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ABSTRACT 

It is well established that uncertainty is present in all aspects of transportation and land use 

planning.  Sources of uncertainty range from technological advances to changing economic 

conditions to enacted policy to errors in data and model structure.  While much research has been 

devoted to analyzing the variation in model outputs due to uncertainty, little has been done to 

quantitatively answer the more important question of how decision making will change based on 

recognition of this uncertainty.  This paper aims to begin to fill this gap by evaluating how 

roadway investment decisions will differ depending on whether or not uncertainty is recognized. 

Population and employment control totals, as well as trip generation parameters, are found via 

antithetic sampling and a full feedback integrated gravity-based land use and four-step travel 

model is used.  It is found that the ranking of improvement projects may indeed be different if 

uncertainty is considered relative to treating all parameters and data as deterministic.  Results for 

the experimental analysis conducted in this paper found this percent difference to be between 4% 

and 25% depending on the performance metric used: total system travel time, vehicle miles 

traveled, total delay, average network speed, and standard deviation of network speed were all 

examined. 
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INTRODUCTION 
 
Major transportation improvements are costly investments, often made with the help of 
mathematical models to anticipate future transportation conditions.  Given budget constraints and 
the wide-reaching and long-term nature of major project impacts, selection of system 
improvements should be done with care.  This paper focuses on how variations in model 
parameters and inputs affect land use and transportation predictions, and how the formal 
recognition of uncertainty in integrated transport-land use modeling exercises may change 
roadway capacity expansion decisions, thereby resulting in decision-making that is more robust 
to future conditions.  The model used in this paper is a very basic one with a relatively short 
running time that allows for a large number of realizations and improvement scenarios to be 
analyzed, without ignoring the feedback between land development and travel costs that provides 
a more realistic version of the future.  
 

Integrated modeling of land use and transport is complex, and relatively few studies have 
evaluated the effects of input and parameter uncertainty in this context. Those that have done so 
focus primarily on the variation in model outputs.  For example, Smith and Shahidullah (1) 
evaluated the performance of 10-year population forecasts (a key land use model input) by age 
group for three very different census tracts, and found mean absolute percent errors to range 
from 15% to 20%.  Zhao and Kockelman (2) measured the propagation of uncertainty through a 
four-step travel demand model and concluded that trip assignment (to the network) serves to 
reduce uncertainty levels in outputs to initial levels of input uncertainty (rather than widening, 
for example), and that employment estimates, trip generation rates, and mode choice parameters 
are critical determinants of output variations (e.g., link flows and total VMT) – and that such 
final outputs can be closely predicted via relatively few input values (using a regression of their 
100 simulated outputs).  Pradhan and Kockelman (3) extended Zhao and Kockelman’s study by 
examining propagation through an integrated transportation and land use model (ITLUM) using 
UrbanSim and a four-step travel model for Eugene, Oregon; they concluded that in the long run, 
only those inputs that have a cumulative effect (such as population and employment growth 
rates) are likely to have a significant effect on model outputs.   

 
Krishnamurthy and Kockelman (4) conducted another study of uncertainty in ITLUMs, 

this time using a Disaggregated Residential Allocation Model (DRAM®) and  Employment 
Allocation Model (EMPAL®) based on the DRAM®-EMPAL® Lowry-type models developed by 
Putman (5),  along with a four-step travel model in TransCAD. This research was conducted on 
the three-county Austin metropolitan region and found output variations to be most sensitive to 
the exponent (of the volume-to-capacity ratio) in standard link performance functions, the split of 
trips between peak and off-peak periods, and trip generation and attraction rates.   

 
More recently, Sevcikova et al. (6) illustrated the benefits of Bayesian Melding over 

simple random sampling in their quest to calibrate traffic analysis zone-level household counts 
using UrbanSim for Eugene, Oregon.  Random numbers were used within the economic and 
demographic transition models, employment and household mobility models, employment and 
household location choice models, and the land development model for a total of 843 uncertain 
parameters.  Two sets of 100 simulations were run, using a different random number seed for 
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each set.  The Bayesian Melding procedure led to wider confidence intervals for various outputs 
that are more likely to contain the true result than if a simple random sampling procedure had 
been used. Related to this, Gregor’s (7) new land use model (LUSDR) makes uncertainty explicit 
through multiple model runs, in order to find the best extension of Jackson County, Oregon’s 
urban growth boundary.   

 
While this study may be one of the first to consider how investment decisions change 

given uncertainty in an ITLUM context, others have considered this topic in the travel model 
context, particularly with respect to traffic assignment.  Lam and Tam (8) used Monte Carlo 
simulation methods to study the impact of uncertainty in traffic and revenue forecasts for road 
investment projects.  They assumed normal distributions for each of several uncertain 
parameters, including population and demand elasticity.  Moreover, Waller et al. (9) assigned 
independent distributions for each origin-destination (OD) pair’s future year demand in three test 
networks (ranging from two to 100 OD pairs)  and demonstrated how assignment models relying 
on expected values of all inputs will tend to underestimate future congestion and may (in 14% of 
cases studied) lead to selecting projects with higher average (future) travel costs (i.e., lower net 
benefits) than ideal, and higher variance in such costs (which implies more risk).  Duthie et al. 
(10) extended this earlier research to allow for correlations in trip-making between OD pairs and 
showed how neglecting correlations when they exist will lead to errors in future travel cost 
predictions and suboptimal project selections (2% to 50% of the time, depending on the 
correlation structure and the objective function used).  Also, Rodier and Johnston (11) found that 
errors in county population forecasts can affect whether or not the Sacramento region meets air 
quality conformity.  The authors’ focus, however, was sensitivity analysis (as opposed to 
uncertainty analysis), so uncertain parameters (i.e., population growth, income, and fuel prices) 
were only varied by a few percentage points, and counties with outlying population growth rates 
were eliminated. Harvey and Deakin (12) considered uncertainty in population growth, fuel 
prices, and household income levels in their Short-Range Transportation Evaluation Program 
model and found that plausible ranges of the input variables resulted in VMT values that differed 
by -25% to 15% relative to the original prediction.   

 
This work builds off the existing literature and seeks to begin to fill the gap that exists in 

regards to improved land use and transport decision making.  The great need for incorporating 
uncertainty into the decision making process has been noted by many researchers and 
practitioners (13-15) and the types of uncertainties presented in ITLUMs have been categorized 
many different ways (16-18). The research presented in this paper focuses on the uncertainty 
inherent in regional population and employment forecasts, as well as parametric uncertainty, and 
uses a Lowry-type land use model and a four-step travel model to appreciate how decision 
making may differ when uncertainty is recognized. 

 
The following sections describe the modeling process and the antithetic sampling 

methodology used for uncertainty analysis.  These are followed by experimental analysis on a 
sample region, results, conclusions, and insights gained from the research. 
 
THE MODEL 
 
The integrated transportation and gravity-based land use model (ITGLUM) used in this paper is 
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described in this section.  The transportation module of ITGLUM (contained within Figure 1’s 
bottom gray box) is a very basic four-step model of trip generation, trip distribution, mode 
choice, and traffic equilibrium.  (Readers may wish to review Martin [19] for a description of 
these steps.)  The land use module of ITGLUM (contained within Figure 1’s top gray box) is 
based on Putman’s documentation of ITLUP equations (5), which represent a disaggregated 
residential allocation Model (DRAM®) and employment allocation model (EMPAL®).  The 
land allocation module, LUDENSITY, was developed by the authors (however, its placement in 
the model series is based on Putman’s LANCON model [5]).  (An earlier alternate version of the 
land use model that was helpful in the development of ITGLUM can be found here [20]).  
Calibration determines the value of parameters that generate the best forecast for the base year 
based on the lagged year data.  Each sub-module is described below.  
 
 



Duthie, J., Voruganti, A., Kockelman, K. and S.T. Waller 

  5

HH control totals

Emp location forecast

Base Year Data Lag Year Data

Calibration

EMPLOC

RESLOC

LUDENSITY

Trip 
Generation

Trip Distribution

Mode Choice

Traffic Equilibrium

Next time period

HH location forecast

Land use forecast

Travel time forecast

Iterate until 
converged

Emp control totals

 
FIGURE 1 Diagram of ITGLUM 
 
Gravity-based Land Use Model Description 
 
The residential land use allocation module, RESLOC, uses Equation 1 and the employment land 
use allocation module, EMPLOC, uses Equation 2.  The following indices are used: n – 
household type (low income, medium-low income, medium-high income, high income), i and j – 
travel zone, k – employment sector (basic, retail, service), and t – time period.  Note that for each 
household type, the following equation holds: 
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The land allocation module, LUDENSITY uses Equation 3, which allows for an 

exponential decrease in the amount of land allocated to each use as the number of uses in a zone 
increases.  The index l denotes the use (basic employment, commercial employment [retail and 
service], or residential [all income levels]), ψ denotes the amount of use, β are parameters 
determined through calibration, and δ is a constant determined based on L0 - an initial condition 
for the amount of land devoted to a use if the zone is empty.  If the amount of allocated land 
exceeds zone size, then it is assumed that multi-story development is taking place. 
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Travel Demand Model Description 
 
The travel demand model consists of four steps (trip generation, trip distribution, mode choice, 
and traffic assignment) and is based on guidance given in National Cooperative Highway 
Research Program Report 365 “Travel Estimation Techniques for Urban Planning 
(19).  In each time period, the three final steps (trip distribution, mode choice, and traffic 
assignment) are iterated until equilibrium is achieved between the travel demands and costs.  
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Each step is described below. 
 
Trip Generation 

 
The trip generation step determines the number of trips produced from and attracted to each 
zone.  A look-up table is used (Table 1) based on Martin (19) to obtain trip production rates by 
purpose (home-based work, home-based other, and non-home-based) and by income level.  
 
TABLE 1 Daily Person Trip Production Rates by Purpose and Income Levels 

Income Level HBW HBO NHB
Low 6 16 60 24

Medium 9.3 21 56 23
High 12.7 20 55 25

Average Trips per 
Household

% Average Trips by Purpose

 
 

Trip attractions by trip type (Equation 4) are determined using modified versions of the 
equations provided on page 28 of Martin (19). Aj is the number of trips attracted to zone j, which 
can be further categorized by trip purpose: home-based work (HBW), home-based non-work 
(HBNW), and non-home-based (NHB).  Aj is a function of the following zone j characteristics: 
total employment, retail employment, basic employment, service employment, and number of 
households. 

 
Aj,HBW   = 1.45*TOTAL_EMPLOYMENT 
 
Aj,HBNW = 9.00*RETAIL+ 0.5*BASIC+1.7*SERVICE+0.9*TOTAL_HH          (4) 
 
Aj,NHB = 4.10*RETAIL+ 0.5*BASIC+1.2*SERVICE+0.5*TOTAL_HH 
 

Once trip productions and attractions have been calculated, balancing must be done to 
ensure that the sum of all productions equals the sum of all attractions.  Assuming that trip 
productions are more reliable and that all trips are internal trips, the number of trips attracted to 
each zone for each purpose should be scaled by the total number of productions divided by the 
total number of attractions. 
 
Trip Distribution 

 
The trip distribution step uses a gravity model to connect the trip productions and attractions and 
determine a matrix of flows from origin zones to destination zones.  For each of the three trip 
types, the following equation was used.  

∑ −
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where Ti,j is the flow of trips from zone i to zone j and Pi is the number of trips produced from 
zone i.  The mean value of the parameter θ is, based on guidance from Martin (19), 0.125 for 
home-based work trips, and 0.1 for non-home-based work trips and for non-work trips.  
Intrazonal travel times are assumed to be a function of zone size, as follows (19): 
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Since the travel demand model is iterated until convergence (when network and demand 
equilibria are achieved), the number of trips between each origin-destination pair reflects the 
travel costs of all travel options. 
 
Mode Choice 

 
A multinomial logit choice model is used to determine the share of trips that use transit, shared 
ride, and drive alone modes (denoted by indices TR, SR, and DA respectively).  The utility 
equation for each mode is given by Equation 7 and the coefficients are based on 
recommendations from Martin (19). All travel times including in-vehicle travel time (IVTT) and 
out-of-vehicle travel time (OVTT) are assumed to be in minutes and COST is in units of cents. 
 
UTR = −0.025IVTTTR-0.050OVTTTR- βCOSTCOSTTR 
 
USR = −0.025IVTTSR                              (7) 
 
UDA = −0.025IVTTDA 
 

Here, βCOST is a function of the origin zone’s income distribution and an assumed value 
of time as percentage of income.  To simplify the model only fare costs were considered.  The 
table on page 66 of Martin (19) was used to determine appropriate values of this coefficient.  
IVTTTR was assumed to be twice IVTTDA plus twelve minutes (to account for out of vehicle travel 
time) (21), IVTTSR is assumed to be 150% of IVTTDA, OVTTTR is assumed to be ten minutes, 
COSTTR is assumed to $0.50.  The share of trips by each mode, m, is calculated using Equation 8, 
where Um denotes the utility for mode m. 

∑
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e
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Traffic Equilibrium 
 

Person flows are converted to vehicle flows using the following equivalents: 7.1 for transit, 2 for 
shared ride, and 1 for drive alone.  Additionally, bus flows are converted to passenger car flows 
by multiplying by a factor of 3 because of the additional space buses consume on roadways and 
their increased impact on capacity.  The total passenger car units are assigned to the road 
network assuming user equilibrium (UE) behavior; no user can unilaterally switch routes without 
incurring a higher cost (22). A Bureau of Public Roads type link cost function is used as shown 
in Equation 9, where tt is a vector of link travel times, v is a vector of link volumes (tt(0) is a 
vector of link travel times when volume is zero), μ is a vector of link capacity, and α1 and α2 are 
parameters.  
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Link capacity is a function of original capacity, μ0, lane additions, y, and single lane capacity, 
μ(1).  The solution method for UE (originally formulated by Beckmann et al. [23]) is as follows, 
and more details can be found in Sheffi (24). First, find the shortest path between each OD pair 
using Dijkstra’s algorithm (25), then average the current path flows with previous path flows 
using the golden section method.  Calculate the new path costs based on these new flows, and 
check for convergence.  If not converged, find shortest paths as before and repeat these steps. 
 
METHODOLOGY 
 
This research focuses on the decision-making impacts of uncertainty in future regional control 
totals of households (by income group) and employment (by sector), and in the trip generation 
parameters.  The type of decision evaluated is the selection of roadway segments for 
improvement within an allotted budget. Twenty-four pairs of roadway improvements, where 
each improvement is approximately two miles in length, are considered. For each pair of 
improvements, the superior one is selected based on one of the following metrics: total system 
travel time (TSTT), vehicle miles traveled (VMT), total delay, average network speed, and 
standard deviation of network speed. The decisions made when the uncertainty is neglected are 
then compared to the decisions made when uncertainty is considered. This section presents how 
uncertain data and parameters are sampled, how candidate roadway improvements are selected, 
and how comparisons are made between decisions made in the deterministic and uncertain 
analyses. 
 
Sampling Uncertain Data and Parameters 
 
Each uncertain parameter is assumed to follow a lognormal distribution with coefficient of 
variation equal to 0.3 (as tested in Zhao and Kockelman [2]).  (Future work may be helpful in 
ascertaining the impact of correlations between the parameters and inputs – for example, across 
regional population and employment control totals, in order to approximate economic booms and 
busts).  Sampling is done via the antithetic technique, which is a  popular and well studied 
variance reduction method.  Antithetic sampling is expected to work best under a monotonic 
system response and a symmetric random variable (26-28), which implies it may perform well 
for the system response of consideration in this paper (since increased population and 
employment should lead to increased travel and travel cost).  Antithetic has also been shown to 
work well for the traffic assignment problem (10).  
  

In antithetic sampling, pairs of negatively correlated realizations of the uncertain 
parameters, denoted by ϕξ~  and '~ϕξ , are used to obtain an estimate of the expected value of the 
function )~(ξF , which in this example could represent performance measures such as future 
roadway speeds.  Negative correlation implies that when one realization of the random parameter 
is low, the other in the pair should be high, leading to a variance reduction effect. The average of 
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)~( ω̂ξF  and )~( 'ω̂ξF , i.e., ( )
2

)~()~(~ 'ˆˆ ωω
ω ξξξ FFF +

= , is evaluated for each negatively correlated 

pair of uncertain parameters.  The estimate of the expected value of the function )~(ξF over points 
sampled from ( )Ω∈Ω ω   is the sample average F .  The unbiased estimator of ( )[ ]ξ~FV  is the 
sample variance, s2. 

 
Note that the negative correlation between each pair of realizations for the uncertainty set 

is different from assuming correlations exist among the members of the uncertainty set.  
Antithetic sampling is relatively easy to implement depending on the complexity of drawing a 
sample from the population distribution and confidence intervals can be determined using 
standard statistical procedures as each realization of )~(ξF  can be assumed to be independent 
and identically distributed. 
 
Selecting Candidate Roadway Improvements 
 
Candidate roadway improvements (lane additions) are selected from the subset of links with a 
volume that is at least 85% of μ0 25 years into the future.  Let Γ be the subset of links that meet 
this criteria and let each link in this set be indexed from γ = 0…Γ (ordering by v/c is not 
necessary). Let Gγ be the length of linkγ , Gmax be the maximum length of any expansion project, 
and y be the vector of lane additions.  Also, let count be a counter that constrains the maximum 
number of attempts (countmax) to find a link to improve that meets the budget requirement. 

 
1) Solve for UE on the network to get link flows, Γ∈∀γγv . 
2) Assign two parameters, LB and UB to each link Γ∈γ  where 
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3) Set Γ∈∀= γγ 0y and count = 0. 
4) Choose a random number, ( )VR ,0∈  where  
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'

v
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5) Select link γ corresponding to  

γγ UBRLB ≤<  .               
6) If Gγ < Gmax, 1+= γγ yy , count = 0, and Gmax = Gmax – Gγ .  Else count = 

count + 1.  
7) If K > 0 and count < countmax, go to Step 4. Else μ=μ0+yμ(1). 
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In Step 1 ITGLUM is run using mean values for all inputs and parameters to determine 
the links that are in set Γ.  (Restricting the set of links to improve was done to achieve a higher 
degree of realism in terms of projects that may be selected.)  Step 2 evaluates two parameters for 
each link: one representing the sum of the volume to capacity ratio of all links assigned a lesser 
cardinal index, |γ|, and a second to represent the sum of the volume to capacity ratio of all links 
assigned a lesser than or equal cardinal index.  Step 3 initializes y and count to zero.  A random 
number from zero to the sum of the volume to capacity ratios for all links in Γ is generated in 
Step 4, and then in Step 5 this random number is translated to a specific link based on the 
parameter values calculated in Step 2.  If money remains in the budget (where the budget is in 
terms of lane length added) as given by the constraint in Step 6, then this specific link is 
improved and the budget is subsequently decreased by an amount proportional to the length of 
the improved link.  If budget remains for further improvements (Step 7) and countmax has not 
been reached, another link is chosen according to the same procedure.  When these conditions 
are no longer true, the vector of link capacities is updated to include the selected improvements. 
 
Comparing Results of Deterministic and Uncertain Analyses 
 
As mentioned earlier, five performance metrics are considered (as expected values for the 
uncertainty analysis): TSTT, VMT, total delay, average network speed and standard deviation of 
network speed.  The last two are combined into a single metric by applying a weight of (1-w) 
(where ( )1,0∈w ) to average network speed  and a weight of w to the negative of standard 
deviation of network speed and summing the two terms.  The weight, w, is then varied across its 
range in increments of 0.1.  Each of these performance metrics were evaluated to mimic the 
variety of such measures used in practice and because no one measure gives a complete portrayal 
of network conditions.   
 

The weighted sum of the average and standard deviation of network speed is likely the 
best metric used because, if the weight is non-zero, it rates a network poorly that is very 
congested in some areas and nearly free flowing in others – a situation that may lead to a good 
rating if only the average speed was considered.  TSTT and VMT are common measures, but can 
be problematic since mode and destinations are flexible in the ITGLUM. Total delay is a useful 
comparative measure since it is sensitive across different strategies, but cannot differentiate 
networks with heavy congestion in some parts and free flow on the others and networks with 
uniform congestion.  

 
For the uncertainty analysis, let ( )ωκ

φφ ξ~,1−Y be the difference in value of performance 
metric κ for uncertainty realization ω  of network improvement pair (φ-1,φ).  For example, 

( ) ( ) ( )ξξξ φφφφ
~~~

1,1 TSTTTSTTY TSTT −= −− .  If the number of samples is large (> 40 since the population 

standard deviation of Y is unknown [27]), the sample average kY φφ ,1− can be assumed to behave 
according to a normal distribution, allowing the formulation of confidence intervals (CI’s).  If all 
points in the 95% CI around kY φφ ,1−  are greater than zero, then improvement φ -1 is said to 
outperform improvement φ for metric κ in the uncertainty analysis if a higher value equates to a 
better performance metric, otherwise φ is said to outperform φ -1. Similarly, if all points in the 
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95% CI around kY φφ ,1−  are less than zero, then improvement φ is said to outperform improvement 
φ -1 if a higher value equates to a better performance metric, otherwise φ -1 is said to outperform 
φ. If the 95% CI around kY φφ ,1− contains zero, then neither improvement is considered better.  For 
the deterministic analysis, the winning improvement for each metric is trivial to calculate since 
there is only one realization of the parameters and data.  The winning improvements for each 
metric are then compared between the uncertainty analysis and the deterministic analysis. 
 
EXPERIMENTAL ANALYSIS 
 
As shown in Figure 2, a highly idealized sample region (with zones denoted by gray lines) and 
roadway network (with nodes and links denoted by black circles and lines respectively) allow for 
ready analysis while helping clarify the impact and sources of modeling results. (Modeling an 
actual region, such as Austin, would likely obscure the sources of differences in deterministic 
and stochastic investment results.) 
 

 
FIGURE 2 Sample Region and Network 

 
Each zone is 1 square-mile (or 640 acres). Highways (circumferential and diagonal) are 

denoted by heavy black lines and local roads have lighter black lines.  Capacity on local roads is 
400 vehicles per hour per lane (vphpl) and capacity on highways is 1600 vphpl.  All roads are bi-
directional, having one lane in each direction.  Free flow travel speed is 60 miles per hour (mph) 
on highways and 30 mph on local roads.  Mean values of regional control totals for employment 
by sector and household by income, developed using rules of thumb for “reasonable” 
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development, are given in Table 3.  The base year data in Tables 6 and 7 were developed in a 
similar manner. 

 
TABLE 3 Regional Control Totals 

Time Period Basic Retail Service Low Med-Low Med-High High
1 4313 7188 17250 345 1150 1495 460
2 4959 8266 19838 397 1323 1719 529
3 5703 9505 22813 456 1521 1977 608
4 6559 10931 26235 525 1749 2274 700
5 7543 12571 30170 603 2011 2615 805

Employment (by sector) Households (by income)

 
 

Table 4 gives the parameters for the EMPLOC and RESLOC sub-models obtained by 
calibrating Equations 1 and 2 using assumed base and lag year conditions, as presented in Tables 
6 and 7 (which also were created using rules of thumb for “reasonable” development).   Table 5 
gives the parameters for the LUDENSITY sub-model obtained from calibrating Equation 3.  
Equation 3’s L0 value was assumed to be 0.5 acres per basic job, 2.5 acres per commercial job, 
and 6 acres per household (based on approximations of the maximum amount of land typically 
allocated to these uses). 
 
TABLE 4 Calibrated Parameter Values for EMPLOC and RESLOC Sub-models 

Parameter Basic Retail Service Low Med-Low Med-High High
η 0.17 0.089 0.33 0.056 0.064 0.05 0.085
ρ 0.13 -2.7 -1.76 -0.012 -0.02 -0.001 -0.0017
r - - - -1.6 -1.22 0.62 2.72
q - - - 1.37 0.36 0.86 0.89
b - - - -45.9 -7.31 -11.1 -16.4
ω 0.019 0.008 0.0025 - - - -

EMPLOC (by sector) RESLOC (by income)

 
 
TABLE 5 Calibrated Parameter Values for the LUDENSITY Sub-model 

Parameter Basic Commercial Residential
β1 0.0021 0.1347 0.0001
β1 1 0.5498 1.1182

Land Use
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TABLE 6 Base Year Employment and Households 

Zone Basic Retail Service Low Med-Low Med-High High
1 602 125 475 1 4 4 1
2 5 100 478 8 33 29 5
3 5 101 472 6 30 28 8
4 5 102 470 7 35 30 8
5 599 124 474 1 5 3 1
6 5 95 479 10 30 30 9
7 600 96 832 12.5 37.5 56.25 18.75
8 5 542 838 31 91 134 44
9 610 508 831 10 36 55 20

10 5 101 460 6 35 30 10
11 5 105 464 7 33 37 9
12 5 553 831 27 88 130 41
13 5 653 837 35 91 136 47
14 5 542 822 31 91 134 43
15 5 104 471 7 30 31 7
16 5 98 476 8 32 32 8
17 5 554 832 12 36 55 19
18 150 550 833 31 94 130 46
19 5 540 819 11 38 56 19
20 5 110 470 6 31 30 9
21 591 113 472 2 5 4 1
22 5 111 478 9 30 30 9
23 5 95 465 7 31 30 10
24 5 98 464 7 30 29 6
25 589 124 459 1 4 6 1

Employment (by sector) Households (by income)

 
 



Duthie, J., Voruganti, A., Kockelman, K. and S.T. Waller 

  15

TABLE 7 Base Year Land Allocations 

Zone Basic Commercial Residential Streets Undevelopable
1 120.4 86.4 16 0.01 0
2 1.44 115.022 193.5 0.01 0
3 1.55 114.6 158.4 0.01 0
4 1.475 114.4 224 0.01 0
5 125.79 85.514 17 0.01 10
6 1.45 113.652 205.4 0.01 0
7 114 120.64 188.75 0.01 0
8 0.9 175.26 414 0.01 0
9 91.5 133.9 121 0.01 0

10 1.5 131.835 218.7 0.01 0
11 1.385 110.386 210.7 0.01 0
12 0.975 178.536 386.1 0.01 0
13 0.905 178.8 386.25 0.01 0
14 0.995 178.684 418.6 0.01 0
15 1.5 120.75 213.75 0.01 0
16 1.4 111.93 200 0.01 0
17 1.005 184.338 183 0.01 0
18 26.85 164.577 388.29 0.01 0
19 1.055 183.465 192.2 0.01 0
20 1.395 111.36 188.48 0.01 0
21 135.93 84.825 22.8 0.01 0
22 1.38 112.499 190.32 0.01 0
23 1.65 134.4 226.2 0.01 0
24 1.7 140.5 216 0.01 0
25 147.25 87.45 24 0.01 0

Land (by use) [acres]

 
 

For each network improvement, 200 antithetic samples were run, using common random 
numbers across improvements.  Due to averaging of the negatively correlated samples, the total 
number of uncertain realizations sampled from ( )Ω∈Ω ω   is 100.  All modeling was done in 
MATLAB on a Dell Optiplex GX620 with 4 CPUs at 3.4 GHz each and 2GB of RAM. Each 
ITGLUM run required approximately one minute. 
 
RESULTS 
 
Results for each performance metric are presented in this section for each network improvement 
pair.  Figures 3 through 5 show the results for TSTT, VMT, and total delay, respectively.  The y-
axis value is 1 if the first improvement in a pair performed best, 2 if the second improvement in a 
pair performed best, and 0 if neither performed better than the other in a statistically significant 
way. For TSTT, four improvement pairs (16.67% of the total) were ranked differently between 
the uncertainty analysis (UA) and the deterministic analysis (DA), including one pair that did not 
show a statistically significant difference (at the 95% confidence level) in TSTT in the UA. A 
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similar result was seen for VMT, but this time three of the four pairs that were ranked differently 
did not have a statistically significant difference in their UA performance.  No pair was found to 
be different for both TSTT and VMT, emphasizing the importance of choosing performance 
measures carefully.  The results for total delay indicate that 21 improvement pairs (or 87.5% of 
the total) were ranked differently in the UA and the DA; however, 19 of these pairs showed 
statistically insignificant differences (using a p-value of 0.05) in the UA.  It is notable that the 
two pairs which ranked differently in the UA and the DA and differ in the UA in a statistically 
significant way, are a subset of the three pairs that meet similar criteria for the TSTT metric. The 
DA results for TSTT and delay are nearly identical (as expected, since both measure travel time); 
but, because so few of the UA delay results are statistically significant, their UA results differ 
significantly. 
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FIGURE 3 Minimizing Expected TSTT 
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FIGURE 4 Minimizing Expected VMT 
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FIGURE 5 Minimizing Expected Delay 
 

Since the network speed results are compared for 11 weights (w ranges from 0 to 1 in 
increments of 0.1), only the percentage of improvements that were ranked differently for each w 
are given in Figure 6.  The percentage difference peaks when a 40 percent weight is applied to 
the standard deviation of network speed (and 60% to the average network speed).  More tests are 
needed to determine if this result can be generalized across networks and coefficients of 
variances.  Considering both the average and standard deviation is important because if only the 
average is considered, then it is possible that parts of the network are in near free-flow conditions 
while the other parts are very congested. 
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FIGURE 6 Percent of Trials where the Ranking of Network Improvement Projects 
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Differed when Minimizing Expected Weighted Sum of the Average Network Speed and 
Standard Deviation of Network Speed using UA and DA 
 
CONCLUSIONS 
 
In this paper, a very basic integrated gravity-based transportation and land use model (ITGLUM) 
was used to assess the impact of uncertainty on decision making, specifically the ranking of 
roadway improvements.  The goal of using an ITGLUM with a simple structure was to gain 
insights into the problem of uncertainty and to evaluate emerging trends. Household and 
employment control totals, as well as parameters in the trip generation equations, were assumed 
to follow lognormal distributions with a 0.3 coefficient of variation.  Antithetic sampling was 
used, and all parameters were assumed independent.   
 

Results suggest that the ranking of network improvement projects often differs when 
recognizing uncertainty in model parameters and inputs.  In evaluating pairs of links, UA and 
DA rankings differed significantly in just 4.17% of cases when using VMT as the criterion but 
25% of cases when using a weighted combination of average network speed (60% weight) and 
the standard deviation of network speed (40% weight).  Further research is needed to see what 
patterns emerge across different networks, land use patterns, and assumptions on uncertainty, but 
the results clearly indicate that neglecting uncertainty can lead to suboptimal network 
improvement decisions when certain common performance metrics are used.  
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