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Abstract 

This chapter provides a synthesis of spatial data mining models for analyzing multivariate count 
responses. Geo-referenced multivariate count responses are common in regional science (e.g., 
registered vehicle counts by body type and firm/job counts by industry type), but are 
computationally difficult to model - especially when sample size is large. This chapter 
synthesizes relevant research and offers lessons learned and best practices for future research. 
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Introduction 

Spatial data are central to regional science applications and many other disciplines. Location 
attributes for each observation reveal where events occur or other information (pollution levels 
[Goodkind et al. 2014], land values [Du and Mulley 2012], and crimes [Levine, 2009]) exists, 
often at fine spatial resolution. There are three types of spatial data: geostatistical data, areal or 
lattice data, and point data.  

 Geostatistical data are innate to the landscape or environment (such as soil mineral levels, 
rainfall, and pollutant levels) and span continuously over space. Given their continuous 
nature, such variables need to be collected by sampling at different locations (Deutsch and 
Journel 1997). The goal of geostatistical analysis is to predict values at unknown locations 
using sampled/observed values. For this purpose, kriging is often used: it spatially 
interpolates unknown values using observations nearby (Krige 1951).    

 Areal or lattice data are observed at certain geographic units (e.g., vehicle registration data 
across counties and land use changes across parcels). These geographic units divide up the 
study area into small tiles (tessellations) like census tracts. The goal of areal data analysis is 
usually to detect and explain spatial patterns, as opposed to predicting unknown values since 
there is typically no gap in the study area of interest. Areal data are usually analyzed by 
spatial econometric methods (LeSage and Pace 2009; Anselin 2010).  

 Point data note the location of many specific occurrences like crashes or species sightings 
over a period of time. “Hot Spot” analysis is often used to identify clustering patterns of 
these points (Lu 2000). An array of metrics can be used to portray the magnitude of clusters, 
like Moran’s I, Geary C’s Location Quotient, and the nearest neighbor index (NNI). Point 
data can be converted to areal data by tessellating the study area into zones and aggregating 
the points at each zone. 

Motivations for Spatial Models 

This chapter focuses on spatial models for analyzing areal data, in a multivariate count format 
(like vehicle ownership across census tracts, number of crimes across zones, and patent 
applications across counties). Spatial models are attractive for two reasons that are rooted in 
geospatial theory: spatial dependence and spatial heterogeneity.  

Spatial dependence (autocorrelation) describes correlations across the same variable observed at 
different locations (zones). A positive spatial autocorrelation implies clustering, so values 
observed at nearby locations are more similar than values observed at distant locations. A 
negative spatial autocorrelation portrays a dispersed pattern, in which a value at one location 
tends to be surrounded by dissimilar values (for the same variable). Spatial heterogeneity is 
defined as uneven distribution of a variable over space (Vinatier et al. 2014). Spatial 
heterogeneity arises due to structural instability: each zone/location subscribes to a different 
process to generate the variable of interest. Spatial heterogeneity can be expressed in an 
analytical model either as heteroscedastic (non-constant) error variance or regression coefficients 
that vary across observational units (Anselin 2001). Simoes and Natario (2016) provide a 
summary of statistical tests to detect spatial heterogeneity.  

Conventional econometric models do not work for data that exhibit spatial dependence and/or 
heterogeneity. These models assume that the error terms are distributed normal (Gaussian), retain 
the same variance (which violates spatial heterogeneity), and are independent across 



3 
 

observations (which conflicts with spatial dependence). To address spatial dependence, models 
that recognize correlations (such as spatial autoregressive models) have been rather effective in 
various contexts, like crash and crime prediction (Levine et al. 1995a, 1995b; Miaou et al. 2003; 
Wang and Kockelman 2013), home prices (Case et al. 2003), land use dynamics (Chakir and 
Parent 2009; Wang and Kockelman 2009; Wang et al. 2012), and technology innovations 
(LeSage and Pace 2010). To tackle spatial heterogeneity, geographically weighted regression 
(GWR) is regularly used through locally estimating coefficients, rendering a contextual layer of 
coefficient estimates that vary over space. Examples of GWR span many fields, such as ecology, 
wealth and epidemics (Platt 2004, Ognev-Himmelberger et al. 2009, Atkinson et al. 2003, and 
Nagaya et al. 23 2010), traffic count and crash count predictions across road networks (Zhao and 
Park 2004  and Hadayeghi et al. 2010), and land use (Páez 2006; Wang et al. 2011). 

Geo-Referenced Multivariate Count Data    

One form of areal/lattice data is geo-referenced count data, data that take on non-negative integer 
values and record the number of items or events in zones of interest (e.g., number of vehicles 
owned across zones,  crime counts across block groups, and crash counts by intersection and/or 
road segment). For a generic count variable, multiple levels of that variable are often observed: 
for example, number of vehicles by fuel economy category or number of crimes by type. These 
are multivariate count data. It is often of interest to gauge correlations among the different levels 
of a count (response) variable in addition to incorporating spatial dependence and/or 
heterogeneity across locations. The correlations reveal interactions among different levels of the 
response variable. 

This chapter provides a synthesis of spatial models for analyzing count responses that have 
location attributes. The synthesis begins with a discussion of univariate count responses before 
presenting methods for multivariate settings.  

Spatial Models for Univariate Count Data 

Techniques for analyzing spatial count data broadly diverge depending on the type of spatial 
interaction one wishes to control for. As noted earlier, there are two types of spatial interactions: 
spatial heterogeneity and spatial dependence. GWR seeks to address spatial interactions shown 
as contextual variations in coefficient estimates over space (i.e., spatial heterogeneity). 
Hadayeghi et al. (2010) developed a GWR-Poisson model to explain traffic crashes using 
transportation planning factors while controlling for spatial variations across zones. For each 
zone, a weighted Poisson regression model was estimated using the part of data set observed in 
that zone’s neighborhood. Weights are assigned to all neighbors, to reflect their importance in 
predicting counts in the zone of interest. The weights fall as the (straight-line or network-based) 
distance between zones increases.  

For spatial dependence, many methods exist for analyzing univariate count data. They generally 
fall into three categories, as follows. 

Log-linear Spatial Models 

Standard spatial models (e.g., spatial autoregressive [SAR] models or spatial error models 
[SEM], LeSage and Pace 2009) were developed for data generated from a Gaussian process, in 
which the response variable takes on a continuous form. While not inherently designed to 
analyze count data, these models are sometimes used for analyzing count responses that are high 
in magnitude (e.g., hourly traffic volumes and employment counts). To apply these models in a 
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count response setting, the count variable is artificially transformed into a quasi-continuous 
variable. A count variable (e.g., species abundance or counts) is typically normalized by an 
exposure term so that the resulting variable represents the rate at which things happen (e.g., 
species abundance per square mile or an approximation of crime counts per capita). Then, the 
rate variable is log-transformed, to produce a new response variable. The log transformation is 
important because it allows for the possibility of negative predictions. Examples include Weir et 
al’s. (2009) study on pedestrian crashes across San Francisco census tracts and Aufhauser and 
Fischer’s (1985) study on migration patterns. 

However, the log transformation will not work when low or zero counts exist, since their 
logarithms are mathematically ill-defined. In addition, a Gaussian process falls short of 
describing discrete events (e.g., crime or traffic crashes) that have low counts (rates), making it 
more attractive to use a discrete random process (e.g., Poisson). Two general approaches for 
discrete data analysis exist: these are conditional autoregressive (CAR) Poisson models and 
autoregressive Poisson models. Their difference lies in where spatial autocorrelation occurs: 
across the error terms (as in the CAR-Poisson) or the response terms (in the autoregressive-
Poisson).     Conditional Autoregressive (CAR) Poisson Models 

A CAR-Poisson model assumes that the count variable follows a Poisson process: yi ~ Poisson 
  denotes theߣ where yi represents the number of events observed in zone i, and ,(ߣ)
expected/mean count for that zone. The expected mean relates to the explanatory variables (xi), 
their coefficients, and an exposure term (E): ߣ ൌ ఈܧ ∙ exp	ሺݔ

ᇱߚ   ,ߛ ,ሻ. The nuisance termߛ
represents noise or uncertainty that is unexplained by the control variables and is assumed to 
follow a CAR specification. 

CAR specifications apparently were first used by Besag (1975), and are mostly estimated using 
Bayesian methods. A CAR model is built from a series of conditional distributions,1 as shown in 
Equation 1 (Cressie 1993): 

ߤൣܰ	~	ஷߛ|ߛ   ∑ ܿ൫ߛ െ ൯ߤ

ୀଵ , ߪ

ଶ൧      (1) 

where ߛ indicates the spatially autocorrelated variable (e.g., spatial random effects centered 
onzero, or a response variable -- like traffic flows or household incomes), ିߛ denotes such 
variables at neighboring locations (other than location i), ߤ is the expected/mean value of ߛ 

                                                            
1 These conditional distributions lead to a multivariate normal (MVN) joint distribution of the spatially correlated 
variables (shown in Equation 2), based on the factorization theorem (Besag 1975).  
ܸܯ~	ࢽ  ܰሾࣆ, ሺ۷ െ ۱ሻିଵۻሿ        (2) 
where the column vector ࢽ is a stacked version of the n  ߛ’s (as is the vector ࣆ), I is an identity matrix, C is an n by 
n weight matrix (defined by site contiguity or inter-observation distances), with ۱ ൌ ൣܿ൧, and ۻ is a diagonal 
matrix, with ۻ୧୧ ൌ ߪ

ଶ. This joint distribution is used along with the likelihood function of the data set to implement 
the Gibbs sampler to estimate the posterior distributions of all parameters. Note that the Equations (1) and (2) are 
often referred to as a Markov random field (MRF) because of the way they are derived: achieving a closed-form 
joint distribution by first specifying a set of conditional distributions (Banerjee et al. 2004).  
The validity of the MVN distribution shown in Equation 2 requires that its covariance matrix, ሺ۷ െ ۱ሻିଵۻ, be 
symmetric and positive-definite (like any covariance matrix must), thereby necessitating certain constraints on the 

forms of the matrices ۱ and ۻ. For example, one may let ۱ ൌ ߪ and ܅ߩ
ଶ ൌ

ఙమ

௪శ
, where ߩ is referred to as the spatial 

autocorrelation coefficient, ܅ is a row-standardized weight matrix (i.e., ܅ ൌ ݓൣ
∗ ൧ and ݓ

∗ ൌ
௪ೕ
௪శ

), and ݓା is the ith 

row sum of W.  
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(i.e., ܧሺߛሻ ൌ ߪ ,) and assumed to be zeroߤ
ଶ is the conditional variance, and ܿ are weights 

(either known or unknown) describing the proximity or closeness between locations i and j.  

The CAR specification permits contiguity and distance-based weight matrices, but precludes the 
Kth-nearest-neighbor weighting scheme because such weights violate the symmetry condition. 
First-order contiguity weights are defined such that ݓ ൌ 1 if i and j share a common border 
(else ݓ ൌ 0), and W’s diagonal elements are all zeros by construction (Cressie 1991). This type 
of CAR model is called a proper CAR model2, and is commonly estimated using Bayesian 
techniques in the open-source WinBUGS software package (Spiegelhalter 2003), where “BUGS” 
stands for Bayesian inference Using Gibbs Sampling. 

Spatial Autoregressive Poisson Models 

While the CAR-Poisson model captures spatial dependence in error terms, SAR-type models 
describe spatial dependence in response variables. Lagrange multiplier tests can be used to 
discern which type of spatial dependence prevails in a spatial data set (whether spatial 
dependence occurs across the error terms or the responses) (Simoes and Natario, 2016). 
Intuitively, a spatially-lagged error term represents subtle spatial dependence due to missing 
variables that trend in space, whereas a spatially-lagged response term implies more direct spatial 
interactions in which the response observed at one zone is in part predicted by its neighbors’ 
values in addition to its own covariates. 

Cressie (1991) introduced the auto-Poisson model, in reference to models in which the mean 
rate, λ, involves autocorrelated response variables, i.e., λ=exp(Xβ+ρWy). More recently, Griffith 
(2000) and Chun (2008) developed a Poisson-based spatial filtering approach to estimate auto-
Poisson models.  However, these types of Poisson models permit only negative autocorrelation, 
an unwanted result arising from the peculiar way spatial autocorrelation enters the specification, 
as shown in the following equation: λ=exp(Xβ+ρWy), where λ denotes a vector of expected 
mean rates, X is an n by k covariate matrix, β is a k by 1 vector of unknown coefficients, y 
represents a vector of observed (count) responses, W an n by n weight matrix, and ρ the spatial 
autocorrelation coefficient. In addition, the joint likelihood function under an auto-Poisson 
assumption requires a non-closed-form solution for the normalizing constant (in order for the 
joint likelihood function under the auto-Poisson specification to be proper, or integrate to1), 
which impedes successful estimation (Griffith 2000). 

Liesenfeld et al. (2015) developed a new method to estimate spatial models for a wide range of 
non-Gaussian response variables including discrete choices, count, and other limited dependent 
variables (e.g., truncated, censored, or self-selected). This method combined Efficient Important 
Sampling (EIS) and sparse matrix algorithms to achieve accurate estimation of the likelihood 
function associated with spatially-interacted data and can handle a large number of observations. 
Liesenfeld et al. (2015) provided two such demonstrations: a spatial probit model for 
understanding U.S. voters’ decisions in the 1996 presidential election, and a spatial count model 
for anticipating the prevalence of start-up companies across 3,110 U.S. counties.   

For count responses, the model is formulated as: 

                                                            
2 This is not the “intrinsic” CAR model, because the latter does not have a spatial autocorrelation coefficient, ߩ, 
which measures the overall strength of spatial interactions. Due to the absence of the spatial autocorrelation 
coefficient, its joint distribution is improper or unbounded in the sample space (Gelfand and Vounatsou 2003). 
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݂	ሺݕ	ߣ|, ܺሻ = ∏ ݂	ሺݕ	|ߣሻ

ୀଵ           (3)  

݈݊	ሺߣሻ|ܺ~ܸܰܯሺ݉,ିܪଵሻ         (4) 

where, y is the response variable (e.g., counts), ݂	ሺ∙ሻ is the likelihood function (e.g., ݂	ሺݕሻ ൌ
ఒషഊ

௬!
 for a Poisson process), λ is a latent variable measuring the expected mean counts, i is an 

index for observation unit. The latent vector, lnሺߣሻ, follows a multivariate normal distribution 
centered at m with a variance-covariance matrix, Hିଵ, i.e., the inverse of a Hessian matrix, H. 
When a direct spatial interaction is anticipated among neighbors, the latent variable at location i 
is influenced by the latent variables observed at its neighbors: mathematically,  lnሺߣሻ ൌ
ሻߣlnሺܹߩ  ߚܺ    Under this construct, the mean (m) and the Hessian matrix are defined by .ߝ

݉ ൌ ሺܫ െ  (ܹ and ߩ) and H = (1/ σ2) (In – ρW)’ (In – ρW). The rest of the parameters ߚሻିଵܹܺߩ
are as defined previously. 

Spatial Models for Multivariate Count Data 

While univariate count models address spatial dependence for a single outcome across zones, 
many empirical studies are interested in gauging the interactions among multiple outcomes while 
controlling for spatial effects. For example, the prevalence of one disease can coincidentally 
affect other diseases due to shared risk factors; the growth rate of new business establishment 
from one industry can correlate with those of other industries in nearby areas as a result of 
knowledge flows and transportation accessibility; and traffic crashes often show correlations 
among different severity levels because of shared influence of certain infrastructure or 
environmental factors that are latent/unobserved in the data. To control for these interactions 
among more than one outcome, multivariate (MV) count models are used to simultaneously 
anticipate the prevalence of multiple levels of outcomes while controlling for spatial effects.  

In general, four methods exist for predicting MV count data over space in the literature. Table 1 
summarizes research studies that utilized (spatial) MV count models in light of sample size, 
estimation method, statistical tools used, and model specifications.  

Multivariate Conditional Autoregressive (MCAR) Models 

The conditional autoregressive (CAR) model is the most commonly used method to handle 
spatial count data (e.g., Jin et al. 2005; Kramer and Williamson 2013; Barua et al. 2014; Boulieri 
et al. 2016). Its popularity is fueled by open-source software such as WinBUGS and its twin 
package OpenBUGS (Spiegelhalter, et al. 2003), which code and estimate the CAR specification 
and its extensions (e.g., a time-space CAR model and moving-average models) with hierarchical 
Bayesian methods.   

A multivariate CAR structure builds upon the univariate CAR-Poisson structure noted earlier and 
was enhanced by studies in genome analysis (Gelfand and Vounatsou 2003), disease mapping 
(Jin et al. 2005), traffic safety (Wang and Kockelman 2013; Aguero-Valverde et al. 2016), 
alternative-fuel vehicles (Chen et al. 2013 and Bansal et al. 2014), and location decisions of new 
business establishment (Wang and Kockelman, 2016). 

The CAR structure defines the spatial random term for response type k observed in zone i (߶) 
by a multivariate normal distribution. For an example involving two levels of responses,  
ࣘଶ~ܰሺ, ሾሺ۲ െ ,ଶࣘۯܰሺ	ሻτଶሿିଵሻ and ࣘଵ|ࣘଶ~܅ଶߙ ሾሺ۲ െ  τଶ scale	ሻτଵሿିଵሻ, where τଵ and܅ଵߙ
up or down the variance-covariance matrices; ߙଵ and ߙଶ measure the strength of spatial 
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dependence; ܅ is the spatial weight matrix (defined by contiguity or distance, though the former 
is more common in empirical studies, thanks to the computational benefits of sparse matrices); 
and	۲ is a diagonal matrix with the ith diagonal element denoting the ith row sum of the weight 
matrix ܅. More details are deferred to Wang and Kockelman (2013) for a two-level response 
setting and Bansal et al. (2014), Gelfand and Vounatsou (2003), and Aguero-Valverde et al. 
(2016) for response variables involving three or more levels. 

Finite Mixture Models with Spatial Dependence 

A standard finite mixture model provides a flexible alternative to analyze heterogeneous data and 
is typically estimated by the expectation-maximization (EM) algorithm (Gupta and Chen 2010). 
In a finite mixture model, the probability density function for a population (data) is expressed by 
a weighted average of the distribution functions of its sub-populations: 

Θሻ|ݕሺ ൌ ଵݓ ଵ݂ሺߠ|ݕଵሻ  ଶݓ ଶ݂ሺߠ|ݕଶሻ  ⋯	ݓ ݂ሺߠ|ݕሻ      (7) 

where Θ ൌ ሺߠଵ, ⋯,ଶߠ , ;	ߠ ,ଵݓ ⋯,ଶݓ  ሻ represents the parameter space; the weights areݓ,
positive and sum to numeral one; and ݂ሺ∙ሻ	represents a distribution function (e.g., Poisson 
distribution with a latent parameter, ߣ, to measure the mean/expected level for a sub-population, 
if y is count). The model captures heterogeneity by compartmentalizing the probability density 
function of the population into discrete components associated with the sub-populations (Park 
2010).  

For spatial data, these discrete components can serve as proxies for the geographical clusters that 
exhibit unique trends or coefficients, hence controlling for area-specific heterogeneity (Alfo et al. 
2009). Alfo et al. (2009) extended a standard finite mixture to control for spatial dependence 
within each cluster using the convolution method (also known as the Besag-York-Mollie [BYM] 
model, Besag et al. 1991) and the correlations among two levels of outcomes (e.g., two diseases). 
Specifically, the log-transformed mean is decomposed into three parts:  

logሺߣଵሻ ൌ ଵߙ  ߤ   ଵ         (8)ߚ

logሺߣଶሻ ൌ ଶߙ  ߜ/ߤ   ଶ         (9)ߚ

where, ߙଵ and ߙଶ are constant terms representing the base-line risks associated with each 
disease, ߤ represents the shared factors that influence both outcomes, and ߚଵ and ߚଶ represent 
factors specific to each outcome. In addition to area-specific heterogeneity (a fortuitous property 
of all finite mixture-type models), this model specification also allows for spatial dependence 
across clusters by imposing a CAR structure to the three random terms, ߤ, ߚଵ, and ߚଶ.   

The model was applied to estimate the prevalence of two heart diseases across 375 boroughs in 
Italy’s Lazio region (Alfo et al. 2009), among other applications in health geography (see, e.g., 
Anderson et al. 2014). While the finite mixture models can define clusters in a meaningful way, 
the models can incur excessive computation time and are considered a special type of the 
generalized MCAR models (Alfo et al. 2009).  
 
Generalized Ordered-Response Models 

Some researchers have modeled spatial count data from an ordered response perspective that is 
rooted in utility-maximization choice theory. For example, in the context of intersection 
pedestrian crashes, Castro et al. (2012) utilized a continuous latent variable to proxy for traffic 
crash propensity and defined cut-off values to divide the latent variable into mutually exclusive 
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intervals, with each interval representing a certain level of crash frequency. The model was cast 
in an ordered probit setting and estimated by a composite marginal likelihood approach. 

Bhat et al. (2014) enhanced the model by permitting multivariate correlations through a 
multinomial probit (MNP) kernel. A MNP model is traditionally used in consumer choice or 
decision science to anticipate the influences of external variables on a person’s choices (e.g., 
voting decision, vehicle purchase choice, etc.). In the context of multivariate count data 
modeling, each choice alternative can be used to represent each level of outcome. This method 
takes advantage of the quasi-concave property of the utility function and associated 
computational benefits. The model was estimated using the maximum composite marginal 
likelihood (MACML) approach (Bhat 2011). 

Spatiotemporal Models 

Aldor-Noiman et al. (2013) accounted for spatial and temporal dependencies in modeling weekly 
counts of different violent crimes across 188 Washington D.C. census tracts. Four crime types 
were analyzed simultaneously: rape, robbery, arson, and aggravated assault. The data present two 
challenges: low counts and irregular spatial structure. In the study area, two disjointed zones 
have crime rates that are correlated and nearby zones have opposite crime rates (due to 
heterogeneous demographics and natural boundary), diverging from a regular spatial data with 
clear spatial clustering. An integer-valued first-order autoregressive process, INAR(1), was used 
to capture temporal correlations among weekly crime rates. The use of INAR(1) is innovative 
because it incorporates two latent factors: a random term for seasonal effects and a zone-specific 
rate function that carries spatial dependence through a Dirichlet prior. A nonparametric Bayesian 
approach was used to estimate the multivariate Poisson-INAR(1) model, coupled with multiple 
shrinkage to handle the large sample size. “Bayesian nonparameteric methods have previously 
been studied as tools for data-driven clustering analysis” (Aldor-Noiman 2013, p. 4) and appear 
to be as an effective way to analyze multiple correlated low-count time series (e.g., wild fires and 
earthquakes). The Dirichlet process also offers advantages by presenting a sparse neighborhood 
structure, similar to what a sparse spatial weight matrix functions in a Bayesian parametric 
setting. 

Conclusions 

This chapter describes the various spatial models that have been used to analyze univariate and 
multivariate count responses with location attributes. Two types of spatial effects are generally 
considered: spatial dependence (i.e., interactions among neighbors directly through spatially 
correlated response terms or indirectly through spatially lagged nuisance terms) and spatial 
heterogeneity (to describe contextual differences via spatially variable coefficient values).  

For univariate count data, many spatial models exist, including a CAR model to explain spatial 
dependence in the error terms, a Poisson autoregressive model to convey more direct influence 
among neighbors through the response terms, and a GWR-Poisson model to allow coefficients 
that vary across locations. Goodchild and Haining (2004) suggested that the CAR model best 
applies to regions having more “local” spatial effects, like first-order-neighbor influence, 
whereas other spatial stochastic processes (which include the SAR and spatial error models 
[SEMs]) are more suitable for situations with higher-order dependencies, and thus more “global” 
spatial effects or relationships/interactions.  
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For multivariate count data, spatial effects enter the models chiefly through CAR-type 
interactions across error terms. The multivariate CAR structure is the most common approach to 
analyze such data due in part to the wide usage of open-source statistical software. However, 
such models only describe spatial interactions across the error terms and fall short when a more 
direct representation of spatial interaction is desired. By comparison, generalized ordered 
response (GOR) models (Bhat 2011), the spatial autoregressive Poisson model (Liesenfeld et al. 
2015), and the Poisson mixture models (e.g., Schmidt and Rodriguez 2010) offer more flexible 
specifications: e.g., the spatial autoregressive Poisson models allow for direct spatial interactions 
of a variety of limited dependent variables, and the GOR models and the Poisson mixture models 
permit both negative and positive correlations among response levels.   Future research should 
consider testing among these methods with respect to prediction accuracy, transferability, and 
computation. Efforts could also be spent to explore new ways to expand the computation of 
multivariate count models as large-scale spatial data (e.g., GPS traces and naturalistic driving 
data) become more regularly recorded and used in geography, transportation, and regional 
science. 

The future of spatial multivariate count modeling presents both challenges and opportunities. On 
challenges, a foremost one is small sample size as seen in the moderate number of observation 
units used in many studies reviewed. With the advent of crowdsourcing and voluntary 
geographic information, comes the need for analytical tools that can handle thousands of data 
points made over a large geography (e.g., pavement cracks observed across a road network, 
public opinions on designs or prototypes of a commercial product [Brabham 2008], and GPS 
traces of trips made by millions of households across a region) while portraying complex spatial 
(and temporal) interactions. The most common tool used so far is OpenBUGS, an open-source 
software that implements a number of complex spatial and time-series models through Bayesian 
MCMC methods (e.g., Gibbs sampling and Metropolis-Hastings algorithms). It is a variation of 
WinBUGS, which can also handle spatial models but is restricted to only one sampling method 
(Gibbs sampling).   

Another challenge relates to computing issues (e.g., long run time and convergence) that 
complex models frequently encounter. While models involving moderate sample size (e.g., 
hundreds of data points) can be estimated within minutes, models with large sample size (e.g., 
more than thousands of data points) require excess run times, see, e.g., Aguero-Valverde and 
Jovanis (2010) reported that two days elapsed for their multivariate CAR model to converge after 
completing two chains, each with 100,000 Bayesian draws (for each parameter); and Boulieri et 
al. 2016 spent 20 to 27 hours to complete the 50,000 Bayesian draws (for each parameter) before 
reaching convergence for their Poisson Log-normal CAR model with a BYM structure. Both 
models were run in OpenBUGS. Run time is chiefly influenced by how fast the parameter draws 
converge to a stable value (if using Bayesian method) or how fast the algorithms locate the 
optimal solution of the likelihood function (if using maximum likelihood estimation or expected 
moment method). To improve computation efficiency, an analyst can consider reducing the 
complexity of spatial weight matrices (e.g., through sparse matrix algorithm [Finley et al. 2013]) 
and enhance convergence property, e.g., tweaking the acceptance rate of the M-H  (so that chains 
converge at a faster rate) or improving parameter identification (Waller et al. 1997) by using an 
appropriate value for the precision parameters associated with spatial (and heterogeneity) error 
terms or assigning hyperpriors for these precision parameters  (Eberly and Carlin 2000 ).   
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In terms of emerging opportunities, a potentially transformative one is seen in extending 
advanced spatial models in settings that use geo-referenced, real-time input data to make 
forecasts about current or near-future values (i.e., nowcasting [e.g., Lampos et al. 2015, Preis and 
Moat 2014]). Recent years have seen a rapid growth of real-time data with location attributes, 
from Google’s influenza reports (which exploit Internet users’ search queries), through 
pedestrian or cyclist route and volume data collected from smart-phone applications (Smith 
2015), to vehicle and driver information streamed from connected and instrumented vehicles. 
Coupled with nowcasting technology, these data offer critical information for developing a real-
time advisory system, such as anticipating a flu trend and offering insight for medical 
surveillance, or anticipating crash risk of pedestrians (or cyclists) and forewarning road users of 
collision risk as they navigate the network. Spatial models can enhance the regression techniques 
used in the nowcasting literature by controlling for spatial dependence and other interactions 
typically found in geo-referenced data. 
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Table 1. Summary Table of Spatial Models for Multivariate Count Data 

Category 
Author(s) 

(Year) 
Sample Size 

No. 
Response 

Levels 

Model 
Specification 

Estimation 
Method 

How to 
control for 

correlations 
among 

multiple 
responses? 

Software 

Conditional 
Autoregressive 
Model (CAR) 

Aguero-Valverde 
et al. 

(2016) 

832 road 
segments 

4 MCAR 
Bayesian 
MCMC 

MCAR 
structure 

OpenBUGS 
3.0 

Aguero-Valverde 
and Jovanis 

(2010) 
7,968 segments 6 MCAR 

Bayesian 
MCMC 

MCAR 
structure 

OpenBUGS 

Gelfand and 
Vounatsou 

(2003) 
287 locations 2 MCAR 

Bayesian 
MCMC 
(Gibbs 

sampler) 

MCAR 
structure 

- 

Jin et al. 
(2005) 

87 counties 2 MCAR MCMC 
MCAR 

structure 
Coded in C 

Leyland et al. 
(2000) 

143 zip-code 
areas 

2 
Multivariate 

Poisson lognormal 
model 

Iterative 
generalized 
least squares

Heterogen-
eous error 

term 

Software 
package 
MLwiN 

Song et al. 
(2006) 

254 counties 4 MCAR 
Bayesian 
MCMC 

MCAR 
structure 

- 

Wang and 
Kochelman 

(2013) 
218 zones 2 MCAR 

Bayesian 
MCMC 

MCAR 
structure 

WinBUGS 

Multivariate 
Finite Mixture 

models 

Alfo et al. 
(2009) 

375 boroughs 2 
Multivariate finite 

mixture models with 
spatial dependence 

EM 
algorithm 

Random 
terms 

generated 
from the 

convolution 
(BYM) model 

Coded in 
MATLAB 

Karunanayake 150 grid cells 3 Multivariate EM Poisson finite Splus/R codes
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(2007) Poisson finite 
mixture models 

algorithm model 
structure 

Generalized 
Ordered-
Response 

(GOR) Model 

Castro et al. 
(2012) 

170 
intersections 

1 GOR 
Composite 
marginal 

likelihood 
- GAUSS 

Narayanamoorth
y et al. (2013) 

285 census 
tracts 

4 GOR 
Composite 
marginal 

likelihood 

Multivariate 
normal 

distribution 
through a 

multinomial 
probit (MNP) 

component 

GAUSS 

Spatio-
Temporal 

Models 

Aldor-Noiman et 
al. 

(2012) 

188 census 
tracts 

4 

Integer-valued first-
order autoregressive 
time-series model 

with CAR structures 

Bayesian 
MCMC 

A Dirichlet 
prior placed 
on the rate 

parameters of 
the Poisson 
processes 

- 

Boulieri et al. 
(2016) 

7,932 electoral 
wards 

2 

Poisson CAR model 
with a BYM 

structure and a 
random walk 

Bayesian 
MCMC 

Multivariate 
spatially 

structured and 
unstructured 

effects 

OpenBUGS 

Schmidt and 
Rodriguez 

(2010) 
160 sites 4 

Multivariate 
Poisson lognormal 
mixture model with 

a linear model of 
coregionalization 

(LMC) 

Bayesian 
MCMC 

Multivariate 
normal 

distribution of 
the error 

terms (which 
permits 
negative 

covariances) 

OX 
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