a classification scheme similar to the City of Austin’s parcel maps.  
However, it does not separate commercial and office uses, thus requiring the combination 
of these two types in LUC model calibration.  This data set was also used to calibrate the 
LUI model and kick off the land use projections for the entire region. 
 
The nature and extent of each undeveloped parcel’s surrounding “neighborhood” were 
quantified using land use area totals and land use balance in a series of concentric 
neighborhoods (e.g. circular or ring geometries).  The defining radii ranged from 0.5 mile 
to 2.0 miles, in increments of 0.5 mile.  A measure of local land use balance was 
constructed based on deviations in local land use percentages, relative to a “perfect” 
(equal-proportions) land use balance (Kockelman 1997).  This explanatory variable was 
defined as follows: 
 

∑−=
J
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1                (3.7) 

 
where J is the number of land use types under consideration and Pj is the fraction of the 
neighborhood that is of land use type j (for large-lot single-family, single-family, multi-
family, commercial or office, industrial, and civic uses).  In this model system, the 
entropy index helps reveal the preference of land development for neighborhoods 
offering more balanced land use patterns.  
 
Transportation and Topographic Data 
Variables emerging from TDM outputs (e.g. travel time or cost across zones) should be 
considered for use in land use model specifications in order to integrate the two model 
systems and allow land use patterns to respond to changes in transportation conditions.  
Central business district (CBD) and regional accessibility indices were considered here.  
CBD accessibility was measured as each parcel’s network travel time to the nearest CBD 
                                                 
10 The 1995 orthophotos provide images with a 1m x 1 m resolution, and were obtained from the Texas 
Natural Resource Information System (TNRIS) website. The 2000 orthophotos have 2 ft x 2 ft resolution, 
and were downloaded from the Capital Area Council of Governments (CAPCOG) webpage. 
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under peak-hour conditions, while regional accessibility was calculated using the 
destination choice model.   
 
In model calibration, only Austin’s CBD was considered, but in model application, 
another 12 urban clusters (defined by Caliper in its geographic data distributed with 
TransCAD 4.7) were treated as CBDs in order to capture the effects of more local 
business.  These urban clusters include Georgetown and Taylor in Williamson County, 
Lakeway and Lago Vista in Travis County, San Macros, Woodcreek and Green Pastures 
in Hays County, Smithville, Bastrop and Elgin in Bastrop County, and Lockhart and 
Luling in Caldwell County.  
 
Regional accessibility represents zone access to all activity opportunities in a region, and 
was calculated as follows: 
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where,  is the generalized cost between zone i and j, is the total number 
of trips attracted to zone i.  Appendix C shows how to obtain the Equation 3.8’s estimated 
parameters.  This regional accessibility is the log-sum in a TDM, which equals the 
expectation of maximum utilities in the Destination Choice Model (a sub-model of the 
TDM) (Ben-Akiva and Lerman, 1985).  In addition, Euclidean distances to the nearest 
freeway were computed from parcel centroids using ArcGIS’s spatial analyst (as a 
Euclidean distance), and transit access was defined as the number of transit stops within a 
0.5 mile radius of each undeveloped parcel’s centroid.  The Capital Area Metropolitan 
Planning Organization’s (CAMPO) highway and transit networks were used to calculate 
these two explanatory variables. 

ijGC iAttraction

 
The U.S. Geological Survey’s national elevation dataset (NED) offers the best-available 
elevation data for the Austin region, at approximately 10-meter resolution.  Slopes were 
computed as the maximum (percentage) change in elevation over the distance between 
each cell’s centroid and those of its 8 neighbors.  Slopes of multiple pixels having 
centroids within a single parcel then were averaged. 
 
Household and Employment Data 
CAMPO provided household and employment count estimates by type at the TAZ level 
for the years of 2000 and 2005.  The same employment and household classification in 
Table 3.1 was used here.  The year-2030 regional household total is assumed to be 
931,000(versus  476,000 in year 2000) and total 2030 employment (including basic, retail 
and service) 1,285,000 jobs (rather than 613,000in 2000), in order to be consistent with 
Envision Central Texas (ECT) forecasts (Envision Central Texas 2003).  The models 
were applied every five years (in large part because the data required for parameter 
calibration were available in five year intervals).  Household and employment counts (by 
type) were assumed to follow an exponential growth pattern, and these intermediate 
region-wide totals thus constrain the ITLUM’s results.  
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Challenges of Data Availability 
In order to track the dynamics of parcel evolution, the LUC model requires parcel maps 
at two (or more) points in time.  Only one for the entire 5-county region (for the year 
2005) could be obtained from CAPCOG.  Thus, the LUC model was estimated only for 
the City of Austin and its two-mile extraterritorial jurisdiction (ETJ) using 1995 and 2000 
parcel maps.  This model was then applied to the entire region’s set of year-2005 
undeveloped parcels.  The alternative specific constants in the Land Development Model 
were iteratively adjusted because the calibration and application data sets differ.  
Parameters in the other two models (the Subdivision Model and the Parcel Size Model) 
are less obvious for adjustment, given that we only observe the final results of the three 
models that are sequentially applied. 
 
Since the only set of parcel data available for the entire MSA is for the year 2005, a 
“target” set of land use conditions in year 2010 was forecasted, using the available data 
and year 2010 expectations of regional household and employment counts.  Basically, the 
region-wide total large-lot single-family, single-family and multi-family residential land 
acreages were inflated by the ratio of household counts in year 2010 and 2005.  Similarly, 
industrial, commercial or office, and civic land acreages were calculated using the ratios 
of basic, retail and service jobs in years 2010 and 2005, respectively.  
 
The LUI model allocates the changes in household and job counts between two points of 
time.  This model involves sophisticated spatial processes, so it cannot be easily applied 
to spatial configurations that differ from that used in model calibration.  So the parameter 
adjustment technique used in the LUC model does not apply here.  Instead, year 2000 
land use conditions were backcasted in each TAZ, using 2005 parcel map and household 
and employment counts in years 2000 and 2005.  More specifically, total residential land 
(including large-lot single-family, single-family and multi-family) in year 2000 was 
scaled down using the ratio of household counts in 2000 and 2005.  Since developed 
lands rarely change their use types, the backcasted residential land in year 2000 was not 
allowed to be more than that in year 2005 for each TAZ.  Using this same method, land 
for  industrial, commercial or office, and civic uses were backcasted using 2005 parcel 
map and basic, retail and service employment, respectively. 
 
3.4.3 Calibration of the LUC Model 
 
As functionally distinct observational units, parcels lend themselves to disaggregate 
analysis with discrete responses for use type and subdivision.  This work models the 
processes of parcel subdivision, size determination and land development using three 
models.  First, the likelihood of subdivision was modeled using a binomial logit model 
(Greene 2000).  Second, if a parcel is predicted to subdivide in the model year, newly 
generated parcels sizes were determined using a linear regression (with a log-transformed 
dependent variable to ensure non-negativity).  And finally, land development on such 
previously undeveloped parcels was modeled using a multinomial logit model (MNL) for 
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various use alternatives (e.g., large-lot single-family, single-family, multi-family, 
commercial/office, industrial, civic, and undeveloped). 
 
Subdivision Model 
The Subdivision Model anticipates the likelihood of parcel subdivision, using a binomial 
logit.  Table F.1 in Appendix F provides summary statistics of all explanatory variables 
used in the final model specification (where y = 1 if the undeveloped parcel subdivided 
between 1995 and 2000), and the parameter estimates are shown in Table F.2.  
 
Not surprising, bigger, regularly-shaped (i.e., with lower value for the perimeter-to-area-
ratio variable), and flatter parcels are more likely to subdivide.  Peak-hour travel time to 
the CBD was estimated to have a positive impact on subdivision: the further away from 
the CBD an undeveloped parcel, the more likely it will subdivide, everything else 
constant.  In contrast, the distance to the nearest freeway was estimated to exert a 
negative impact on subdivision likelihood, indicating that undeveloped parcels that enjoy 
easy access to freeways are more likely to subdivide (and then be developed).  The 
proximity of more undeveloped parcels within a parcel’s 1.0-mile neighborhood dampens 
the likelihood of subdivision, as expected. 
 
Parcel Size Model 
The linear regression model determines the size of each new sub-parcel.  Table F.3 in 
Appendix F shows summary statistics for all explanatory variables, and the parameter 
estimates are given in Table F.4.   
 
As Table D.3 shows, the maximum size of original, un-divided parcels is 0.35 square 
mile, and the maximum distance to the nearest freeway is 1.20 miles.  These two 
maximum values were “capped” on parcels having larger size or longer distance.  Visual 
inspection reveals that parcels bigger than 0.35 square mile share similar subdivision 
pattern: an undeveloped parcel was subdivided into multiple small parcels (likely to be 
developed into single-family residential uses later) plus a relatively large, irregular-
shaped remainder (between years of 1995 and 2000).  This indicates that the effects of 
original sizes on new sub-parcels do not change after original sizes exceed this threshold 
value (i.e., 0.35 square mile).  Therefore, parcels bigger than 0.35 square mile were 
treated as if their sizes were 0.35 square mile.  In addition, Euclidean distances to the 
nearest freeway were capped at 1.2 miles, because the longest distance is 1.22 miles for 
City of Austin parcels (used for model calibration), while this value jumps to as high as 
40.3 miles in the Austin-Round Rock MSA (used for model application).  Applying the 
same model to parcels with values outside the range used in model calibration is 
questionable.  In addition, model application results show that the pattern of multiple 
small parcels plus a large remainder too rarely emerges if the original parcel size or the 
actual distance to the nearest freeway is used.   
 
As expected, undeveloped parcels with irregular shape and higher regional accessibility 
tend to subdivide into smaller parcels (and then further develop).  The model indicates a 
concave relationship between original parcel size and the resulting subdivided parcels 
sizes: the bigger the original parcel, the bigger its subdivided parcels, when the original 
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parcel is smaller than 0.21 square mile.  This positive relationship is predicted to reverse 
as the original parcel size exceeds this threshold.  Similarly, a convex relationship 
between freeway access and new parcels sizes was revealed by the model: distance to the 
nearest freeway has a negative impact on the new subdivided parcels size, when the 
original parcel is less than 0.50 mile away from the nearest freeway, and a positive 
impact if the distance exceeds this threshold.  The amounts of industrial land within the 
1.0-mile neighborhood and undeveloped land in the 0.5-mile neighborhood were 
estimated to increase the subdivided parcels sizes, while civic uses have a mixed impact, 
depending on the neighborhood range. 
 
Land Development Model 
The Land Development Model decides future land uses of individual undeveloped parcels 
(un-divided and newly generated through subdivision).  Table F.5 in Appendix F 
provides summary statistics of all explanatory variables used in the final model 
specification (where the undeveloped use type is the base), and the parameter estimates 
are shown in Table F.6.  
 
The magnitudes and signs of estimated parameters for variables like parcel size, distance 
to the nearest freeway and slope are as expected.  Small parcels are more likely to 
develop into single-family use.  Distance-to-freeway was estimated to decrease likelihood 
of all development types, except industrial use where the effect is neutral (the parameter 
is statistically close to zero).  Parcel slope has a negative effect on single-family, 
commercial/office, industrial and civic development types, most likely due to higher 
costs of construction and access issues.   
 
The positive signs for travel time-to-CBD parameters for residential and 
commercial/office development indicate that such uses are more likely to appear on 
undeveloped parcels near the city fringe.  This is consistent with the process of urban 
sprawl, as well as Ota and Fujita’s (1993) economic models for multi-unit firms in 
suburban areas.   
 
It may seem counterintuitive that the negative transit access parameter suggests single-
family residential development is less likely in neighborhoods better served by transit.  
However, transit stops are clustered in the most developed areas of the City, where land 
development is rare and non-residential uses are relatively common.  Thus, this transit 
variable may be picking up many effects of centrality and commercial development, 
rather than noting purely access considerations.  
 
The entropy measure of neighborhood land use balance was estimated to have a negative 
impact on single-family development likelihood, suggesting that single-family residences 
favor neighborhoods with less diverse land use pattern.  This clustering of like land uses 
is also found in the estimates of surrounding-neighborhood land conditions.  For 
example, the amount of land developed in single-family uses within a 0.5-mile radius was 
estimated to increase the likelihood of such development, while more commercial/office 
and industrial uses decrease this likelihood.  Interestingly, greater land use balance is 
estimated to have a positive impact on industrial development likelihoods, indicating that 
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industrial uses are more likely to emerge in neighborhoods with diverse uses.  This 
finding is also supported by the negative sign of industrial-use parameter within a 0.5-
mile radius on industrial development.  
 
Generally speaking, land that is undeveloped or excluded from development was 
estimated to have negative impacts on commercial/office, and industrial uses, as one 
would expect.  Some neighborhood attributes have mixed effects.  For example, the 
presence of undeveloped lands within a 0.5-mile neighborhood was estimated to have a 
positive impact on single-family conversion, revealing a general preference for living 
near undeveloped, and possibly more scenic and less polluted areas.  However, 
undeveloped areas in a wider, 0.5 to 1-mile ring around an undeveloped parcel do not 
inspire to attract residential development, possibly because other, closer undeveloped 
parcels provide more development opportunities.  The same result is also found for 
excluded land impacts. 
 
3.4.4 Calibration of the LUI Model 
 
The processes of parcel subdivision, size determination and land use are covered by the 
LUC model, and the associated allocation of households and jobs is modeled using a 
SUR with both spatial lag and spatial error processes.  This SUR is composed of four 
equations, each representing changes in households or employment counts (by type) at 
the TAZ level between 2000 and 2005.   
 
Anselin (1988) noted that dependence is often present in cross-sectional data obtained 
using arbitrary delineation of spatial units (e.g., TAZs).  Thus, zone-based household and 
employment counts (and changes over time) are likely to exhibit such correlation, even 
after controlling for observable factors.  Models without explicit treatment of these 
spatial dependencies can result in inappropriate inferences and conclusions.  The LUI 
model recognizes dependencies emerging from three sources.  First, response variables 
depend on neighboring unit responses, via a spatial lag component.  Second, error terms 
are spatially correlated across observational units, via a weight matrix-based spatial error 
component.  Third, these same error terms are correlated across equations, implying a 
SUR structure.  The estimation procedure follows Kelejian and Prucha’s (2004) approach 
in a simultaneous equations model (SEM), adjusted to fit a SUR framework.  Their three-
stage least-squares (3SLS) estimation approach derives from their earlier work, using a 
generalized method of moments (Kelejian and Prucha 1999) and spatial two-stage least-
squares procedures for single-equation models (Kelejian and Prucha 1998; Das, Kelejian 
and Prucha 2003). 
 
The SUR model specification, with both spatial lag and spatial error processes, is 
specified as follows: 
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where m = 1:M (M = 9 in this study), ( )''...,,',' 21 Mξξξ=ξ , [ ] 0ξ =MXXXE ...,,| 21 , 
and .  In addition, ym is an n by 1 vector of response variables 
for equation m, Xm is an n by km matrix of explanatory variables for equation m (, βm is a 
k by 1 vector of parameters to be estimated, ρm and λm are two scalars describing the 
strength of spatial dependencies.  

[ Ωξξ =MXXXE ...,,|' 21 ]

 
In this study, four distinct sparse weight matrices were examined, in order to discern the 
most relevant one. 11  A first-order contiguity matrix (using the queen criterion12) 
considered is sparse when the number of observations is large.  This first sparse matrix 
was generated using GEODA software (Anselin 2005).  The second weight matrix relies 
on the inverse of Euclidean distances between zone centroids, in order to reflect the 
decay of relationships with distance.  A 7-mile “threshold distance” was chosen to ensure 
sparseness of this weight matrix13.  The third and fourth matrices also use this threshold 
distance, but the inverse of inter-centroid distances are raised to powers of 1.5 and 2.0, 
respectively.  These four relatively sparse weight matrices are labeled Wcon, Wdist1.0, 
Wdist1.5 and Wdist2.0, respectively.  All are row-standardized (so that row elements sum to 
one), in order to facilitate interpretation (Anselin 1988).  More specifically, a right-hand-
side weight matrix represents a weighted average of the variable under consideration in 
neighboring units.  
 
The estimation procedure was applied using each of four weight matrices.  Equation 
3.10’s goodness-of-fit measure for SUR models (McElroy 1977) was calculated for each 
case: 
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where  is the ijth element in matrix  , ijσ̂ 1ˆ −Ω *

iy is the mean of response values for 
equation i, and other terms are as previously defined.  The case with Wcon yielded the 
highest goodness-of-fit value (0.325, as compared to 0.239, 0.231 and 0.303 for Wdist1.0, 
Wdist1.5 and Wdist2.0 matrices).  Therefore, this weight matrix was used in the final 
specification.  Table F.7 in Appendix F provides summary statistics of all explanatory 
variables used in the model, and the results are shown in Table F.8.  
 
As expected, single- and multi-family land in a TAZ were estimated to increase its 
household count, while industrial, commercial/office, and civic land values were 
estimated to increase the numbers of basic, retail, and service jobs, respectively.  In 
addition to these “direct” impacts that may come from the backcasting procedure used 
with Austin’s 2000 land use parcel map (described in the Challenges of Data Availability 

                                                 
11 Please refer to Zhou and Kockelman (2006) for a discussion regarding the use of  sparse weight matrices, 
as compared to full matrices. 
12 Queen criterion defines neighbors as those that have either common boundaries or common corners. 
13 The maximum and minimum numbers of neighbors for one observation are 2 and 304 in this study. 
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sub-section), “indirect” influences were found among less related categories of land type 
and land use intensity type.  For example, multi-family land in a TAZ was estimated to 
have a positive impact on the changes in a zone’s basic and retail job counts, and 
commercial or office land is estimated to have a positive impact on household counts, 
indicating that correlations among households and jobs exist at the level of TAZs.   
 
While development of parcels in a TAZ generally increases the zone’s land use intensity, 
prior year land use intensities are more likely to dampen such activity in that zone.  For 
example, prior year basic, retail and service jobs were estimated to negatively impact the 
changes in basic, retail and service jobs, indicating a repelling effect among the same 
employment category.  However, this effect was not found among households: prior year 
household counts seem to attract new households.  In addition, prior year job counts are 
estimated to attract different job types. For example, basic jobs are estimated to increase 
retail and service jobs, retail jobs increase basic and service jobs, and service job counts 
increase retail jobs.  These suggest that the degree of job mixing is likely to increase over 
time.   
 
Rising household counts are more likely to appear in TAZs with lower land use balance 
(or less diverse uses), indicating a clustering pattern for households.  Regional 
accessibility was estimated to increase household and service job growth, as one would 
expect.   
 
Finally, the spatial lag coefficients are all statistically significant.  The spatial lag and 
spatial error coefficients are estimated to both be positive in the household count 
equation, but have opposite signs for each of the three job types.  It is expected that 
households tend to cluster, as revealed by the two positive spatial autocorrelation 
coefficients.  It is hard to explain the exact reasons for the opposite signs of the two 
spatial autocorrelation coefficients for employment.  As Anselin (2001, pp. 316) explains, 
a spatial lag is designed to reveal the “existence and strength of spatial interaction” while 
a spatial error seeks to correct for “potentially biasing influences of the spatial 
autocorrelation”.  The final spatial distribution of employment is determined by 
combining the effects of these two spatial processes. 
 
3.4.5 LUC-LUI Application and Results 
 
The LUC model, the LUI model, and a TDM constitute the new integrated model used 
here.  This ITLUM was applied to investigate the spatial distribution of households and 
jobs, along with travel conditions in 2030 across the Austin-Round Rock MSA of Texas, 
under two policy scenarios: business-as-usual (BAU or base case) and a road pricing 
scenario (congestion pricing plus a mileage-based carbon tax, CPCT).  An interesting 
land use policy, urban growth boundary, cannot be applied here because the sophisticated 
SUR model is not easily adapted to zone exclusions (where certain zones are “excluded” 
from model prediction), such as zoning constraints or prior knowledge of development.   
 
Application of the LUC Model 
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Land use development in each 5-year step was generated using one random simulation.  
More specifically, a series of random variables that are uniformly distributed on the [0,1] 
range were generated to determine whether an undeveloped parcel will subdivide and 
what development type an undeveloped parcel will be (after its size is simulated by the 
Parcel Size Model).  If the random value is less than the subdivision probability 
(determined by the systematic utility in the binomial logit model), the undeveloped parcel 
subdivides; otherwise, the parcel remains whole.  Similarly, probabilities of all the 
possible land use types form a type of histogram 14, and the “position” of a random 
variable among the cumulative distribution function determines the parcel’s future land 
development type.   
 
In contrast, an extreme value distribution was used in the Parcel Size Model.  Its location 
and scale parameters were estimated to be 0.523 and 0.987, using maximum likelihood 
estimation (MLE) on the residuals in calibrating the Parcel Size Model.  There are two 
reasons for using an extreme value distribution.  First, the histogram of residuals shows a 
skewed distribution. Second, the commonly used normal distribution failed to generate 
the observed pattern of multiple small subdivided parcels plus a large remainder for large 
undeveloped parcels. 
 
An undeveloped parcel subdivided according to simulated sizes of the new parcels, and 
its size was continuously reduced until the remainder is smaller than the next simulated 
size.  In the last step, the remainder was treated as the last piece of new parcels, and the 
number of new parcels was simultaneously determined.  The Parcel Size Model only 
determines the sizes of subdivided parcels, but not the shapes.  The shape of a two-
dimensional object is difficult to measure and define.  This study took an approach that is 
easy to implement and replicate, using ArcGIS and MATLAB software.  The original 
parcel map was rasterized into 240-foot grid cells (using the field of parcel IDs), and the 
raster map was converted into ASCII files for use (as a matrix) in MATLAB software.  
This matrix represents the shape (approximated by the rasterizing process) and location 
of the original parcels.  A MATLAB code scanned all the elements of the matrix, and 
updated the values of the elements that were selected to generate a new, subdivided 
parcel.  The updated matrix was converted back into a raster file and then a shape file, 
and the shape and location of all the parcels (newly-generated, subdivided parcels 
together with the remaining, whole parcels) were generated and displayed in ArcGIS.  It 
is worth mentioning that this approach only determined the shape of new, subdivided 
parcels, while original shapes of undivided parcels were kept as they are.  MATLAB 
assembled 240 ft cells from left to right in each subdividing parcel, and then up to down, 
in order to hit predicted new-parcel sizes.  This arbitrary approach resulted in new parcels 
with a strong west-east orientation, rather than more natural patterns of parcel formation.  
For example, subdivided parcels bigger than one and half times the grid cell size have a 
rectangular shape, and some parcels “wrapped” from the east to the west edge of the 
original parcel.  Figure 3.6 shows a snap shot of a few subdivided parcels.  The west-east 
orientation is clear for the new parcels subdivided from an originally large, undeveloped 

                                                 
14 These probabilities are determined by systematic utilities for each land use type in the multinomial logit 
model, and they sum to 1. 
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parcel (located in the center of the map), and many new parcels are forecasted to have 
square or rectangular shapes. 
 

 
Figure 3.6. Examples of Subdivided Parcels 
 
The Subdivision Model and Parcel Size Model were directly implemented without any 
modifications, but the Land Development Model’s alternative specific constants were 
adjusted because the data sets for model calibration and application differ.  As described 
in the Challenges of Data Availability sub-section, “targeted” land use conditions in year 
2010 were forecasted.  A series of simulations were run and alternative specific constants 
were adjusted until forecasts of regional land use totals matched the corresponding target 
values.  Table 3.11 provides the adjustment results and their precision. 
 
Table 3.11. Adjusted Alternative Specific Constants in the Land Development Model 

  LLSF SF MF 
Commercial 
or Office Industrial Civic Undeveloped 

Original constants -20.8 0.593 -4.63 -2.09 0.175 -4.26 0.00 
Adjusted constants -23.3 0.660 -5.79 -5.24 -6.12 -7.20 0.00 
Target area (mile2) 29.6 34.5 2.12 3.10 21.3 10.1 2682 
Projected area 
(mile2) 30.4 33.6 2.17 3.50 21.2 10.2 2681 
Difference (mile2) 0.810 -0.843 0.053 0.490 -0.126 0.197 -0.581 
Ratio of projected 1.03 0.98 1.03 1.16 0.99 1.02 1.00 
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to target 
 
 
Application of the LUI Model 
The LUI model allocates forecasted growth of households and jobs by type to TAZs, 
considering the correlations among neighboring TAZs and across households and job 
counts.  This model is a SUR with two spatial processes, and each equation represents the 
change in households or jobs by type.  Changes in land use at the level of individual 
parcels were predicted by the LUC model, and the results served as primary inputs to the 
LUI model, together with prior-year household and employment counts and 
transportation conditions.   
 
Again, simulation was utilized to forecast changes in household and job counts at the 
zonal level.  The residuals in calibrating the LUI model were used to generate the 
variance-covariance matrix, which is shown in Table 3.12.  A series of random numbers, 
correlated according to this covariance matrix, were generated using normal distributions 
and Cholesky decomposition (Greene 2001).   
 
Table 3.12. Covariance Matrix of Residuals in the Land Use Intensity Model 

 Households Basic Jobs Retail Jobs Service Jobs 
Households 22,461 2,214 -251 824 
Basic Jobs 2,214 170,054 346 -9,115 
Retail Jobs -251 346 23,968 7,013 
Service Jobs 824 -9,115 7,013 135,772 

Note: The independent variables for this model are changes in household and employment counts; number 
of observation is 1245. 
 
As shown in Table 3.12, variances are relatively high, which can produce some extreme 
values in individual simulations.  When adding these extreme values to the systematic 
component of the LUI model (determined by the explanatory variables and the estimated 
parameters), forecast values could be unreasonably high or low.  For example, two TAZs 
in downtown San Marcos were forecasted to have very high household densities, as 
shown by the 3D- maps in the Application Results sub-section.   These two TAZs are 
only 0.013 square mile in area, but were forecasted to accommodate 562 and 301 
households in the business-as-usual scenario, resulting in household densities as high as 
56.2 and 30.1 thousand per square mile15.   
 
Three facts contribute to the relatively high variances. First, the inconsistencies in data 
used for model calibration take a toll on model performance.  In this study, although the 
land use intensity data in years 2000 and 2005 were provided by the same planning 
agency (CAMPO), there exist unrealistic shifts in household and job counts during the 5-
year interval (after taking TAZ shape changes into account).  For example, four TAZs 

                                                 
15 These two TAZs are forecasted to accommodate 546 and 293 households (equivalent to 54.6 and 29.3 
thousand per square mile) when implementing road pricing policy.  Note that the same series of random 
numbers were used for the two policies in order to ensure a fair comparison. 
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lost more than 500 households (the biggest loss is 1645) and six gained more than 1000 
households (the biggest being 2338); seven TAZs lost more than 2000 basic jobs (the 
biggest being 8062) and five gained more than 2000 basic jobs (the biggest being 9118); 
six TAZs gained more than 1000 retail jobs (with a high of 2133); six TAZs lost more 
than 2000 service jobs (with a high of 4413) and four gained more than 2000 service jobs 
(with a high of 6277).  Gaining thousands of households or jobs over a five-year period is 
questionable, and losing thousands is generally unrealistic during a period when the 
region is growing.  The second factor is closely related to the first one: the relatively low 
value of goodness-of-fit in the LUI model.  This model is sophisticated enough to 
consider spatial and across-equation correlations, and was found to generate the highest 
R2, as compared to other existing model specifications (Zhou and Kockelman 2006).  
However, there is still a large portion of variation that could not be explained by the 
model.  Last, heteroskedasticity in job and household counts (across zones) was 
unaccounted for in the LUI model specification.  This indicates that TAZs were treated 
equally in model application regardless of their significant differences in size.   
 
The forecasted household and job changes were adjusted to match control totals for each 
model year in two steps.  In the first step, the relative values across TAZs and equations 
were kept, because they were produced by a SUR model that had already considered the 
impacts of neighboring TAZs.  Therefore, households or jobs were added or removed in 
proportion to predicted totals to match control totals.  In the second step, unreasonable 
forecasts were simply removed.  For example, if a TAZ was forecasted to lose more than 
it had available to lose, a zero value was assigned.   
 
While the growth is higher in the model years than in the forecast years (i.e., household 
and employment totals increased 23.0% and 17.3% between 2000 and 2005, respectively; 
but the 5-year growth rates for households and employment are only about 11.0% and 
14.0% from 2010 to 2030), the original forecasted household and employment totals were 
lower than the control totals in virtually all cases, except for retail jobs in year 2030.  
This indicates a mismatch in over-all development between the models years (in the early 
2000’s) and the forecast years (2010-2030).  It also raises a question: what is the regional 
development limit?  If targets are not embedded naturally into the model, post-processing 
is generally used, requiring heroic and unsatisfying assumptions (such as proportional 
adjustment of all zones’ values) in order to hit regional control totals.  In the case of the 
proposed model system with LUC and LUI models, parcel subdivision and land use 
change could be undertaken until a certain target of total land in each use is met.  But this 
does not guarantee that application of the subsequent LUI model will then result in 
reasonable household and job counts for each model year.  In this study, control totals 
were used to modify the forecast results of LUI model, to be consistent with the regional 
totals forecasted by a visioning process (e.g. ECT). 
 
Application Results 
Figures F.1 (a to e) in Appendix F depict forecasted land use changes in each model year 
(2010, 2015, 2020, 2025 and 2030), assuming business as usual.  Land that has already 
been developed is shown as blank in the maps.  The City was forecasted to lose 
undeveloped land quickly, as compared to other parts of the region.  Many of the smaller, 
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undeveloped parcels were forecasted to convert to single-family residential or 
commercial/office uses 16. Many large lot single-family uses are predicted to emerge in 
Williamson and Caldwell Counties, while Bastrop and Caldwell Counties are expected to 
experience relatively high levels of industrial development over the coming 20 years.  
Commercial or office uses tend to emerge in places close to the urban clusters and 
regional highways (e.g., I-35). As expected, civic uses were forecasted to spread over the 
entire region.  This may relate to the nature of civic uses, which seek broad distribution in 
order to provide reasonable access to schools, post offices and hospitals. 
 
Figures F.2 (a to d) in Appendix F show forecasted land use changes in years 2015, 2020, 
2025, and 2030 after implementing road pricing (congestion pricing plus a carbon tax).  
The overall development pattern is similar to the business-as-usual result. However, land 
close to regional highways seems to be more likely to be developed, and Caldwell 
County appears to have less development opportunities when implementing the road 
pricing policy.  Table 3.13 provides comparisons between the two policies, in terms of 
land consumption by type by 2030.  Road pricing reduces land consumption by large-lot 
single-family, single-family and civic uses, and promotes denser development patterns 
(e.g., more multi-family uses), resulting in a 20.6-square mile land savings (or 0.86%) 
across the entire region, as compared to the BAU scenario. 
 
Table 3.13. Land Consumption between the Two Policies 

 Land Consumption (mile2) Business-as-usual 
Congestion Pricing 

& Carbon Tax 
Large lot single family 419 410 
Single family 485 472 
Multi-family 41.4 42.5 
Commercial or Office 77.8 78.3 
Industrial 110 114 
Civic 154 151 
Undeveloped 2,394 2,414 

 
Two-dimensional maps of development densities classify values into bins (as shown in 
map legends), and mask fluctuations of values within bins.  Therefore, three-dimensional 
maps are also presented.  Figures F.3 and F.4 in Appendix F show forecasted household 
and employment densities at the TAZ level in year 2030 for the business as usual 
scenario.  As shown, households and employment tend to remain concentrated in the 
urban areas and along regional freeways.  
 
Figures F.5 and F.6 in Appendix F present household and employment density forecasts 
when implementing road pricing.  The distribution patterns are very similar to the results 
of business-as-usual, suggesting that such policy will not significantly alter household 
and firm location.  This finding is consistent with gravity-based LUMs predictions.  

                                                 
16 This phenomenon is hard to see in the figures, but could be easily detected using zoom-in function of 
ArcGIS. 
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However, the road pricing policy does have noticeable impacts on travel behavior, as 
discussed below. 
 
This simple accessibility index (as defined by Equation 3.6) was calculated for both 
households and employment in each scenario, and the results are shown in Table 3.14.  
The BAU scenario generated a slightly higher level of clustered residential development, 
with a 6.39% higher household AI value. 
 
Table 3.14. Accessibility Index for Households and Employment for Each Policy 
Scenario 

 Households (x 106) Employment (x 107) 
Business-as-usual 2.58 6.369 
Congestion Pricing & Carbon Tax 2.42 6.368 

 Note: This accessibility index is computed with respect to Austin’s downtown. 
 
In terms of density outcomes, the count-weighted17 average densities of households and 
employment were calculated, and are shown in Table 3.15.  The BAU scenario generates 
a slightly denser residential use intensity pattern, as compared to the road pricing scenario 
(household density was 2.38% higher than under the road pricing scenario). 
 
Table 3.15. Count-Weighted Average Densities for Each Policy Scenario (counts/mile2) 

 Households Employment 
Business-as-usual 1,568 6,391 
Congestion Pricing & Carbon Tax 1,532 6,375 

  
The TDM results are of great interest because they relate to congestion levels and mobile-
source emissions.  Table 3.16 summarizes projected VMT values for the year 2030 (by 
time-of-day) for the two policy scenarios.  The results suggest that road pricing can be 
quite effective in reducing VMT: reducing regional VMT by 12.7 million (or 15.2%), as 
compared to the business-as-usual scenario.  When compared to the base year 2005, the 
BAU anticipates a 96.2% increase in regional VMT, which is higher than household and 
job growths (59.0% and 87.1%, respectively).  The road pricing scenario is forecasted to 
control VMT growth, with only a 66.3% increase in regional VMT. 
 
Table 3.16. Vehicle Miles Traveled (VMT) in Year 2030 

Time-of-Day 
  AM OP PM MID Total 
Business-as-usual 16,767 6,386 26,839 33,741 83,733 
Congestion Pricing & Carbon Tax 14,558 5,452 22,737 28,238 70,985 

 Note: Values are in thousands of daily VMT. 
 
Table 3.17 provides VMT-weighted average speeds for the two policy scenarios, and 
Table 3.18 gives the VMT-weighted average volume-to-capacity (v/c) ratios.  The road 
pricing policy is forecasted to increase average speeds during peak hours by 9.16% and 
                                                 
17 The number of households or jobs by type was used as weight in calculating the count-weighted averages. 
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4.95% during the AM and PM peak period, respectively), and is effective in reducing the 
region’s overall v/c ratio: by 16.2% and 19.1%, respectively. 
  
 
 
Table 3.17. VMT-Weighted Average Speed for Each Policy Scenario 

VMT-Weighted Average Speed (miles/hour) 
  AM Peak PM Peak 
Business-as-usual 47.7 52.5 
Congestion Pricing & Carbon Tax 52.0 55.1 

 
Table 3.18. VMT-Weighted Average Volume-to-Capacity Ratio for Each Policy 
Scenario 

VMT-Weighted Average Volume-to-Capacity Ratio 
  AM Peak PM Peak 
Business-as-usual 0.684 0.584 
Congestion Pricing & Carbon Tax 0.573 0.472 
 
3.4.6 Findings and Lessons Learned 
 
The estimation results appear reasonable and are generally supported by the prevailing 
development trends and others’ findings.  In some cases, multiple rounds of model 
estimation are needed when expected land use and travel patterns fail to emerge.  For 
example, when using the original values of the un-divided parcel size and distance to the 
nearest freeway variables, a common pattern of multiple small parcels plus a large 
remainder was hard to generate in model application.  As a result, the two variables were 
capped during model calibration, ensuring more typical subdivision tendencies. 
 
In addition to the base forecast scenario (assuming business as usual), a combined policy 
of road pricing and a flat-rate carbon-based tax was investigated using this novel LUM 
and a standard TDM.  The model results suggest that the road pricing policy results in 
less region-wide land consumption, and land close to regional freeway seems more likely 
to develop.  These two policies were estimated to generate similar household and 
employment distribution patterns: households tend to remain concentrated in the urban 
areas and along regional freeways, and employment has a higher level of concentration in 
the urban areas (especially in the City of Austin’s CBD area).  The road pricing policy 
appears to be effective in reducing regional VMT, as well as increasing average speed 
and reducing overall traffic congestion during peak hours.  These findings are consistent 
with G-LUM predictions.  
 
The model application results relied on only one random simulation.  The same series of 
random numbers were generated for the two policies in order to ensure a fair comparison 
between them, but different seeds were used in each model year.  The five model years 
may average out some elements of randomness over the 25-year span.  Ideally, LUMs 
relying on simulation should run multiple times for each forecast. However, long run 
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times prevented multiple runs here.  Thus we could not easily deduce the range and 
average of behavioral tendencies over time and across scenarios. 
 
The data sets used here come from multiple sources; and creative solutions to data 
availability challenges may be critical to application success.  Most decisions need to be 
made before model formulation.  For example, the Land Development Model considered 
only six land use types because the data for model application does not separate 
commercial and office uses.  Some decisions had to be made during model application.  
For example, the LUC model generated unreasonable forecasts when directly applied to 
the entire MSA (ten times bigger than the area used for model calibration).  As a result, 
alternative specific constants in the Land Development Model were adjusted according to 
simple region-wide land use forecasts.  Other data issues also impacted model 
performance.  Unrealistic shifts in household and employment count data provided by the 
MPO resulted in a relatively low R2 value (even though the sophisticated LUI model 
specification outperformed others) and high covariance values (which can cause extreme 
random numbers in a single run).  
 
In addition to data challenges in developing a LUM, several key lessons were learned: (1) 
there may be no limit on development, (2) the LUI model may not accommodate zone 
exclusion, and (3) it is not easy to gauge what magnitudes of adjustments are needed in 
the systematic “utilities” of the MNL specification.   
 
Past trends in land use change can lead to over-development or under-development in the 
future.  If targets are not embedded naturally into the model, post-processing is generally 
used.  Meeting control totals is a tricky issue that deserves great care.  In order to match 
regional control total expectations for Austin, the LUI model results were post-processed.  
Adjustment of zone-level LUC model results (by scaling land acreages up or down, 
according to use type) could have been pursued as well.  But this does not guarantee that 
application of the subsequent LUI model will then result in reasonable household and job 
counts for each model year.  Either way, both post-processing techniques are 
unsatisfying. 
 
The second lesson learned refers to the idea that a clever model of counts, using a spatial 
system of equations that share information in their error terms is not easily adapted to 
cases where certain zones are not allowed to experience growth in certain land use 
intensity values (due to zoning or other constraints) or some subset of values are 
otherwise pre-determined (due to prior knowledge of near-term development, for 
example).  Spatial econometric tools are still emerging, and this challenge may one day 
be resolved, but in the meantime it represents a hurdle here that was unforeseen.  
 
The third lesson learned simply refers to the fact that various explanatory factors are not 
controlled for in the specification.  If modelers want to incentivize certain types of 
development in certain zones (e.g., high-density mixed use), they will have to guess how 
such incentives compare to the effects of included variables (such as nearby acreage of 
retail land or distance to the nearest freeway).  Such decisions are not at all transparent.  
Ideally, more meaningful factors impacting land development decisions should be 
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included, to enhance model flexibility in application.  Of course, this brings us back to 
the very fundamental issue of data availability: someone will first need to assemble such 
variables for all zones/locations, trusting that these vary a fair bit across zones (which is 
unlikely with many variables of interest, like construction costs), and then hope that they 
emerge as statistically significant and with intuitive signs in the estimated parameter set.  
There are simply no guarantees that the data acquisition efforts will pay off.  And it 
generally is enough work to acquire more basic information (like parcel location, current 
and past land uses, network and demographic variables, neighborhood land use 
conditions for each parcel, and so forth); expending constrained resources to acquire 
variables that may or may not offer much to the model is a real risk. 
 
In general, the LUM developed and applied here utilizes advances in spatial parcel data 
and GIS techniques, as well as cutting-edge spatial econometric theories and estimation 
techniques.  Parameter estimates and model results appear reasonable.  A mathematical 
model for the shapes of subdivided parcels could serves as a worthwhile extension of this 
work.  Such effort will rely heavily on ArcGIS software capabilities, a deeper 
understanding and possibly fracture analysis of parcel subdivision mechanisms. 
 
3.5 Emissions Inventory Development 
 
Biogenic and anthropogenic emission inventories, along with land cover estimates for 
estimation of dry deposition velocities, were developed for each of the five ITLUM 
scenarios.  These scenarios included three gravity-based land use model (G-LUM) 
forecasts for a business-as-usual (BAU) scenario, a road pricing scenario consisting of 
congestion pricing plus a mileage-based carbon tax (CPCT), and an urban growth 
boundary (UGB) scenario, and two land use change land use intensity model (LUC-LUI) 
forecasts for a business-as-usual (BAU) scenario and a road pricing (CPCT) scenario. 
 
3.5.1 Biogenic Emissions and Dry Deposition 
 
Biogenic emission estimates were developed for the ITLUM scenarios using the 
methodology described in Section 2.2.1.  In contrast to the ECT LULC databases which 
included estimates of impervious cover for each land use type, the classifications used in 
the G-LUM and LUC-LUI models did not directly provide information that could be used 
to estimate the fraction of original vegetation remaining.  Instead, the classifications used 
in the models were mapped to one of the ECT development types as shown in Tables 
3.19 and 3.20.  Each TAZ polygon was classified as central business district (CBD), 
urban, suburban or rural as follows: 
 

)(
TAZ

TAZ
TAZTAZ A

E
BPDF +=                  (3.11) 

 CBD: DFTAZ >= 50 
 Urban: 50 > DFTAZ >= 10 
 Suburban: 10 > DFTAZ >= 1 
 Rural: 1 > DFTAZ >= 0 
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where DF is a density factor, P is the population in the TAZ, E is the employment in the 
TAZ, A is the acreage of the TAZ, and B is the ratio of the study area population to the 
study area employment (Alliance 2003).  The reclassified ITLUM scenarios were then 
overlaid on the original land cover data from Wiedinmyer et al. and used to modify the 
original vegetation density.  Land cover estimates for estimation of dry deposition were 
developed using the reclassified ITLUM scenarios and the methodology described in 
Section 2.2.1. 
 
Table 3.19. Assumed fraction of vegetative cover remaining for each G-LUM 
classification 

G-LUM classification ECT classification 
Assumed Fraction of 

Vegetative Cover Remainin
g 

CBD Residential Downtown 0.023 
CBD Basic Employment Downtown 0.023 
CBD Commercial Employ. Downtown 0.023 
Urban Residential Town 0.171 
Urban Basic Employment Activity Center 0.042 
Urban Commercial Employ. Activity Center 0.042 
Suburban Residential Residential Subdivision 0.363 
Suburban Basic Employment Industrial/Office Park 0.144 
Suburban Commercial Employ. Industrial/Office Park 0.144 
Rural Residential Rural Housing 0.763 
Rural Basic Employment Industrial/Office Park 0.144 
Rural Commercial Employ. Industrial/Office Park 0.144 

 
Table 3.20. Assumed fraction of vegetative cover remaining for each LUC-LUI 
classification 
LUC-LUI classification ECT classification Assumed Fraction of 

Vegetative Cover Remaining 
CBD LLSF Downtown 0.023 
CBD SF Downtown 0.023 
CBD MF Downtown 0.023 
CBD Commercial/Office Downtown 0.023 
CBD Industrial Downtown 0.023 
CBD Civic Downtown 0.023 
Urban LLSF Large Lot 0.493 
Urban SF Residential Subdivision 0.363 
Urban MF Town 0.171 
Urban Commercial/Office Activity Center 0.042 
Urban Industrial Activity Center 0.042 
Urban Civic Activity Center 0.042 
Suburban LLSF Large Lot 0.493 
Suburban SF Residential Subdivision 0.363 
Suburban MF Town 0.171 
Suburban Commercial/Office Industrial/Office Park 0.144 
Suburban Industrial Industrial/Office Park 0.144 
Suburban Civic Industrial/Office Park 0.144 
Rural LLSF Rural Housing 0.763 
Rural SF Rural Housing 0.763 
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Rural MF Town 0.171 
Rural Commercial/Office Industrial/Office Park 0.144 
Rural Industrial Industrial/Office Park 0.144 
Rural Civic Industrial/Office Park 0.144 

 
3.5.2 Anthropogenic  Emissions 
 
Anthropogenic emission estimates for on-road mobile, non-road mobile, and area sources 
were developed for the ITLUM scenarios using the methodology described in Section 
2.2.2.  Housing and population values used in the projection and spatial allocation of 
anthropogenic emissions for the ITLUM scenarios are summarized in Tables 3.21 and 
3.22, respectively.   
 
Table 3.21. 2001 housing units and projected households for each ITLUM scenario by 
county 

Households 
2001 

(U.S. Census 
Housing Unit) 

G-LUM 
BAU 

G-LUM 
CPCT 

G-LUM 
UGB 

LUC-LUI 
BAU 

LUC-LUI 
CPCT 

Average 
Household 

Size 

Bastrop 22,723 64,422 65,468 49,425 65,170 62,571 2.87 
Caldwell 12,188 30,405 31,446 25,962 55,729 54,996 2.98 

Hays 37,946 87,024 86,998 73,279 94,249 93,727 2.92 
Travis 353,272 512,209 510,626 582,458 495,316 496,735 2.53 

Williamson 98,120 236,610 236,133 199,549 220,208 222,641 2.88 

Total 524,249 930,671 930,671 930,671 930,671 930,671 - 
 
Table 3.22. 2001 human population and projected human population for each ITLUM 
scenario by county 

Population 2001 
(U.S. Census) 

G-LUM 
BAU 

G-LUM 
CPCT 

G-LUM 
UGB 

LUC-LUI 
BAU 

LUC-LUI 
CPCT 

Bastrop 61,480 184,891 187,893 141,850 187,038 179,579 
Caldwell 33,808 90,607 93,709 77,367 166,072 163,888 

Hays 104,514 254,110 254,034 213,975 275,207 273,683 
Travis 842,638 1,295,889 1,291,884 1,473,619 1,253,149 1,256,740 

Williamson 276,749 681,437 680,063 574,701 634,199 641,206 
Total 1,319,189 2,506,934 2,507,583 2,481,511 2,515,666 2,515,095 

 
3.5.3 Emissions Inventory Summary 
 

A summary of NOx and VOC emissions from biogenic and anthropogenic sources for the 
2007 Base Case and each ITLUM scenario is presented in Table 3.23. 
 

66 



Table 3.23. Emissions of VOC and NOx (tpd) for the 2007 Base Case and each ITLUM 
scenario 

Note: ITLUM scenario emissions are calculated for a future year of 2030. 

2007 
Base Case 

VMT = 44.5* 

G-LUM 
BAU 

VMT = 84.8* 

G-LUM 
CPCT 

VMT = 71.3* 

G-LUM 
UGB 

VMT = 70.2* 

LUC-LUI 
BAU 

VMT = 83.7* 

LUC-LUI 
CPCT 

VMT = 71.0* Categories 

VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx 

On-road 
mobile 33.8 62.1 22.6 24.1 19.0 20.3 18.7 20.1 22.4 23.8 19.0 20.2 

Non-road 
mobile  22.2 21.7 22.7 9.4 22.7 9.4 22.6 9.4 22.7 9.4 22.7 9.4 

Area  110.7 10.2 224.4 21.7 225.5 21.8 215.1 20.0 254.3 22.5 253.7 22.5 

Point 3.0 2.8 3.0 2.8 3.0 2.8 3.0 2.8 3.0 2.8 3.0 2.8 

Biogenic 211.2 20.2 149.7 20.2 151.1 20.2 206.4 20.2 201.3 20.2 201.7 20.2 

*VMT is given in units of 106 miles per day in the 5-county Austin area. 
 
Biogenic sources and, because they have been projected using human population, area 
sources are predicted to remain the most significant sources of VOC emissions in the 
five-county area.  Biogenic emission estimates for the G-LUM BAU and G-LUM CPCT 
scenarios are considerably lower than for other scenarios.  These scenarios forecast large 
changes in undeveloped land, particularly in rural zones, resulting in large reductions in 
vegetative cover as compared to the Base Case.  The increased development rates, due to 
model limitations and no constraints on maximum developable land, result in unrealistic 
predictions of vegetative cover loss and over-predictions of urbanization in those zones.  
Emissions from most on-road and non-road mobile source categories decreased for the 
ITLUM scenarios relative to the Base Case due to more stringent federal emission 
controls.  Differences in spatially allocated emissions for each ITLUM scenario relative 
to the Base Case are shown in plots included in Appendix G. 
 
3.6 Air Quality Modeling Predictions 
 
The ITLUM scenarios were compared based on their impact to daily maximum 1-hour 
ozone concentrations, hourly episodic ozone concentrations, and population exposure.   
 
Predicted 1-hour averaged daily maximum ozone concentrations for the 2007 Base Case 
ranged from 72 ppb to 90 ppb across the episode.  Differences in daily maximum 1-hour 
ozone concentrations due to the combined changes in dry deposition, biogenic emissions, 
and anthropogenic emissions from on-road mobile, non-road mobile and area sources 
ranged from -10 to -2 with typical values of -5 as shown in Table 3.24. 
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Table 3.24. Daily maximum 1-hour ozone concentrations for the Base Case and 
differences in the daily maximum ozone concentrations relative to the Base Case 

Episode 
Day 

Base Case 
Daily Max. 
O3 Conc. 

(ppb) 

G-LUM 

BAU 

G-LUM 

CPCT 

G-LUM 

UGB 

LUC-LUI 

BAU 

LUC-LUI 

CPCT 

9/15 80.5 -4.1 -4.9 -4.4 -4.9 -5.6 
9/16 72.0 -1.5 -1.6 -2.2 -2.1 -2.2 
9/17 85.8 -6.5 -6.5 -6.4 -6.9 -6.9 
9/18 86.2 -3.9 -3.9 -4.1 -4.1 -4.1 
9/19 90.4 -6.0 -7.3 -5.5 -6.1 -7.5 
9/20 90.5 -8.3 -9.7 -8.0 -8.6 -10.1 

 
Maximum and minimum differences in 1-hour ozone concentrations that occurred across 
the region regardless of time of day or magnitude were also evaluated.  Figure 3.7 shows 
the range of changes in 1-hour ozone concentrations between the ITLUM scenarios and 
the Base Case due to changes in biogenic emissions, dry deposition, and anthropogenic 
emissions.  Maximum decreases of up to 16 ppb were predicted in the LUC-LUI 
scenarios.  The G-LUM UGB scenario resulted in decreases of up to 14 ppb as compared 
to 9.5 ppb in the G-LUM BAU scenario. 
 

Range of Maximum and Minimum Differences in 1-hour 
Ozone Concentrations Relative to the Base Case

-25 -20 -15 -10 -5 0 5 10 15 20 25

LUCLUI_CPCT

LUCLUI_BAU

GLUM_UGB

GLUM_CPCT

GLUM_BAU

Ozone Concentration (ppb)

 
Figure 3.7. Range of changes in hourly ozone concentrations (ppb) between the ITLUM 
scenarios and the Base Case across the 5-county Austin area
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Total daily population-weighted exposure was estimated for the Base Case and the 
ITLUM scenarios as shown in Figure 3.8. 
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Figure 3.8 Total daily population-weighted exposure using a (a) 40 ppb, (b) 60 ppb, and 
(c) 80 ppb threshold for the ITLUM scenarios and the Base Case 
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For a threshold value of 40 ppb, all ITLUM scenarios show greater exposure than the 
Base Case due to additional increases in ozone and population in newly developed areas.  
For higher threshold values, Figure 3.8 shows the variation in exposure over the episode 
with typically lower exposure predicted for the road pricing scenarios and higher values 
for the urban growth boundary scenario where population is more concentrated. 
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4.0 Conclusions 
This study presents the results of an integrated modeling effort that provides the structure 
needed for comprehensive modeling of regional land use, transportation, and air quality 
futures.  The impacts of alternative regional development patterns on land use/land cover, 
emissions, dry deposition, and air quality, were examined using Austin, Texas as a case 
study.  Although the case study focuses on the Austin area, Austin is typical of many 
urban areas that are or could be facing designation as non-attainment under the 8-hour 
NAAQS for ozone, and the modeling framework is applicable to other urban areas.   
 
Four regional visioning scenarios and five land use modeling scenarios were developed 
and used in a photochemical grid model, CAMx, to predict changes in the magnitude and 
spatial distribution of hourly ozone concentrations due to regional development trends.  
Key findings are summarized below: 
 

• While fundamentally different, both the community-oriented visioning and land 
use modeling processes carry benefits and appear complementary. 

 
• Three distinctive transportation and land use scenarios were investigated using the 

gravity-based LUM and a standard TDM.  In addition to the business-as-usual 
(BAU) scenario, these include a road pricing policy which entails a flat-rate 
carbon-based tax and congestion pricing (CPCT) of all Austin area freeways, and 
an urban growth boundary (UGB) policy.  In terms of travel behavior impacts, the 
CPCT and UGB policies appear to be powerful tools for VMT reduction.  The 
BAU and CPCT policies generate similar amounts of personal and commercial 
trips, while the UGB policy generates fewer trips of both types.  This suggest that 
the CPCT policy’s VMT reduction basically comes from shorter trips, while the 
VMT reduction of the UGB policy comes from both shorter trips and fewer trips.  
In terms of personal trips by mode, the CPCT and UGB policies are most 
effective in promoting transit usage and decreasing auto trips, and the UGB policy 
enjoys the highest number of walk/bike trips. 

 
• Two distinctive transportation and land use scenarios were investigated using a 

novel LUM based on land use change and land use intensity (LUC-LUI) at the 
parcel level and a standard TDM.  In addition to the business-as-usual (BAU) 
scenario, a road pricing policy (CPCT) was investigated.  The model results 
suggest that the CPCT policy results in less region-wide land consumption, and 
land close to regional freeway seems more likely to develop.  These two policies 
were estimated to generate similar household and employment distribution 
patterns: households tend to remain concentrated in the urban areas and along 
regional freeways, and employment has a higher level of concentration in the 
urban areas (especially in the City of Austin’s CBD area).  The CPCT policy 
appears to be effective in reducing regional VMT, as well as increasing average 
speed and reducing overall traffic congestion during peak hours.  These findings 
are consistent with G-LUM predictions.  
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• Although VMT is predicted to continue increasing, emissions of NOx and VOCs 
from on-road mobile sources are predicted to decrease through approximately 
2025 due to the phase-in of new emission standards.  Similarly, NOx emissions 
from non-road mobile sources in the Austin area are also predicted to decrease 
due to the phase-in of new emission standards, while VOC emissions are 
predicted to increase by 5-9%. 

 
• Future changes in daily maximum 1-hour ozone concentrations due to the 

combined changes in dry deposition, biogenic emissions, and anthropogenic 
emissions in the ECT scenarios ranged from -11 ppb to -2 ppb, with typical values 
of -6 ppb.  Differences due to changes in biogenic emissions and dry deposition 
only between ECT A (continuation of current development patterns) and the Base 
Case ranged from -0.9 ppb to +0.1 ppb.  Differences due to changes in 
anthropogenic emissions only between ECT A  and the Base Case were far more 
significant, ranging from -9 ppb to -2 ppb. 

 
• Maximum differences in hourly ozone concentrations due to changes in biogenic 

emissions and dry deposition only between the ECT scenarios and the Base Case 
ranged from -1.4 ppb to +0.7 ppb.  Maximum differences in hourly ozone 
concentrations due to changes in anthropogenic emissions only between the ECT 
scenarios and the Base Case were far more significant, ranging from -14 ppb to 
+22 ppb. 

 
• Differences in ozone concentrations between the ECT scenarios (-3 ppb to +5 

ppb) were smaller than the differences between the ECT scenarios and the Base 
Case.  Doubling of population and implementation of new federal mobile source 
standards produced greater changes in emissions and air quality than differences 
in spatial patterns due to different types of regional development.  These results 
imply that the pattern of urban development is not as significant as reductions in 
emissions per capita, but the effects of urbanization patterns are non-negligible. 

 
• Future changes in daily maximum 1-hour ozone concentrations due to the 

introduction of E85 relative to ECT A ranged from -0.4 to 0.0 ppb, with typical 
values of -0.2 ppb for the Austin area.  Although these impacts appear small, they 
are comparable in magnitude to some commonly employed air pollution control 
measures that were adopted as part of Austin’s Early Action Compact.  
Differences in hourly ozone concentrations due to the introduction of E85 are 
relatively smaller than changes due to development patterns.   

 
• Future changes in daily maximum 1-hour ozone concentrations due to the 

combined changes in dry deposition, biogenic emissions, and anthropogenic 
emissions in the ITLUM scenarios ranged from -10 ppb to -2 ppb, with typical 
values of -5 ppb.  Maximum decreases in hourly ozone concentrations of up to -
16 ppb were predicted in the LUC-LUI scenarios.  The G-LUM UGB scenario 
resulted in maximum decreases of up to -14 ppb as compared to -9.5 ppb in the G-
LUM BAU scenario. 
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• For the ECT scenarios, concentrated high-density development in existing towns 

with balanced-use zoning produced lower exposure to high ozone concentrations 
than a more typical pattern of urban sprawl.  For the ITLUM scenarios, lower 
exposure was typically predicted for the road pricing scenarios and with relatively 
higher values predicted for the urban growth boundary.  Evaluating daily 
population exposure can provide additional information about the magnitude and 
spatial distributions of changes in ozone due to urban development. 

 
These results imply that controlling the environmental impacts of urbanization involves 
multi-faceted strategies.  Integrated modeling efforts, such as the ones described in this 
study, have the potential to facilitate policy decisions that support balanced growth for 
U.S. communities. 
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6.0 Description of Expenditures  
 
 
FY 2004-2005 
Dr. McDonald-Buller (the PI) received partial support from September of 2005-
December of 2005.  Dr. David Allen received partial support in June 2005.  Alba Webb, a 
Research Associate in Dr. McDonald-Buller’s group at the Center for Energy and 
Environmental Resources, received partial support from July 2005-December 2005. 
Three graduate research assistants in Dr. Kockelman’s (Co-PI) group also received partial 
support (i.e., 50% time with tuition): Jason Lemp- 9/1/2005-12/31/2005; Xiaokun Wang-
1/1/05 -12/31/05; Bin Zhou -1/1/05 -12/31/05; and Shashank Gadda-1/1/5-8/31/05.  
Expenditures for travel expenses for Dr. McDonald-Buller and Dr. Kockelman were also 
incurred in November 2005 in order to attend the annual PI meeting in Washington D.C.   
 
FY 2005-2006 
Ms. Alba Webb, a Research Engineer/Scientist Associate III in Dr McDonald-Buller’s 
group received support from 1/1/06-2/28/06 at 37.50% time; 10/01-11/30 at 100% time; 
12/01-12/31/06 at 50% time; and 3/01-4/30/07 at 100% time. Mr. Gary McGaughey, a 
Research Engineer/Scientist Associate IV also in Dr. McDonald-Buller’s group received 
support from 12/08-12/31/06 at 50% time. Dr McDonald-Buller, a Research Associate 
Professor, received support from 1/01-5/31/06 at 35% time; 7/01-7/31/06 at 29.51% time; 
10/01-10/31/06 at 100% time; 11/01-11/30/06 at 50.63% time; 12/01/06-4/30/07 at 100% 
time.  Funds were spent on a portable hard drive; 4 ArcGIS Licenses and travel to a 
conference in Houston for Dr McDonald-Buller. 
 
Four graduate research assistants in Dr. Kockelman's (Co-PI) group received partial 
support (i.e., 50% time and tuition for B. Zhou & X. Wang only): Mr. Jason Lemp 
(1/1/06 - 5/31/06 and 9/1/06 -12/31/06); Ms. Bin (Brenda) Zhou (1/1/06 - 5/31/06 and 
9/1/06 -12/31/06); Mr. Jianming Ma (3/17/06 - 3/31/06) and Ms. Xiaokun Wang (1/1/06-
1/15/06). Please note that while Ms. Wang conducted research on the EPA project for the 
entire 12 months of 2006, her salary was provided by the Stevens Fellowship for 11.5 
months of the year.  One undergraduate workstudy assistant, Ms. Laura Narat also 
received partial support (i.e, approx. 20% hourly time from 1/15/06-5/15/06). 
 
FY 2006-2007 
Ms. Alba Webb, a Research Engineer/Scientist Associate III in Dr McDonald-Buller’s 
group received support from 12/01-12/31/06 at 50% time; 3/01/07-5/31/07 at 50% time; 
10/01-10/31/07 at 100% time; and 11/01-11/30/07 at 50% time. Mr. Gary McGaughey, a 
Research Engineer/Scientist Associate IV also in Dr. McDonald-Buller’s group received 
support from 12/01-12/31/06 at 50% time. Dr McDonald-Buller, a Research Associate 
Professor, received support from 12/01/06-3/31/07 at 100% time; 4/01-4/30/07 at 18% 
time; 8/01-8/31/07 at 39.17% time; 10/01-10/31/07 at 100% time; and 11/01-11/30/07 at 
50% time.  Funds were spent on a printer, a portable hard drive, and conference 
registration for Dr McDonald-Buller. 
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Two graduate research assistants in Dr. Kockelman’s (Co-PI) group received support on 
this project.  Mr. Jason Lemp, from 12/20/06 -8/31/07 salary at 100% time, from 9/1/07-
10/31/07 salary at 50% time, with Jason’s tuition for the reporting period paid by the 
Advanced Institute Fellowship.  Ms. Bin (Brenda) Zhou, from 12/20/06-8/31/07 salary at 
100% time, from 10/1/07-10/31/07 and 12/1/07-12/19/07 salary at 100% time, with 
Spring ’07 and Fall ’07 tuition also paid by this project. 
 
FY 2007-2008 
In the past year, Dr Elena McDonald-Buller received support on this project as did Alba 
Webb, Research Engineer.  Dr McDonald-Buller received salary support from 10/01/07-
10/31/07 at 100% time, 11/01/07-11/30/07 at 50% time, 12/01/07-12/31/07 at 100% time, 
02/01/08-02/29/08 at 75% time, and 03/01/08-03/31/08 at 19.25% time. Ms. Alba Webb 
received salary support from 10/01/07-10/31/07 at 100% time, 11/01/07-11/30/07 at 50% 
time, 02/01/08-03/31/08 at 100% time, 07/14/08-08/31/08 at 50% time, and 09/01/08-
10/15/08 at 50% time.  
 
Dr Elena McDonald-Buller incurred travel expenses for two meetings.  She attended the 
AWMA Annual Meeting in Portland, OR during 06/22/08-06/27/08 and incurred 
expenses in the amount of $2,806.29 in addition to the conference registration fee in the 
amount of $560.  She also attended the STAR Grantees Progress Review Meeting at the 
U.S. EPA in Raleigh, North Carolina during 10/26/08–10/29/08 and incurred expenses in 
the amount of $871.31.  
 
Two graduate research assistants in Dr. Kockelman’s (Co-PI) group received support on 
this project and some summer support was received by Dr. Kockelman as well.  Ms. Bin 
(Brenda) Zhou received salary support from 12/01/07-01/31/08 at 100% time, 02/01/08-
05/31/08 at 50% time, 11/01/08-11/30/08 at 41% time and Spring ’08 tuition also paid by 
this project.  Ms. Sumala Tirumalachetty received salary support from 07/01/08-11/30/08 
at 100% time, 12/01/08-12/31/08 at 50% time and Summer ’08 & Fall ’08 tuition also 
paid by this project.  Dr. Kockelman received salary support from 06/01/08-06/30/08 at 
22% time and from 08/01/08-8/31/08 at 39% time.  
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Appendix A 
 
Table A.1 Crosswalk between the composite land use/land cover database developed in 
this study and EPS2 surrogates.   

Composite 
Database 

Category Code 

Composite 
Database Description 

EPS2 
Surrogate 

EPS2 
Description 

1 Single Family Residence 4 Urban 

2 Large-lot Single Family Residence 4 Urban 

3 Mobile Homes 4 Urban 

4 Multi-family Residence 4 Urban 

11 Commercial 4 Urban 

12 Industrial 4 Urban 

13 Office 4 Urban 

14 Commercial/Industrial/Transportation 4 Urban 

15 Transportation 4 Urban 

16 Streets and Roads 4 Urban 

21 Unknown 4 Urban 

22 Utilities 4 Urban 

23 Civic 4 Urban 

24 Vacant 4 Urban 

25 Urban/Recreational Grasses 4 Urban 

26 Undeveloped 4 Urban 

27 Mining 11, 15 Barren, Rural 

31 Bare Rock/Sand/Clay 11, 15 Barren, Rural 

32 Quarries/Strip Mines/Gravel Pits 11, 15 Barren, Rural 

33 Transitional 11, 15 Barren, Rural 

34 Deciduous Forest 7, 15 Deciduous 
Forest, Rural 

35 Evergreen Forest 8, 15 Coniferous 
Forest, Rural 

36 Mixed Forest 9, 15 Mixed Forest, 
Rural 
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37 Shrubland 6, 13, 15 
Range, Mixed 

Agricultural and 
Range, Rural 

38 Orchards/Vineyards/Other 5, 13, 15 

Agriculture, 
Mixed 

Agricultural and 
Range, Rural 

39 Grasslands/Herbaceous 6, 13, 15 
Range, Mixed 

Agricultural and 
Range, Rural 

40 Pasture/Hay 5, 6, 13, 15 

Agriculture, 
Range, Mixed 

Agricultural and 
Range, Rural 

41 Row Crops 5, 6, 13, 15 

Agriculture, 
Range, Mixed 

Agricultural and 
Range, Rural 

42 Small Grains 5, 6, 13, 15 

Agriculture, 
Range, Mixed 

Agricultural and 
Range, Rural 

44 Woody Wetlands 12 Non-forested 
wetlands 

45 Emergent Herbaceous Wetlands 12 Non-forested 
wetlands 

51 Water 10, 15 Water, Rural 

 



 

Appendix B 
 

B.1 Biogenic Emissions 
Isoprene emissions for the Base Case ranged from 1.5 to 3 Mmoles day-1 across the 
episode with an average of 2 Mmoles day-1 as shown in Table B.1.  Differences in land 
use/land cover led to 2 to 6% reductions in daily biogenic emissions across the 5-county 
Austin MSA.  If the percentage change in biogenic emissions is restricted to grid cells 
that experienced land cover changes, the percentage reductions are larger, ranging from 5 
to 11%, as shown in Table B.2.  ECT A, which assumes a typical urban sprawl pattern 
with the largest consumption of vegetative cover, shows the largest reductions in isoprene 
emissions.  The reductions occur primarily in Travis and Williamson Counties where 
much of the transition from mixed agricultural and rangeland or mixed forest to 
developed land occurs. 
 
Table B.1 Percent decrease in biogenic isoprene emissions compared to Base Case 
emissions 
 Date in September, 1999 
 Units 13 14 15 16 17 18 19 20 Avg. 
Base Case ISOP

 Emissions Mmoles day-1 1.5 2.1 1.8 1.5 1.9 2.2 3.0 1.9 2.0 

ECT A % 5.43 5.50 5.36 5.30 5.35 5.39 5.45 5.20 5.37 
ECT B % 2.61 2.64 2.58 2.55 2.57 2.59 2.62 2.50 2.58 
ECT C % 2.61 2.66 2.60 2.58 2.60 2.61 2.64 2.54 2.61 
ECT D % 1.55 1.59 1.53 1.50 1.33 1.54 1.56 1.46 1.51 

 
Table B.2 Percent decrease in biogenic isoprene emissions in cells that have land 
use/land cover changes compared to Base Case emissions 
 Date in September, 1999 
 Units 13 14 15 16 17 18 19 20 Avg. 

ECT A % 10.4 10.2 10.3 10.1 10.4 10.7 10.8 10.8 10.5 
ECT B % 4.5 4.4 4.8 4.1 4.5 4.6 4.7 4.7 4.5 
ECT C % 6.4 6.0 6.4 5.7 6.0 6.1 5.9 6.2 6.1 
ECT D % 7.2 7.8 8.4 7.5 7.4 7.3 7.7 7.6 7.6 
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Differences in spatially allocated biogenic isoprene emissions for each ECT scenario 
relative to the Base Case are shown in Figure B.1 for one episode day (September 19 at 
1400).   
 

 
Figure B.1  Differences in biogenic isoprene emissions between ECT scenarios and the 
Base Case
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B.2 On-road Mobile Source Emissions 
For the Base Case, on-road mobile source VOC emissions for the five-county Austin area 
are nearly all attributed to light-duty gasoline vehicles (95%) as shown in Table B.3.  
NOx emissions originate from light-duty gasoline vehicles (77%) followed by heavy-duty 
diesel vehicles (16%).  For the ECT scenarios, VOC and NOx emissions are reduced due 
to more stringent federal motor vehicle emission control programs including the EPA’s 
Tier 2 and heavy-duty 2007 rules.  VOC emissions for the ECT scenarios are still 
primarily from light-duty gasoline vehicles (93%), while NOx emissions are also 
primarily attributed to light-duty gasoline vehicles (92%).  

 
Table B.3  Weekday on-road mobile source VMT and emissions (tpd) of VOC and NOx 
for the 2007 Base Case and four ECT Scenarios 

Note: ECT scenario emissions are calculated for a future year of 2030. 

2007 Base Case 
VMT = 44.5* 

ECT A 
VMT = 82.4* 

ECT B 
VMT = 72.2* 

ECT C 
VMT = 69.5* 

ECT D 
VMT = 65.9* 

Categories 

VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx 

Light-duty 
gasoline 
vehicles 

32.1 47.9 20.5 16.9 17.9 14.7 17.5 14.3 15.9 13.2 

Heavy-duty 
gasoline 
vehicles 

1.1 3.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 

Light-duty 
diesel vehicles 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Heavy-duty 
diesel vehicles 0.5 10.0 1.3 1.3 1.1 1.1 1.1 1.1 1.0 1.0 

Total 33.8 62.1 22.0 18.4 19.2 16.0 18.8 15.6 17.0 14.3 

*VMT is given in units of 106 miles per day in the 5-county Austin area. 
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Differences in spatially allocated on-road mobile source NOx and VOC emissions are 
shown in Figure B.2 for one episode day (September 20 at 1400).  These figures compare 
emissions from ECT A to the Base Case which represent changes due to the doubling of 
population with a continuation of current development patterns, and they also compare 
emissions from ECT D to ECT A, which represent the two most extreme development 
scenarios. 
 
 

(a) (b)(a) (b)

 

(c) (d)(c) (d)

 
Figure B.2 Differences in on-road mobile source VOC emissions between (a) ECT A and 
the Base Case, and (b) ECT D and ECT A. Differences in on-road mobile source NOx 
emissions between (c)  ECT A and the Base Case and (d) ECT D and ECT A. 
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B.3 Non-road Mobile Source Emissions 
For the Base Case, 61% of non-road mobile source VOC emissions for the five-county 
Austin area are attributed to emissions from lawn and garden equipment, followed by 
recreational equipment (12%) as shown in Table B.4.  NOx emissions are attributed to 
emissions from construction and mining equipment (55%), followed by railway (14%).  
For the ECT scenarios, emissions from lawn and garden equipment (71-77%) play a 
larger role in the total VOC emission inventory; whereas NOx emissions are not 
dominated by a single category.  Emissions from most non-road mobile source 
categories, with the exception of those from lawn and garden equipment, are less for the 
ECT scenarios than for the Base Case due to new emission standards, especially for 
categories associated with industrial and construction/mining equipment affected by the 
EPA’s Tier 4 engine standards.  However, VOC and NOx emissions from lawn and 
garden equipment increased, primarily because emissions from gas cans, included in this 
category, were projected based on growth in the number of households.  In addition, the 
NONROAD model does not incorporate new emission controls between 2007 and 2030 
for most 2-stroke and some 4-stroke lawn and garden equipment.   
 
Table B.4 Weekday non-road mobile source emissions (tpd) of VOC and NOx for the 
2007 Base Case and four ECT Scenarios 

Note: ECT scenario emissions are calculated for a future year of 2030. 

2007 Base 
Case ECT A ECT B ECT C ECT D 

Categories 

VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx 

Agricultural 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Commercial 2.1 0.5 2.4 0.5 2.5 0.5 2.5 0.5 2.4 0.5 

Construction 
and Mining 1.8 11.9 1.1 2.4 1.1 2.4 1.1 2.4 1.1 2.4 

Industrial 0.8 2.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 

Lawn          
and Garden 13.4 1.4 16.6 1.5 18.4 1.7 18.4 1.7 16.6 1.5 

Railway 0.2 3.1 0.2 2.3 0.2 2.2 0.2 2.3 0.2 2.3 

Recreational 2.7 0.1 1.7 0.1 0.6 0.1 0.6 0.1 1.7 0.1 

Airport 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.0 0.8 1.1 

Military 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 0.3 1.2 

Total 22.2 21.7 23.2 9.5 24.0 9.6 24.0 9.6 23.2 9.5 
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Differences in spatially allocated non-road mobile source NOx and VOC emissions are 
shown in Figure B.3 for one episode day (September 20 at 1400).   
 

(a) (b)(a) (b)

 

(c) (d)(c) (d)

 
Figure B.3 Differences in non-road mobile source VOC emissions between (a) ECT A 
and the Base Case, and (b) ECT D and ECT A. Differences in non-road mobile source 
NOx emissions between (c)  ECT A and the Base Case and (d) ECT D and ECT A. 
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B.4 Area Source Emissions 
For the Base Case, VOC emissions from area sources across the five-county Austin area 
are attributed to solvent utilization (44%) and service stations (19%); while NOx 
emissions are attributed to agricultural production (51%) and stationary source fuel 
combustion (43%) as shown in Table B.5.  About half of the total area source emissions 
originate from Travis County that includes the City of Austin.  Because area source 
emissions for the ECT scenarios were projected using human population, they 
approximately double estimates for the Base Case.  However, the scenarios were each 
based on a different spatial development pattern with a different fraction of population 
for each county (e.g., 57% and 45% of the total population live in Travis County for ECT 
Scenarios A and C, respectively).  Because ECT C had a slightly larger total population 
than the other scenarios, the largest differences in emissions relative to the Base Case 
were observed for ECT Scenario C.  For ECT Scenario C, VOC emissions are attributed 
to solvent utilization (34%), followed by industrial processes (29%); while NOx 
emissions are attributed to agricultural production (58%), and stationary source fuel 
combustion (33%).  Due to differences in the distribution of the population across each 
county, other ECT scenarios do not always follow the same trends as ECT Scenario C.  

 
Table B.5 Weekday area source emissions (tpd) of VOC and NOx for the 2007 Base Case and 
four ECT Scenarios 

2007 Base 
Case ECT A ECT B ECT C ECT D 

Categories 
VOC NOx VOC NOx VOC NOx VOC NOx VOC NOx

Agriculture 
Production 5.6 5.1 12.2 11.1 13.8 12.3 15.6 13.8 13.9 12.4 

Fuel Storage and 
Transport 6.9 0.0 13.4 0.0 13.9 0.0 14.3 0.0 13.8 0.0 

Industrial 
Processes 15.5 0.2 33.3 0.4 54.8 0.6 76.7 0.7 54.7 0.6 

Miscellaneous 
Area Sources 2.1 0.4 4.4 0.8 5.0 0.9 5.6 0.9 5.0 0.9 

Service Stations 20.8 0 40.2 0 40.8 0 41.6 0 40.5 0 

Solvent Utilization 48.8 0 91.2 0 90.5 0 89.7 0 89.6 0 

Stationary Source 
Fuel Combustion 0.2 4.4 0.3 8.1 0.3 8.0 0.3 7.9 0.3 7.9 

Storage and 
Transport 0.9 0 1.8 0 1.8 0 1.9 0 1.9 0 
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Waste Disposal, 
Treatment, and 

Recovery 
9.9 0.1 17.5 0.2 16.8 0.3 15.9 0.3 16.5 0.3 

Total 110.7 10.2 214.3 20.6 237.7 22.1 261.6 23.6 236.2 22.1 

Note: ECT scenario emissions are calculated for a future year of 2030. 
 
Differences in spatially allocated area source NOx and VOC emissions are shown in 
Figure B.4 for one episode day (September 20 at 1400).   
 
 

(a) (b)(a) (b)

 
 

(c) (d)(c) (d)

 
Figure B.4 Differences in area source VOC emissions between (a) ECT A and the Base 
Case, and (b) ECT D and ECT A. Differences in area source NOx emissions between (c)  
ECT A and the Base Case and (d) ECT D and ECT A.
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Appendix C. Travel Demand Model 
 
Smart Mobility’s TDM Documentation 
 
Much of the material covered here is given in Envision Central Texas Transportation Model:  
Technical Documentation.  Thus, we will refer to the technical documentation often.  This 
document is intended to provide an overview of how this model works since the technical 
documentation does not provide all of the details. 
 
Overview 
 
The model consists of 6 sub-models (auto availability, trip generation, walk/bike trips, trip 
distribution, mode choice, and assignment), 3 of which require feedback in the form of iterations 
(the last three).   
 
The model requires several inputs.  First, household counts by type (6 types) for each zone are 
needed where household type is specified by presence of children in the household (yes or no) 
and the number of workers in the household (0, 1, or 2+).  Second, employment counts (the 
number of workers) by type for each zone are needed where the types include basic (BAS), retail 
(RET), service (SER), K-12 education (ED1), post-secondary/college education (ED2), and 
airport (AIR).  Last, several urban form variables are needed for each zone.  These include 
household and employment densities, the balance between housing and employment, intersection 
density, and transit stop density.  It is important to note that in working with the SM model, we 
have never fully understood how the intersection density and transit stop density were computed.  
We do know that it is not computed using the ECT network files.  For our work, we have simply 
used the ECT values, or interpolated values since the given values are only for years 1997 (the 
base year) and 2025.  In addition, the model makes assumptions regarding network link free-flow 
speeds that vary by the area type of the zone (rural, suburban, or urban/CBD). 
 
Auto Availability 
 
Multinomial logit models were used for auto availability.  The alternatives considered in the 
models are 0, 1, and 2+ autos.  Explanatory variables include the presence of children, housing 
density, intersection density, and transit stop density, and the models are fully segmented by the 
number of household workers (thus, there are 3 models).   
 
Based on the models, the number of households are forecast by type.  When the model is applied, 
probabilities (of 0, 1, and 2+ autos) are computed for each household type (6 types) and for each 
zone.  Given these probabilities, it is possible to further disaggregate households by a third 
dimension (on top of the presence of children and number of workers).  In essence, model 
application gives us the number of households by type where there are now 6*3 = 18 types (e.g., 
no children (NC)/0 workers (W0)/0 autos(A0), NC/W0/1 auto (A1), etc.). 
 
Trip Generation 
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Trip generation consists of trip productions and trip attractions.  Trip productions are modeled 
for 10 trip types based on cross-classification models where each type of household (of the 18 
types discussed above) produces a fixed number of trips of a given type.  No zonal specific 
characteristics are used in the models (e.g., household density, etc.) other than the number of 
households by type.  The 10 trip types include home-based work direct (HBWD), home-based 
work complex (HBWC), home-based work strategic (HBWS), home-based non-work retail 
(HNWR), home-based non-work other (HNWO), non-home-based work (NHBW), non-home-
based other (NHBO), K-12 education (ED1), post-secondary/college education (ED2), and 
airport (AIR).  It should be noted that even the non-home-based trips are modeled by the number 
of households in the zone even though, by definition, they are not based at the household. 
 
Trip attractions are based on attractions rates estimated for the aggregate number of households 
and employment by type for each zone.  As standard procedure, trip productions and attractions 
are balanced holding the trip productions fixed (in order that productions equal attractions). 
 
Walk/Bike Trips 
 
Smart Mobility suggests that the Austin zones are too large for walk and bike trips to be handled 
sufficiently through the regular mode choice model.  Therefore, they estimated a separated 
walk/bike model that removes some of the trips generated from previous model.  These trips are 
not thrown out altogether, though they are not modeled in trip distribution or any of the 
subsequent models.  Separate models were estimated for HBWD, HNWR, HNWO, ED1, ED2, 
NHBW, and NHBO trips.  HBWS and HBWC trips by definition cannot be by the walk/bike 
mode.  In addition, there were not any airport trips in the survey by these modes.   
 
Trip Distribution 
 
For trip distribution, gravity models were estimated for each trip type.  Each of the models uses a 
doubly constrained structure where row and column totals of the distribution matrix must equal 
the trip productions and attractions estimated in the previous models.  Hence, an iterative process 
is used to find these distributions.   
 
Mode Choice 
 
For mode choice, a nested logit structure is used.  In the top level of the nest, there is the choice 
of auto versus transit, and in the bottom level of transit mode, there is the choice of walk access 
versus drive access.  The models consider in-vehicle time, out-of-vehicle time (for transit), cost, 
number of household vehicles, housing density, and intersection density.  The operating cost for 
the auto mode was assumed to be $0.0922/mile.  In model application, this is NOT adjusted for 
vehicle occupancy, though it probably should be for consistency.  Due to unreasonably low 
VOTTs implied in model estimation, VOTT was assumed to be $9/hr for work trip and $4.50 for 
non-work trips.  In model application, cost is simply converted to generalized time and added to 
in-vehicle time.  A total of six models were estimated:  a home-based work model (includes trip 
types HBWD, HBWS, HBWC, and AIR), an ED1 model, an ED2 model, a HNWR model, a 
HNWO model, and a non-home-based model (includes NHBW and NHBO).   
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Traffic Assignment 
 
At this stage in the model, we have found person trip production-attraction tables.  These are 
converted to vehicle trip origin-destination tables using simple factors as is rather standard in 4-
step TDMs.  For home-based trips (which includes HBWD, HBWS, HBWC, HNWR, HNWO, 
ED1, and ED2), factors were computed using trip survey data to convert aggregate trip 
production-attractions to time-of-day (TOD) specific origin-destinations.  For instance, we begin 
with some number of production-attractions from zone A to zone B.  Those are converted into 
origin-destinations from zone A to zone B and zone B to zone A for each of 4 TODs (AM peak 
[AM], midday [MID], off-peak [OP], and PM peak [PM]) using factors calibrated from the 
survey data.  In addition, the person trips are divided by the average vehicle occupancy to find 
vehicle trips.  All of the factors are trip type specific (i.e., they are different for each trip type).  
For NHBW, NHBO, and AIR trips, similar factors are used, but half of all trips produced in zone 
A and attracted to zone B are assumed to originate in zone A, destined for zone B while the other 
half are assumed to originate in zone B, destined for zone A.  It is important to recognize that 
this is an INCORRECT way to do this.  Non-home-based trips are, by definition, in origin-
destination form to begin with.  Thus, there is no reason to have factors to covert the trips into 
origin-destination form.  This problem is corrected in the modified code.  Like the other trips, 
average vehicle occupancies are used to convert person trips to vehicle trips.  (Note that in the 
modified code, vehicle occupancy factors were recalibrated, and it seemed that most [if not all] 
were greater than those used in the SM code [i.e., more persons per vehicle].  It is unclear how 
SM calibrated their factors) 
 
Once person trip production-attraction tables are converted to TOD specific vehicle trip origin-
destination tables, the traffic assignment module is executed.  The SM code uses a rather 
simplistic traffic assignment routine.  It does not use generalized time/cost, but instead only 
considers travel times, while travel costs are ignored (this is modified in the new code).  The 
BPR link performance functions are used with alpha of 0.83 and beta of 5.5 (note that these are 
typical values), and the routine is performed for each of the 4 TODs.  After performing traffic 
assignment, we now have link travel times for each of the 4 TODs. 
 
Model Feedback 
 
There are a couple of key considerations for the model feedback.  First, we have new travel times 
given from the output of traffic assignment, but it is bad practice to simply input the new travel 
times directly upstream in the trip distribution model (convergence cannot be insured if this is 
done).  Second, the trip distribution and mode choice sub-models are not specific to TODs, but 
are instead aggregate totals for the average day.  Thus, we must convert the TOD specific travel 
times to a single travel time, and we must somehow average travel times from iteration to 
iteration. 
 
First, the TOD specific travel times are converted to a single travel time using TOD specific 
factors for each trip type.  The factors were again calibrated from the trip survey data.  The best 
way to convey how it works is with example.  Say we have travel times for the 4 TODs, and say 
that in the survey data for HBWD trips, 30% of trips are from production (P) zone to attraction 
(A) zone in AM, 1% are from A zone to P zone in AM, 10% are from P to A in MID, 10% are 
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from A to P in MID, 6% are from P to A in OP, 5% are from A to P in OP, 8% are from P to A 
in PM, and 30% are from A to P in PM.  Then a weighted sum of the travel time tables is used 
for the HBWD travel times for this iteration.  Say AM travel times are denoted AM_TT and the 
transpose of AM travel times is denoted AM_TTT, then the HBWD travel times = 0.3*AM_TT 
+ 0.01*AM_TTT + 0.1*MID_TT + 0.1 *MID_TTT + 0.06*OP_TT + 0.05*OP_TTT + 
0.08*PM_TT + 0.3*PM_TTT.  This same sort of procedure is executed for each of the trip types 
and results in a travel time table specific to each. 
 
Second, an averaging across iterations is done to find the input travel times for the subsequent 
iteration.  The method of successive averages is used to do this.  For example, if we are currently 
in the 1st iteration, no averaging is performed (free-flow travel times are used as inputs in the 1st 
iteration).  If we are currently in the 2nd iteration, we take 0.5*1st iteration times + 0.5*2nd 
iteration times.  If we are in the 3rd iteration, we take (1/3)*1st iteration times + (1/3)*2nd iteration 
times + (1/3)*3rd iteration times, and so on.  It is important to note that this is not the standard 
procedure for MSA in TDMs.  Boyce et al. (1994) suggests that feedback should be introduced 
by performing 2 operations.  First, the trip tables are averaged prior to traffic assignment.  For 
example, in the 2nd iteration, traffic assignment is performed on MSA trip table where the MSA 
trip table is 0.5*1st iteration trip table + 0.5*2nd iteration trip table.  Second, after traffic 
assignment, MSA is again performed on the link travel times before finding the zone to zone 
travel times.  There is then NO modification needed for zone to zone travel times found using 
shortest path.  However, the method used by SM should yield reasonable results when the 
network is not overally congested. 
 
Documentation of Changes to Smart Mobility TDM 
 
The reason for modifying the Smart Mobility (SM) TDM was mostly because the SM model 
does not account for travel cost, except in the mode choice module.  Thus the changes made to 
the model lie in incorporating travel cost sensitivity into the entire model.  Therefore, the main 
changes to the Smart Mobility TDM occur in the trip distribution and traffic assignment modules 
of the code.  These modules were based solely on travel time (as a cost measure) in the original 
SM TDM.  Other changes were considered, but since we were rather familiar with how the SM 
code worked (and had already performed some runs with the model) and the inputs required to 
run it, we felt it was best to use as much of the SM TDM as possible while allowing for travel 
cost sensitivity in a reasonable way. 
 
Trip Distribution 
 
The trip distribution module of the SM model used gravity type models for each trip type based 
on travel time from zone to zone and number of productions and attractions as modeled in the 
trip generation phase.  The new model instead employs destination choice models for each trip 
type.  Instead of explicitly using employment numbers for each destination zone to model the 
attractiveness of the zone, the SM trip attractions models were used to compute the total number 
of attractions for each destination zone, and those values were used as explanatory values in the 
destination choice model estimation procedure.  In addition, a generalized cost term was 
generated for each alternative and consisted of a weighted sum of zone to zone travel time and 
cost where the weight on cost was 1.0, and the weight on travel time equaled the value of travel 
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time (VOTT) for the trip type.  For model estimation, the chosen zone alternative was considered 
along with 50 randomly generated other zone alternatives. 
 
Assumptions for the trip distribution include many things.  For work trips and airport trips, 
VOTT was assumed to be $9/hr ($0.15/min), and for non-work trips, VOTT was assumed to be 
$4.50/hr ($0.075/min), both consistent with assumptions of VOTT in SM’s mode choice models.  
Also consistent with SM was the assumption of $0.0922/mile operating cost.  The operating cost 
was divided by the average vehicle occupancy for the particular trip type to generate zone to 
zone costs (this also applies in model application).  Travel time and mileage data for zone to 
zone come from CAMPO estimates, which consist of both peak and off-peak travel skims.  
Factors were developed for each trip type for average departure TOD and average return TOD.  
These factors were then applied to the travel time skims in generating zone to zone travel 
times/costs for each alternative.  In application, 4 TODs exist, and thus, factors were developed 
for each of the 4 TODs even though only peak and off-peak base travel times/costs were 
available from CAMPO.  For non-home-based trips, return factors are always zero since the trip 
productions/attractions are equivalent to origins/destinations.   
 
Traffic Assignment 
 
In the TDM code, the traffic assignment module had to be changed since the simple traffic 
assignment module used by TransCAD only considers travel time.  Instead, the multi-modal, 
multi-user-class assignment (MMA) module was used to allow for flexibility if needed in the 
future, and to allow for variation in passenger car equivalents (PCEs) and VOTTs.  However, 
because the MMA assignment takes a long time to perform and because MMA does not allow 
for the congestion pricing mechanism to be entered properly (given the way congestion pricing is 
considered in the code), only one user class is considered in assignment, with all of the vehicle 
trips added together.  The inconsistency with congestion pricing occurs in the way the code 
inputs congestion pricing.  Since the congestion charge is a function of volume and varies in the 
same function form as travel time (the BPR function), congestion charges are recognized by 
elevating the normal Alpha parameter of 0.83 to 5.395 = Alpha * (Beta + 1) = 0.83 * (5.5 + 1).  
Thus, the assignment operation allows for a consistent representation of what the congestion 
charge is.  However, since TransCAD does not recognize that part of this is travel time and part 
is monetary cost, VOTT’s cannot be applied consistently for work and non-work trips.  Thus, 
only one user group is considered with passenger car equivalent (PCE) of 1.0, and VOTT of 
$0.1125/min ($6.75/hr), which is the average of work and non-work VOTTs.  Based on the 
travel survey, about 45% of trips were work and 55% non-work, but after recognizing truck and 
external trips (which are both assumed to have work VOTT), it was felt that a straight average 
was reasonable. 
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Tables 
 
Table C.1.  Time-of-Day & Departure/Return Factors by Trip Type using CAMPO’s Expansion 
Factors 

  
  Time-of-Day 

Trip Type AM MID OP PM 
Depart 0.2864 0.1062 0.0719 0.0330 Home-Based Work (Direct) Return 0.0065 0.1206 0.0407 0.3347 
Depart 0.4685 0.0524 0.0262 0.0014 Home-Based Work (Strategic) Return 0.0016 0.1187 0.0078 0.3234 
Depart 0.4572 0.1201 0.0662 0.0231 Home-Based Work (Complex) Return 0.0021 0.0817 0.0426 0.2069 
Depart 0.0385 0.1920 0.0198 0.1276 Home-Based Non-Work 

Retail Return 0.0092 0.3345 0.0470 0.2313 
Depart 0.1017 0.2024 0.0304 0.1701 Home-Based Non-Work Other Return 0.0335 0.2086 0.1034 0.1499 
Depart 0.0753 0.6410 0.0097 0.2739 Non-Home-Based Work Return 0.0000 0.0000 0.0000 0.0000 
Depart 0.0774 0.5409 0.0597 0.3219 Non-Home-Based Other Return 0.0000 0.0000 0.0000 0.0000 
Depart 0.5255 0.0193 0.0068 0.0035 Home-Based Education1 (K-

12) Return 0.0017 0.1093 0.0000 0.3338 
Depart 0.2016 0.2753 0.0000 0.0401 Home-Based Education2 

(Post-Secondary/College) Return 0.0192 0.2205 0.0564 0.1868 
Depart 0.0820 0.2897 0.0900 0.0465 Airport Return 0.0752 0.2141 0.0776 0.1251 
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Table C.2.  Average Vehicle Occupancy by Trip Type using CAMPO’s Expansion Factors 

Trip Type 
Average 
Vehicle 
Occupancy 

Home-Based Work (Direct) 1.1247 
Home-Based Work (Strategic) 1.4426 
Home-Based Work (Complex) 1.1828 
Home-Based Non-Work Retail 1.6391 
Home-Based Non-Work Other 1.9571 
Non-Home-Based Work 1.3141 
Non-Home-Based Other 1.9774 
Home-Based Education1 (K-12) 2.7258 
Home-Based Education2 (Post-Secondary/College) 1.2719 
Airport 1.9675 

 
Table C.3.  Destination Choice Model Estimation Results by Trip Type (Work trip types) 

    
Home-

Based Work 
(Direct) 

Home-Based 
Work 

(Strategic) 

Home-Based 
Work 

(Complex) 

Non-
Home-
Based 
Work 

Coefficient -0.3753 -0.2806 -0.3071 -0.6597 Generalized 
Cost 
Variable t-stat -37.69 -12.73 -17.23 -38.95 

Coefficient 0.000198 0.000212 0.000228 0.000166 Number of 
Destination 
Zone 
Attractions 

t-stat 39.34 18.02 24.91 24.50 

        
Number of Observations 2,226 359 609 1,800 
Log Likelihood at 
Convergence -6,644.4 -1,114.8 -1,806.2 -4,885.7 

Likelihood Ratio 4,215.7 593.5 1,176.6 4,383.1 
Pseudo R-Squared 0.241 0.210 0.246 0.310 
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Table C.4.  Destination Choice Model Estimation Results by Trip Type (Non-Work trip types) 

    

Home-
Based 

Non-Work 
Retail 

Home-
Based 

Non-Work 
Other 

Non-
Home-
Based 
Other 

Home-
Based 

Education1 
(K-12) 

Home-Based 
Education2 (Post-

Secondary/College)

Coefficient -1.6284 -1.2572 -1.4140 -1.7223 -0.7130 Generalized 
Cost 
Variable t-stat -42.16 -67.63 -53.00 -37.77 -9.65 

Coefficient 0.000119 0.000264 0.000141 0.000181 0.000222 Number of 
Destination 
Zone 
Attractions t-stat 29.06 32.25 31.99 20.27 17.80 

         
Number of Observations 1,543 4,307 2,762 1,052 260 
Log Likelihood at 
Convergence -3,322.1 -11,417.7 -6,937.7 -2,232.8 -451.8 

Likelihood Ratio 5,489.4 11,033.4 7,843.9 3,807.1 1,140.9 
Pseudo R-Squared 0.452 0.326 0.361 0.460 0.558 
 



 

Appendix D. Additional Details in the Travel Demand Model 
 

In personal trip generation, trip production is determined by the number of households by type, 
including vehicle availability.  The cross-tabulation of six household types (categorized by 
number of workers and presence of children) and three levels of vehicle availability (0, 1 and 2+ 
autos) results in eighteen types of household, with each assumed to generate, on average, a fixed 
number of trips of a given type18.  In contrast, commercial travel production is determined by 
many zonal characteristics: the total number of households, basic jobs, retail jobs, service jobs, 
education (ED1 and ED2) jobs in a TAZ and the TAZ’s area type (determined by the square root 
of intersections per square mile).  Table D.1 gives the trip production rates for truck flows.  
 
Table D.1. Commercial Trip Generation Rates 

  Total 
Households 

Basic 
Employment

Retail 
Employment

Service 
Employment

ED1 
Employment 

ED2 
Employment

Rural 0.253 0.554 0.361 0.398 0.399 0.166 
Suburban 0.253 0.471 0.344 0.416 0.399 0.166 
Urban 0.225 0.271 0.328 0.198 0.399 0.166 

 
Attraction rates for personal trips are determined by the numbers of households and employment 
by type for each zone.  In contrast, commercial trip attraction is assumed to equal commercial 
trip production in each zone.  A gravity model was then applied to distribute the truck flows, and 
the trip distribution was later added to the trip matrix in assignment. 
 
As compared to trucks, transit vehicles (or buses) are not loaded in assignment.  Evidently, Smart 
Mobility’s TDM considers the impacts of buses on network congestion to be negligible. 
 
 
 
 

                                                 
18 The TDM considers ten trip types: home-based work direct (HBWD), home-based work complex (HBWC), 
home-based work strategic (HBWS), home-based non-work retail (HNWR), home-based non-work other (HNWO), 
non-home-based work (NHBW), non-home-based other (NHBO), K-12 education (ED1), post-secondary/college 
education (ED2), and airport (AIR).   
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Appendix E. G-LUM Documentation: Model Formulation, 
Calibration and Application 
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and where  is the number of households of type n residing in zone i at time t;  is 

impedance (travel time and/or cost) between zones i and j at time t-1;  is the number of type 

n households per type k employee in the study region;  is employment (number of jobs) of 

type k in zone j at time t;  is the unemployment rate for job type k;  is vacant 

developable land in zone i at time t-1;  is the proportion of developable land already 

developed in zone i at time t-1;  is residential land in zone i at time t-1; and 

and are parameters estimated in model calibration.  converts 

employment to households,  is a balancing factor, and  represents the attractiveness of 
zone i for household type n at time t-1. 
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Employment Allocation (EMPLOC) 
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and  is total households in zone i at time t-1;  is the total area of zone j; and 

and are estimated during model calibration.   is a balancing factor, and 

 represents the attractiveness of zone j for employment type k at time t-1. 
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Land Consumption Rates (LUDENSITY) 
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where L stands for area of land in each use (r = residential, D = developable, d = developed, b = 
basic, c = commercial; E stands for employment (b=basic, c=commercial, including retail and 
service jobs); and the k’s, g’s and p’s are estimated parameters. 
 
 



 

Table E.1. Calibration Results for the RESLOC 
η α β q r s 

  Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat.
Type I Households 0.0317 2.94 -2.07 -4.32 -0.0232 -0.55 1.20 1.97 4.82 0.83 0.566 5.18 
Type II Households 0.0665 12.34 -1.19 -3.07 -0.0396 -1.81 0.530 4.45 0.371 0.42 0.0342 1.10 
Type III Households 0.0747 11.33 -0.772 -1.55 -0.0509 -1.93 0.622 4.87 1.54 1.78 0.0103 0.25 
Type IV Households 0.0264 5.83 2.73 1.08 -0.2281 -1.89 0.954 2.10 0.631 0.14 0.312 2.55 
Type V Households 0.0467 11.16 51.14 1.20 -7.92 -1.19 0.724 2.67 2.43 1.10 0.0227 0.57 
Type VI Households 0.0615 10.27 -1.14 -2.13 -0.0640 -2.02 0.611 3.39 -0.882 -0.64 0.157 1.71 

b1
n b b2

n b3
n b4

n b5
n 6

n 
  Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat.
Type I Households 80.02 1.89 -1.69 -0.05 -11.92 -0.48 0.234 0.01 -8.18 -0.27 0.0233 0.00 
Type II Households 6.29 1.18 6.41 1.16 9.45 1.67 0.345 0.07 4.32 0.75 0.962 0.19 
Type III Households 4.13 0.60 -3.13 -0.44 8.98 1.02 -2.10 -0.26 0.0218 0.00 -2.15 -0.29 
Type IV Households 40.09 1.21 -1.31 -0.03 -11.08 -0.34 6.32 0.15 -9.87 -0.26 -0.317 -0.01 
Type V Households 2.12 0.21 -1.08 -0.15 -2.33 -0.28 -9.49 -1.37 2.35 0.24 -3.68 -0.44 
Type VI Households 20.20 1.51 -11.16 -1.84 -4.76 -0.73 -9.30 -1.52 -7.24 -1.08 -3.59 -0.48 

 
 
Table E.2. Calibration Results for the EMPLOC 

λ ω ρ a b 
  Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 
Basic Employment 0.00713 4.13 -5.34 0.00 0.876 0.01 10.56 0.05 -16.76 -0.05 
Retail Employment 0.0836 7.72 0.517 0.15 -0.253 -0.79 0.126 0.81 0.611 3.15 
Service Employment 0.361 3.68 2.33 1.89 -0.126 -3.81 0.600 7.39 -0.0322 -0.33 
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k k k
Table E.3. Calibration Results for the LUDENSITY 

kk0 1 2 3 4   
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat.   
1.34 0.31 0.930 14.57 0.279 2.41 -0.0111 -1.45 -0.0481 -2.63   
k5 k k k k k6 7 8 9 00 
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 

Residential 

0.423 1.46 0.00287 0.01 1.43 2.85 0.00388 0.01 0.218 0.49 3.27 3.87 
g0 g g g g1 2 g3 4 5 
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Basic Uses 
0.000249 3.32 3.04 20.67 -1.06 -3.35 -2.38 -5.35 2.82 20.50 -0.00771 -0.86 
p0 p p p p p1 2 3 4 5 
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 

Commercial 
Uses 

0.000580 3.51 1.95 18.29 -1.07 -4.52 -1.05 -7.17 1.75 11.06 -0.0244 -1.01 
 



 

Figure E.1. Distribution of Total Households for the Base Scenario 

 
Note: unit is households/square mile 
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Figure E.2. Distribution of Total Employment for the Base Scenario 

 
Note: unit is jobs/square mile 
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Figure E.3. Distribution of Total Households for the Congestion Pricing and Carbon Tax 
Scenario 

 
Note: unit is households/square mile 
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Figure E.4. Distribution of Total Employment for the Congestion Pricing and Carbon Tax 
Scenario 

 
Note: unit is jobs/square mile 
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Figure E.5. Distribution of Total Households for the Urban Growth Boundary Policy Scenario 

 
Note: unit is households/square mile 
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Figure E.6. Distribution of Total Employment for the Urban Growth Boundary Policy Scenario 

 
Note: unit is jobs/square mile 
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Figure E.7. Changes in Household Density across Zones for the Base Scenario 

 
Note: unit is households/square mile 
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Figure E.8. Changes in Employment Density across Zones for the Base Scenario 

 
Note: unit is jobs/square mile 
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Figure E.9. Changes in Household Density across Zones for the Road Pricing Scenario 

 
Note: unit is households/square mile 
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Figure E.10. Changes in Employment Density across Zones for the Road Pricing Scenario 

 
Note: unit is jobs/square mile 
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Figure E.11. Changes in Household Density across Zones for the Urban Growth Boundary 
Scenario 

 
Note: unit is households/square mile 
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Figure E.12. Changes in Employment Density across Zones for the Urban Growth Boundary 
Scenario 

 
Note: unit is jobs/square mile 
 
 
 
 



 

Appendix F. LUC-LUI Model System Details: Model Calibration 
and Application 

 
Table F.1. Description of Dependent Variables in the Subdivision Model 

Variables Description Minimum Maximum Mean 
Std. 

Deviation 
Size Parcel size (miles2) 0.0000636 1.47 0.00393 0.0278 
Ratio Perimeter/area (miles/miles2) 3.62 2294 195 94.4 
Slope Average parcel slope (%) 0 23.1 2.67 2.60 

TT to CBD Travel time to CBD under peak-
hour conditions (minutes) 0.230 32.6 12.0 7.14 

Dist to FWY Euclidean distance to the nearest 
freeway (miles) 0 1.22 0.212 0.227 

Undev1.0 
Total area of undeveloped use 
within 1.0 mile of the parcel 
centroid (mile2) 

0.0165 3.04 0.912 0.540 

 
Table F.2. Results of the Binomial Logistic Subdivision Model 

Explanatory Variables Coefficient t-statistics 
Constants -0.256 -0.860 
Size 10.8 6.23 
Ratio -166 -11.8 
Slope -0.0838 -2.11 
TT to CBD 0.0730 3.98 
Dist to FWY -1.43 -2.40 
Undev1.0 -1.70 -7.45 
Log Likelihoods -510.2 
LRI 0.391 
Number of observations 12,015 

Note: y=1 if parcel subdivides and 0 otherwise. 
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Table F.3. Description of Dependent Variables in the Parcel Size Model 

Variables Description Minimum Maximum Mean 
Std. 
Deviation 

OrigSize Size of the original, un-divided parcel 
(capped at 0.35 miles2); 0.000465 0.350 0.188 0.141 

Ratio Perimeter/area (miles/ miles2) 3.62 234 24.1 23.6 

Accessibility Regional accessibility under peak-hour 
conditions  1.11 4.70 3.21 0.735 

Dist to FWY Euclidean distance to the nearest 
freeway (capped at 1.2 miles) 0.00758 1.20 0.347 0.217 

Indus0.5 Total area of industrial land use within 
0.5 mile of the parcel centroid (mile2) 0 0.359 0.0139 0.0425 

Indus0.5-1.0 
Total area of industrial use within 0.5 
to 1.0 mile of the parcel centroid 
(mile2) 

0 0.775 0.0527 0.114 

Civic0.5 Total area of civic land use within 0.5 
mile of the parcel centroid (mile2) 0 0.374 0.0138 0.0265 

Civic0.5-1.0 Total area of civic use within 0.5 to 1.0 
mile of the parcel centroid (mile2) 0 0.560 0.0602 0.0727 

Undev0.5 
Total area of undeveloped land use 
within 0.5 mile of the parcel centroid 
(mile2) 

0.00448 0.783 0.424 0.207 

 
Table F.4. Results of the Parcel Size Model 

Explanatory Variables Coefficient t-statistics 
Constants -5.49 -23.4 
OrigSize 7.77 6.37 
OrigSize2 -18.4 -6.52 
Ratio  -51.1 -5.63 
Accessibility -0.274 -5.03 
Dist to FWY -6.73 -14.9 
Dist to FWY2 6.79 13.5 
Indus0.5 3.93 3.82 
Indus0.5-1.0 1.01 2.56 
Civic0.5 -6.74 -4.98 
Civic0.5-1.0 2.00 3.85 
Undev0.5 0.656 3.13 
R2 0.225 
Number of observations 2,388 

Note: y=ln(size of new parcels). 
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Table F.5. Description of Dependent Variables in Land Use Change Model 

Variables Description Minimum Maximum Mean 
Std. 
Deviation 

Size Parcel size (mile2) 0.0000719 0.939 0.00219 0.0124 

TT to CBD Travel time to CBD under peak-hour 
conditions (minutes) 0.150 25.1 11.8 5.74 

Dist to FWY Euclidean distance to the nearest freeway 
(miles) 0 4.68 1.15 0.852 

Transit Stops 
Transit Stops within 0.5 mile of the parcel 
centroid 0 1825 28.7 62.8 

Slope Average parcel slope (%) 0 69.3 7.52 7.48 

Entropy0.5 Land use balance within 0.5 mile of the 
parcel centroid 0 0.773 0.341 0.139 

LLSF0.5 
Total area of large lot single-family land 
use within 0.5 mile of the parcel centroid 
(mile2) 

0 0.321 0.0144 0.0335 

LLSF0.5-1.0 
Total area of large lot single-family use 
within 0.5 to 1.0 mile of the parcel 
centroid (mile2) 

0 0.652 0.0541 0.103 

SF0.5 Total area of single-family land use within 
0.5 mile of the parcel centroid (mile2) 0 0.562 0.199 0.113 

SF0.5-1.0 Total area of single-family use within 0.5 
to 1.0 mile of the parcel centroid (mile2) 0.000533 1.28 0.527 0.278 

SF1.0-1.5 
Total area of single-family land use within 
1.0 to 1.5 miles of the parcel centroid 
(mile2) 

0.00445 1.86 0.806 0.406 

MF0.5 Total area of multi-family land use within 
0.5 mile of the parcel centroid (mile2) 0 0.368 0.0178 0.0352 

Commercial/Office0.5 
Total area of commercial or office land 
use within 0.5 mile of the parcel centroid 
(mile2) 

0 0.353 0.0240 0.0401 

Indus0.5 Total area of industrial land use within 0.5 
mile of the parcel centroid (mile2) 0 0.475 0.0235 0.0536 

Indus0.5-1.0 Total area of industrial use within 0.5 to 
1.0 mile of the parcel centroid (mile2) 0 1.22 0.0915 0.150 

Indus1.0-1.5 Total area of industrial land use within 1.0 
to 1.5 miles of the parcel centroid (mile2) 0 1.53 0.188 0.257 

Civic0.5 Total area of civic land use within 0.5 
mile of the parcel centroid (mile2) 0 0.456 0.0252 0.0384 

Civic0.5-1.0 Total area of civic use within 0.5 to 1.0 
mile of the parcel centroid (mile2) 0 0.862 0.0852 0.102 

Excluded0.5 Total area of excluded land use within 0.5 
mile of the parcel centroid (mile2) 0 0.627 0.132 0.114 

Excluded0.5-1.0 Total area of excluded use within 0.5 to 
1.0 mile of the parcel centroid (mile2) 0.00533 1.77 0.512 0.356 
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Excluded1.0-1.5 Total area of excluded land use within 1.0 
to 1.5 miles of the parcel centroid (mile2) 0.06333 2.58 0.835 0.462 

Undev0.5 Total area of undeveloped land use within 
0.5 mile of the parcel centroid (mile2) 0.00168 0.737 0.226 0.128 

Undev0.5-1.0 Total area of undeveloped use within 0.5 
to 1.0 mile of the parcel centroid (mile2) 0.00930 2.07 0.609 0.318 

Undev1.0-1.5 
Total area of undeveloped land use within 
1.0 to 1.5 miles of the parcel centroid 
(mile2) 

0.0190 2.62 1.05 0.497 

 
Table F.6. Results of Land Use Change Model 

  LLSF SF MF 
Commercial 
or Office Industrial Civic 

Constants -20.8 0.593 -4.63 -2.09 0.175 -4.26 
Size 10.8 -341.1 12.6 9.98 14.1 11.9 
TT to CBD 0.227 0.117 0.0766 0.0688   
Dist to HWY -1.11 -0.524 -0.904 -0.762  -0.413 
Transit Stops   -0.00719     
Slope  -0.0380  -0.110 -0.369 -0.0714 
Entropy0.5 7.03 -1.38   3.08  
LLSF0.5  5.88 -19.50 -11.70 9.31  
LLSF1.0  -3.54     
SF0.5 12.6 1.63  -8.51 -11.9 2.00 
SF1.0  -1.94  2.84   
SF1.5  1.06     
MF0.5   11.37    
Commercial/Office0.5  -3.94  5.01   
Indus0.5 13.9 -3.03 -8.27 -1.91 -2.59  
Indus1.0  -3.50     
Indus1.5  -0.386     
Civic0.5    -7.49 -11.6  
Civic1.0     -2.78  
Excluded0.5 18.3 0.836  -8.71 -4.77  
Excluded1.0  -0.465  2.75   
Excluded1.5  0.272     
Undev0.5 20.1 1.95  -7.18 -5.79  
Undev1.0  -1.94  2.79   
Undev1.5  0.993  -0.685   

Pseudo R2 0.254 
Number of 
observations 15,359 

Note: Undeveloped land use type is the base for all variables. 
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Table F.7. Description of Dependent Variables in Land Use Intensity Model 

Variables Description Minimum Maximum Mean 
Std. 
Deviation 

SF Change Single family land change 
(mile2) -0.0000403 1.81 0.0620 0.142 

MF Change Multi-family land change 
(mile2) -0.0000045 0.150 0.00200 0.00828 

Commercial/Office 
Change 

Commercial or office land 
change (mile2) -0.0000340 0.969 0.0183 0.0617 

Indus Change Industrial land change 
(mile2) -0.0000114 0.785 0.00659 0.0374 

Civic Change Civic land change (mile2) -0.00000493 2.02 0.0302 0.132 

HH Household count in prior 
year 0 3984 382.1 562.6 

BAS Base job count in prior year 0 11000 161.6 568.7 

RET Retail job count in prior 
year 0 2759 93.2 219.0 

SERV Service job count in prior 
year 0 7881 237.3 634.2 

Undev Undeveloped land in prior 
year (mile2) 0 42.3 2.43 4.81 

Entropy Land use balance in prior 
year 0 0.769 0.269 0.170 

Accessibility Regional accessibility 
under peak-hour conditions -2.41 4.81 2.56 1.41 

Note: Definitions of Entropy and Accessibility variables are the same as those used in the LUC model. 



 

Table F.8. Results of Land Use Intensity Model 
HH Change Basic Job Change Retail Job Change Service Job Change 

  parameter t-statistics parameter t-statistics parameter t-statistics parameter t-statistics 
Constants 13.6 0.809 -6.20 -0.220 -1.63 -0.386 -34.9 -0.795 
SF Change 541 14.9             
MF Change 8179 15.4 2724 1.86 2020 3.67     
Commercial/Office Change 228 3.13     649 8.64     
Indus Change     1868 5.68         
Civic Change -75.2 -2.06     -83.1 -2.57 136 1.59 
HH 0.0465 4.83         0.0470 2.07 
BAS -0.0235 -3.00 -0.385 -12.8 0.0169 2.09 0.128 5.30 
RET     0.202 3.21 -0.098 -4.81 0.125 1.99 
SERV         0.0203 2.85 -0.218 -6.42 
Undev -3.20 -2.52             
Entropy -157 -4.34             
Accessibility 8.50 1.66         24.3 1.60 
Spatial Lag 0.116 1.78 -0.871 -5.00 0.414 3.58 -0.978 -2.38 
Spatial Error 0.146 0.569 -0.368 0.531 
R2 (individual equations) 0.349 0.426 0.182 0.284 
R2 0.320 
Number of Observation 1245 
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Figure F.1 (a). Land Use Predictions in 2010 on Previously Undeveloped Parcels (BAU 
Scenario) 
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Figure F.1 (b). Land Use Predictions in 2015 on Previously Undeveloped Parcels (BAU 
Scenario) 
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Figure F.1 (c). Land Use Predictions in 2020 on Previously Undeveloped Parcels (BAU 
Scenario) 
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Figure F.1 (d). Land Use Predictions in 2025 on Previously Undeveloped Parcels (BAU 
Scenario) 
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Figure F.1 (e). Land Use Predictions in 2030 on Previously Undeveloped Parcels (BAU 
Scenario) 
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Figure F.2 (a). Land Use Predictions in 2020 on Previously Undeveloped Parcels (Pricing 
Scenario) 
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Figure F.2 (b). Land Use Predictions in 2025 on Previously Undeveloped Parcels (Pricing 
Scenario) 
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Figure F.2 (c). Land Use Predictions in 2025 on Previously Undeveloped Parcels (Pricing 
Scenario) 
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Figure F.2 (d). Land Use Predictions in 2030 on Previously Undeveloped Parcels (Pricing 
Scenario) 

 



 

Figure F.3. Household Density in Year 2030 (BAU Scenario 
2D & 3D Views) 
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Figure F.4. Employment Density in Year 2030 (BAU 
Scenario2D & 3D Views) 
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Figure F.5. Household Density in Year 2030 (Pricing Scenario 
2D & 3D Views) 
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Figure F.6. Employment Density in Year 2030 (Pricing 
Scenario 2D & 3D Views) 
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Figure G.1 Differences in biogenic isoprene emissions between ITLUM scenarios and the Base Case for September 19 at 1400 
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Figure G.2 Differences in area source NOx emissions between ITLUM scenarios and the Base Case for September 20 at 1400 
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Figure G.3 Differences in area source VOC emissions between ITLUM scenarios and the Base Case for September 20 at 1400 
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Figure G.4 Differences in non-road source NOx emissions between ITLUM scenarios and the Base Case for September 20 at 1400 
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Figure G.5 Differences in non-road source VOC emissions between ITLUM scenarios and the Base Case for September 20 at 1400 
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Figure G.6 Differences in on-road source NOx emissions between ITLUM scenarios and the Base Case for September 20 at 1400 
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Figure G.7 Differences in on-road source VOC emissions between ITLUM scenarios and the Base Case for September 20 at 140



 

Appendix H. Vehicle Ownership Model Details 
 

Vehicle ownership has an important effect on vehicle emissions, fuel consumption, highway 
capacity, congestion and traffic safety. To great extent, this impact depends on the characters of 
the fleet and households. This appendix chapter provides descriptive analysis of Austin vehicle 
holdings, including models of vehicle ownership levels, vehicle make and model choices and 
vehicle transactions under three different scenarios: business as usual (BAU), implementation of 
an urban growth boundary (UGB), and implementation of gas taxes and tolling. Data for the 
analysis comes from the 2006 Austin Travel Survey Data and the 1998 Toronto Area Car 
Ownership Study (TACOS). 
 
H.1 Review of Earlier Work 
Various dimensions of vehicle ownership − including the number of vehicles owned (by the 
household), types of vehicles owned (including general category e.g. SUV versus passenger car) 
, number of miles traveled by each vehicle, age of vehicle, fuel types of each vehicle − have been 
modeled, mainly using discrete choice models. This review is by no means comprehensive, but 
aims to highlight key models and methods used in this area. One of the first disaggregate studies 
is by Lave and Train (1979), who used a multinomial logit model structure for vehicle type 
choice. Their model controlled for several household attributes, vehicle characteristics, gasoline 
prices and taxes on larger vehicles. They found that increases in income increase one’s 
likelihood of purchasing expensive vehicle and younger individuals tend to prefer high -
performance cars. Berkovec (1985) developed a simulation model to combine a disaggregate 
model of auto choice with an econometric model for forecasts of automobile sales, stocks19 and 
retirement20. Manski and Sherman (1976) developed separate multinomial logit models for the 
number of vehicles and vehicle types owned by households with one or two vehicles. Choo and 
Mokatarian (2004) modeled the most driven vehicle in a household’s fleet. They find that travel 
attitudes, lifestyle, and mobility factors are useful predictors of vehicle types owned. Others have 
looked at two or more dimensions of vehicle ownership. For example, Mohammadian and Miller 
(2003a) studied the purchase and retirement of vehicles and the type of vehicles via a nested logit 
structure. Mannering and Winston (1985) employed a dynamic utilization framework using panel 
data from either side of the 1979 oil shock. They modeled number, type and use of vehicles via 
discrete choice and linear regression techniques. Other studies in this category include joint 
choice of vehicle ownership levels and vehicle body types (Hensher and Plastrier, 1985) and the 
number of vehicles owned and their usage (Golob and Wissen, 1989).  
 

One of the major issues in modeling vehicle choice using discrete choice models is the 
formulation of choice sets. The rising number of makes and models available in the market 
makes it21 almost impossible to estimate a model that allows for all of them, as most statistical 
limit the number of alternatives that can be included. Two different procedures have been 
adopted to counteract this problem. The first is to use a random sampling procedure for the 
choice set coded in the likelihood function, as suggested by McFadden (1978). In this approach, 

                                                 
19 stocks: number of vehicles manufactured 
 
20 retirement: selling or giving up a vehicle 
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a computationally feasible number of alternatives (25 to 30, for example) , including the chosen 
alternative is taken from the entire pool of available makes and models. The second approach is 
to consider simply general categories of vehicles type as the choice set. This could be the body 
type (such as sedan, coupe, pickup truck, sports utility vehicle or  van. − as done in Train (1979), 
Kitamura et al., (2000), and Choo and Mokhtarian, (2004)) or fuel type (Hensher and Greene, 
2001), acquisition type Mannering et al., 2002)  and/or vintage (Mohammadian and Miller, 
2003b). With large or random choice sets, analysts typically cannot include many or any person- 
or household-specific attributes in the set of explanatory factors (except, e.g., when interacted 
with another, generic variable − like household income times fuel economy divided by the price 
of gas). The models developed and applied here emphasize vehicle body types as alternatives, 
and thus more easily permit the inclusion of non-generic attributes (like household income and 
size, interacted with alternative-specific constants).  

 
H.2 Data Description 
The number and type of vehicles owned by a household were modeled using the 2006 Austin 
(Texas) Travel Survey data. Year 2007 purchase prices and engine sizes (in liters) were obtained 
for each make/model from Ward’s Automotive Yearbook (2007). After excluding zero-vehicle 
households and records with missing information, the final sample set included 2346 vehicles 
across 1342 households. Vehicles have been classified into nine broad classes: (1) luxury cars, 
(2) large cars, (3) mid-size cars, (4) sub-compacts cars (5) compact cars, (6) pickup trucks, (7) 
sports utility vehicles (SUVs), (8) cross-over utility vehicles (CUVs), and (9) Vans (mini vans 
cargo vans). 

 
In order to analyze vehicle buy and sell decisions (transactions),Toronto Area Car Ownership 
Study (TACOS) dataset was used. TACOS is a retrospective survey conducted by the University 
of Toronto (Roorda et. al. 2000) and contains information on household vehicle transactions over 
nine years (from 1990 to 1998). Miller et al (2003) used a mixed logit model to analyze vehicle 
transactions in the TACOS data at the level of “decision making unit”22. However, models of 
vehicle transactions reported here, are at the household level.  

 
H.2.1 Descriptive Statistics 
 
Table H.1. provides a summary of household attributes from the ATS and TACOS data along 
with Census 2000 statistics for Austin region.  The average household income is slightly higher 
than the Census estimated income ($47,212).  Household size, employment and number of 
children are approximately the same as the Census estimates.  
 
 
 
 
 

 

 
                                                 
22  Miller et al. (2003) defined the decision making unit as any set of persons within a household that make vehicle 
ownership decisions cooperatively.   
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Table H.1. Summary of Household Characteristics  

S  No Attribute ATS (2006) TACOS 
1 No of people in household 2.78 2.74 
2 No of employees in household 1.18 1.28 
3 Pre-school going children(Age 0-5) 0.29 0.23 
4 Pre-driving children (Age 6-16) 0.45 0.43 
5 No of vehicles in household 1.91 1.28 
6 Income of household ($) $53,667 $52,649 

 

The average number of vehicles per household is 1.91, which is slightly lower than the national 
average of 2.06 (NHTS 2001). Figure H.1. gives the distribution of number of vehicles per 
household in the sample. Nearly 50% of the households have two vehicles, and 19% have three 
or more. 

  
Figure H.1: Number of Vehicles in Household 

 
Almost 3% of Austin area households do not own a vehicle. Figure H.1. provides vehicle-type 
frequencies in the 2006 ATS data set. 26% of all ATS vehicles are trucks, which is significantly 
higher than the national share of 18% in 2001 (NHTS 2001). Passenger cars (luxury, large, mid-
size, small) constitute about 44% of Austin’s household fleet, whereas other light-duty trucks 
(i.e., vans, SUVs, and CUVs) constitute the remainder. Among one-vehicle households, pickups 
constituted only 17% of such vehicles, similar to the cases of SUVs and vans. Thus, household 
are more likely to own a light-duty truck as a second vehicle. Among two-vehicle households 
with at least one pickup, the second vehicle was most likely to be some type of SUV (accounting 
for 26% of such households) and, next, a mid-size car (15% of such households). The share of 
small cars is nearly 20% in this segment of households (higher that the overall share of 14%).  
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Figure H.2. Vehicle Class Shares in ATS 2006 

Table H.2. presents average characteristics for the different vehicle classes, from Wards 
Automotive Yearbook (2007). As one may expect, pickups have the lowest fuel economy and the 
largest area, and luxury cars tend to be the most expensive. Small cars enjoy a relatively high 
fuel economy but lower engine displacement and horsepower. SUVs tend to cost quite a bit more 
than passenger cars (with the exception of luxury cars), exhibit lower fuel economy, and have 
larger footprints.  

 

Table H.2. Summary of Vehicle Characteristics (Source: Wards Automobile Yearbook 2007 ) 

 

SNo      Class Fuel eco. 
(mpg) Price ($) Area(ft2) GHG 

score 
Weight 

(lbs) 

Engdisp. 
(lit/cu 

in) 

HP 
(rpm) 

1 Luxury Car 18.61 $48,004 94.01 5.50 8130.76 3.655 274.35 
2 Large Car 17.57 $30,734 105.11 5.51 8415.66 4.075 248.63 
3 Mid-size Cars 19.00 $25,614 95.65 6.00 7515.2 3.500 215.00 
4 Compact 20.65 $29,576 84.12 6.31 7012.28 2.240 216.41 
5 Sub-compact 26.60 $16,726 82.94 7.70 5807.34 1.930 140.42 
6 Pickup 14.67 $26,825 115.13 3.83 10430.86 4.430 257.17 
7 SUV 15.10 $35,221 104.65 4.04 10166.42 4.710 278.48 
8 Minivan 15.18 $27,411 110.55 4.64 9989.1 4.115 231.46 
9 CrossUtilVeh. 18.08 $26,932 92.04 5.63 8440.3 3.015 204.92 

As noted above, the TACOS data set provides vehicle purchase and retirement data over 
9 years (from 1990 to 1998), resulting in 4096 household-years.  79% of these observations were 
‘do-nothing” decisions (neither buy nor sell a vehicle), 11% of such data points both gave up/lost 
and gained at least one vehicle in a given year, and 8% simply added a vehicle, while the 
remaining 2% of data points(in household years) lost or gave up a vehicle.  
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H.3. Model Specifications and Results 
Table H.3. gives the results of the vehicle-ownership-level model, where the response variable is 
the number of vehicles in an Austin household (for estimating vehicles owned in the simulations 
2005 base year). Four levels of vehicle ownership were modeled here: 0, 1, 2, 3+ vehicles (per 
household) using an ordered probit model. The central idea here is that the ordered variable of 
interest is dependent on an unobserved latent index a normally distributed random term (Refer to 
Greene (2003) for model specifications). Household size and number of workers have a positive 
effect on ownership levels, as expected. The numbers of pre-driving age children were estimated 
to have a negative effect, as compared to an additional adult, which is again intuitive. In addition 
to household income, median neighborhood income was found to have a positive and statistically 
significant effect, which suggests some kind of location and status effect. Other land use 
variables that were found to be statistically significant are zonal type (rural vs. non-rural) and 
distance to the region’s CBD, both with positive effect. This may be due to the higher number of 
transit facilities available in locations closer to CBD and in urban and suburban zones 

 
Table H.3. Ordered Probit Model for Number of Vehicles owned by Austin Travel 

Survey Households in  

Variable Coef. t-statistic 

Household Size  0.952 13.2 
Workers  0.278 5.75 
Pre-school Children (<5 yrs)  -1.07 -11.0 
Other Pre-driving Age Children (6-16 -0.897 -10.2 
Driving Age Children (16-18 years)  -0.523 -3.61 
Rural Zone  0.152 1.48 
Income (x 10-5)  0.727 7.33 
Median Household Income in Zone(x 10-

6
0.805 4.38 

Distance to CBD (miles) 9.15E-03 2.15 
Log Likelihood  -1130.25 
Adjusted R2  0.25 

 
A multinomial logit model was estimated for vehicle types owned. The pickup truck class was 
used as the base alternative, and all alternative specific constants were estimated to be negative 
and statistically significant − except for those on vans and mid-size cars. In other words, vans 
and midsize cars appear to offer the same base utility as pickups – ceteris paribus.  

 
The ratio of vehicle price to household income has a negative coefficient, as expected (and 
consistent with previous findings). However, the ratio of fuel cost (in dollars per mile) to 
household incomes was estimated to be more significant statistically, than the vehicle price. 
Various household demographics also were significant, ceteris paribus. Larger households 
exhibit a preference for vans and utility vehicles, no doubt due to the larger seating and luggage 
capacities of these vehicles. Female drivers (quantified as the female drivers in the household) 
apparently have a preference for smaller cars, which may be due to ease of driving and 
maneuverability, as compared to other vehicle types. 
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Table H.4. Multinomial Logit Model for Vehicles Class Types in a Household 
 

Variable Coeff. t-statistic 

Alternate Specific Constants   
           Cross Utility Vehicle -1.5946 -8.22
           Large Car -2.3716 -5.67
           Luxury Car -0.5883 -2.96
           Mid-size Car -0.0724 -0.41
           Compact Car -1.1639 -4.89
           Sub Compact Car -1.0868 -4.89
           Sports Utility Vehicle 0.3791 2.08
           Minivan -0.2187 -1.15
Price Variables   
            Fuel Price/Income * 104 -0.6025 -2.46
            Price of vehicle/Income -0.1041 -1.78
Demographic Variables   
            HH Size * (Compact, Sub Compact, Mid-Size ) -0.2204 -5.72
            HH Size * (Large Car , Luxury Cars) -0.1783 -4.70
            # Workers in HH* Mid-size car 0.1219 1.99
            High Income(>75k) * Luxury Car 0.2906 1.70
            Age of House Head * Large Car 0.0240 3.88
            Female * Sub-Compact  0.3066 3.83
            # Preschool Children * Van -0.4629 -3.07
Land Use Variables    
            iRural * Pickup 0.1777 1.58
            iSuburban * Large Cars 0.2002 1.39
            Density of HH in zone *Small Car * 10-3 0.0085 1.71
            Density of HH in zone *SUV *10-3 -0.1032 -1.53
            Retail firms within 5 miles * SUV *10-4 -0.1250 -2.06
            Retail firms within 5 miles * Van *10-4 -0.0932 -1.53
            Apartment* Small Car 0.2599 1.35
            Apartment* Pickup -0.4790 -3.05
Vehicle use    
            Number of trips by HH * Small car 1  -0.0227 -1.75
            Number of trips by HH * Small car 2 -0.0440 -2.74

Log Likelihood -4649.22 
Adjusted R2 0.0981 

 
The number of workers in a household has statistically significant effect on the utility of mid-
size vehicles, relative to other types, which is surprising. One possible reason for this may be 

H-6 



 

because workers commute daily, thus prefer comfortable vehicles (mid-size vehicles tend to have 
larger leg room, head room) for daily commutes. The age of a household’s head also was found 
to have a positive effect on the systematic utility of large cars. 
 
As evident in Table H.4. values, neighborhood land use patterns also were found to have some 
effect on vehicle choices, and this study modeled the residential location choices of individual 
households, over the 25-year period. A few interesting results emerge here: First, a 
neighborhood’s household density reduces the utility of SUV ownership while increasing the 
utility of small cars. This may be due to tighter parking conditions, narrower streets, shorter 
driving distances, more environmentally conscious households, and any number of other 
features. Those living in rural areas are more likely to acquire pickup trucks, whereas those in 
suburban zones appear to be most attracted to large cars ceteris paribus. High local retail firms’ 
density was estimated to have a negative effect on the utility of SUVs and vans. The last two 
variables in Table H.4.’s land use category are for apartment dwellers, who were found to be 
more likely to own small cars and less likely to own pickups, as expected (due to the relatively 
commercial or urban nature of most apartment locations).  

 
Table H.5. MNL Model Estimates for Vehicle Transactions by a Household in a 

Given Year 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As 
household and vehicle characteristics change over time, the composition of a household’s vehicle 
fleet also changes. To capture these dynamics over a period of years, a MNL model was 
estimated with the decision of the household with respect to vehicle fleet. The choices available 
are buy a vehicle (acquire), sell a vehicle (dispose), sell a vehicle and buy a new vehicle (trade) 
or “do nothing”. Table H.5. presents model estimates. When acquired, new vehicles are selected 

Variable Coef. t-stat 
Acquire 1 vehicle -3.468 -10.26 
Dispose 1 vehicle -4.774 -9.12 
Trade (Acquire and Dispose 1 vehicle) -3.584 -11.1 
Acquired * # Preschool Children 0.294 1.87 
Acquired* # Retired People 0.367 1.65 
Acquired* #  Drivers 0.286 2.1 
Acquired* #  Full time Employees 0.322 1.89 
Acquired* Max. Age of Vehicle in HH -0.066 -1.81 
Disposed* Max. Age of Vehicle in HH 0.129 3.16 
Trade* #  Persons 0.437 1.74 
Trade* New Drivers in HH -0.565 -1.75 
Trade* Income *(10-5) 1.140 2.56 
Trade* Max Age of Vehicle in HH 0.151 6.73 
Number of Observations 4096 
Pseudo R2  (LRI) 0.53 
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based on an MNL model for ownership patterns, as described earlier. The “do-nothing option” 
(neither buying nor selling/releasing a vehicle in a given year) is taken as the base or reference 
alternative in this model. All the other alternate-specific constants are estimated to be negative in 
sign (indicating that they are less common than the do-nothing option). The addition of preschool 
children, drivers and workers tends to trigger acquisition decisions, which is intuitive.  
 
Using the models described above, year-2030 vehicle ownership patterns were predicted for 
Austin under a couple of different land use scenarios, using a synthetic population of individual 
households (as detailed in Kumar (2007) and Tirumalachetty et. al. (2008)). Figure H.3. shows 
the predicted land use patterns for year 2030 across the three-county region. As expected, the 
models predict greater household densities in centrally located zones when an urban growth 
boundary (UGB) policy was implemented, as compared to the trend or “business as usual” (BAU) 
scenario. Table H.6 shows vehicle holdings by class for 2030 under the three scenarios. The base 
area had 4 million trips generating over 112 million VMT. The effect of the $3-per-gallon gas 
tax is somewhat apparent in the composition of year-2030 vehicles, as slight reductions in the 
shares of large cars and pickups allow for a higher percentage of small cars (compact and 
subcompact) and SUVs. The share of pickups is predicted to decline just slightly between 2005 
and 2030, while small and mid-size cars are predicted to increase marginally over the same 
period. In the business as usual case, VMT is predicted to double. Implementation of UGB 
restricts the rise in VMT to 74%, and the pricing scenario restricts it further (to a predicted 60% 
increase in VMT by 2030). The results presented here are preliminary vehicle usage and 
emissions are likely to depend on fuel economy improvements, gas price changes, new vehicles 
technologies introduced into the market.  
 
 
H.4. Summary 
  
This appendix section has presented models for decisions in different stages of the passenger 
vehicle cycle of ownership and use. The system of models captures the capturing effects of 
household demographics and location on vehicle evolution cycle. Demographic characteristics 
were the key explanatory variables for number of vehicle in a household, while class of vehicle 
had several explanatory variables including land use characteristics. In the end, implementation 
of UGB restricts the rise in VMT to 74%, and the pricing scenario restricts it further to a 60% 
increase, while VMT is estimated to double in BAU scenario. Evolving rising gasoline prices, 
emerging vehicle technologies, and changes in fuel-economy policy are anticipated to result in a 
variety of behavioral changes, leading to changes in ownership patterns, use and air quality 
emissions. Vehicle class is an important input to models of fuel use, emissions, and crash 
outcomes. Changing attitudes and lifestyle patterns bring constant shifts in household 
preferences the vehicle fleet of household and it would be useful to capture them, to evaluate 
emissions accurately.  
 



 

2(a) 2005 Base Year 2 (b) 2030 BAU

 
 
 

2(c) 2030 UGB

HH density - # per square mile 

Figure H.3. Household Density: (a) Base year (2005) (b) 2030 BAU and (c) 2030 
UGB 
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Table H.6. Composition of Vehicle Fleet (%) 
                      2005  2030  

 BAU  BAU  UGB  Pricing *  

Vehicle Miles Traveled 112 million        223 million    195 million    180 million  

   Fleet Composition (%)      

   Small Cars**  8.09  8.53  8.94  8.83  
   Mid-Size Cars  17.24  17.27  17.66  17.68  
   Large Cars  7.42  6.86  6.97  6.77  
   Luxury Cars  13.62  12.78  12.91  12.90  
   Pickups  19.79  18.28  17.62  17.86  
   Passenger Vans  15.96  17.56  17.86  17.56  
   SUV/CUV  17.97  18.14  17.99   
*Gas Tax of 3$ and a fixed toll of 10cents/mile 
** Sub-compact and compact cars 
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