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ABSTRACT 

This work examines the propagation of uncertainty in outputs of a standard integrated model of 

transportation and land use. Austin-calibrated DRAM-EMPAL predictions of residence and 

work locations are used as inputs to a UTPP-type four-step travel demand model (TDM), and the 

resulting travel times are fed forward into the future period’s land use models. Covariance in 

inputs (including model parameters and demographic variables) was accommodated through 

multivariate Monte Carlo sampling of 200 scenarios. Variances in land use and travel 

predictions were then analyzed, over time, and as a function of input values. Results indicate that 

output variations were most sensitive to the exponent of the link performance function, the split of 

trips between peak and off-peak and several trip generation & attraction rates. 20 years in the 

future, final uncertainty levels (as measured by coefficients of variation) due solely to input and 

parameter estimation errors are on the order of 38% for total regional peak-period VMT, 45% for 

peak-period flows, and 50% and 37% for residential and employment densities, respectively. 

This means that central point estimates of key model outputs are very likely (more than 30%) to 

fall 38% to 50% below or above the mean value. In the Austin example, 15% of the 200 

region’s simulated peak-period VMT estimates fell below 3.7 million miles (per day) and 15%
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exceeded 8.4 million miles. Such substantial variation is due solely to standard model parameter 
and input uncertainties.  Other uncertainty about the future and human behavior also exists and 
will add further variation. 
 
Keywords 
Uncertainty propagation, integrated transportation-land use model, travel demand model 
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INTRODUCTION 
Uncertainty in transportation systems has recently received some attention (1,2, 3, 4). And over 
the past 30 years, many studies have highlighted uncertainty inherent in predictions of travel 
demand (e.g., 5, 6), but very few have attempted to quantify this uncertainty. The difficulty, as 
Mahmassani (5) explains, is that not all sources of uncertainty are suitable for empirical analysis. 

Most Metropolitan Planning Organizations (MPOs) do not quantify uncertainty in their modeling 
process, even though they feel it is pervasive in their planning activities (7). Mehndiratta et al. 
(7) noted two main reasons for this reluctance: 1) MPOs feel that uncertainty analysis will add 
another layer of complexity to an already complex process. 2) The attitude among planners is 
that legislative directive dictates the planning process, and the current legislative mandate does 
not dictate uncertainty analysis.  Yet for optimal decision-making, an appreciation of uncertainty 
is critical. (See, e.g., 8.)  Rodier and Johnston (3) recently stressed the importance of 
acknowledging major areas of uncertainty in travel demand analysis, and they suggest such 
acknowledgement is necessary in order to maintain the credibility of transportation modeling. 

Pradhan and Kockelman (1) argued that since many MPOs are now moving towards integrated 
land use-transportation models (largely in response to federal legislation), it is important to 
understand uncertainty propagation in these very complex models. They also suggested that 
reluctance of planners may be overcome by developing general results and a standard method of 
uncertainty analysis that can be applied to a variety of integrated models and settings. 

This study furthers the work of Pradhan and Kockelman (1) by calibrating the entire suite of 
models based on a single region’s data set; this approach provides all parameter covariance 
matrices, thus allowing more realistic simulation. We investigate uncertainty propagation in an 
integrated model known as ITLUP (9), and we highlight the potential for errors in both land use 
and transportation model outputs. 

 

BACKGROUND 
Uncertainty in travel demand predictions derives from a host of sources, including model 
misspecification, imperfect input information, and innate randomness in events and behaviors.  
Mahmassani  (5) categorized uncertainties affecting the evaluation of alternative transportation 
options into five classes. The first, and most difficult to represent, is uncertainty arising from 
major political upheavals or unexpected technological breakthroughs. The second class arises 
from political, economic, or social events and variables relatively independent of the 
transportation system being evaluated, but affecting the environment in which it operates. The 
third category derives from use of an imperfectly specified model as well as from measurement 
uncertainty in model inputs and parameters. This is also the category that is most suitable for 
empirical analysis. The fourth category is caused by ambiguity in evaluation criteria. (These 
include such attributes as ‘aesthetics’ and ‘political desirability’, which cannot be addressed 
using probabilistic logic.) The fifth category includes uncertainty regarding the basis of 
evaluation. This is especially critical because in many cases it ultimately determines the outcome 
of the planning and decision-making processes. 

Pradhan and Kockelman’s (1) investigations addressed only those sources of uncertainty that 
could be represented using probabilistic theory. The scope of their work, therefore, was limited 
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to an examination of randomness in the predictions of land use-transportation models arising 
from uncertainty in model inputs and parameters.  Essentially all studies have similarly limited 
the scope of their investigations (3,4,10,11). Because of the complexities that arise should any of 
the other categories of uncertainty be considered, and the difficulties associated with the 
quantification of their impacts, the current study also focuses on uncertain predictions arising 
from variability in model inputs and model parameters. 

Computing Uncertainty 
The method of moments and Monte Carlo simulation are two key methods for assessing the 
distribution of outputs, which are functions of random inputs.  By relying on Taylor-series 
expansions of the output function, the method of moments approximates output moments using 
means, standard deviations, and other, higher-order moments of inputs. 

Use of this method requires that outputs be specified as a clear, single function of inputs; this is 
extremely difficult, if not impossible, for almost all integrated model outputs (for reasons that 
will become clear in the model specification).  Additionally, accuracy in approximation requires 
use of high-order derivatives, further complicating the analyses. 

Monte Carlo techniques essentially draw input values from their multivariate distributions. These 
are used as model inputs, and their corresponding outputs are calculated. If inputs are drawn 
randomly, the resulting output values constitute a random sample from their respective 
probability distributions. 

Due to the computational complexities inherent in integrated land use-transportation models 
(e.g., network equilibration), Monte Carlo methods were employed in this study.  Such methods 
require substantial computer run time, and human input, but they produce more accurate and 
realistic results than method of moments.  With 200 simulations of the full model, our outputs 
demonstrate most of their range; however, extreme events are rarely generated. 

Uncertainty Analysis 
There are several relatively simple but valuable techniques for examining the effects of input 
uncertainty on outputs (12). The most useful here is multivariate sensitivity analysis, which helps 
identify the degree to which model outputs are affected by changes in inputs, while controlling 
for variations in other inputs.  By eliminating dimensions or units, much like elasticities, 
standardized regression coefficients are very helpful here. After linearly regressing an output on 
inputs, a standardized regression coefficient SRCi is calculated as follows: 

y

ii
iSRC

σ
σβ ×

=          (1) 

where iSRC  is the standardized regression coefficient, βi  is the regression coefficient, σi is the 
standard deviation of the independent variables, and σy  is the standard deviation of the 
dependent variable.  This measures the number of standard deviations in the output one may 
expect from a single standard deviation’s increase in input i.  These standardized coefficients are 
used to report results from this work’s sensitivity analyses, in a later section. 
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DATA DESCRIPTION 
The current application was undertaken for the Austin, Texas, region, which is mid-size 
metropolitan area of 700,000 people, spread across three counties (Hays, Travis and 
Williamson).  The region is divided into 1074 traffic serial zones (TSZ’s), on the basis of 
aggregations of census block groups; and the network is comprised of 16,966 links. The great 
majority of data used for calibrating the models was obtained from the Capital Area Metropolitan 
Planning Organization (CAMPO).  These include population and employment by type and by 
zone, as well as 24-hour and two-hour peak travel times for 1997 (which were used to calibrate 
various land use and travel demand sub-models). 

The 1990 Census of Population data also were used, in order to estimate the mean and standard 
deviation of household incomes by zone, as a function of Census-provided median incomes. The 
results of these regressions permitted predictions of household distributions across four income 
categories for each zone, these were then used in the land-use and trip-generation models. 

Austin’s 1996 Travel Survey (the ATS) was used to calibrate the four-step travel demand model 
(TDM).  This survey consisted of all members above 5 years of age across 1939 households 
reporting all trips made on a single weekday.  

 

MODEL DESCRIPTION 
The current application of Putman’s Integrated Transportation and Land-Use Package (ITLUP) 
consists of: a Disaggregate Residential Allocation Model (DRAM) and an Employment 
Allocation Model (EMPAL) (9). Both are modified forms of Lowry’s model. DRAM uses the 
attractiveness of a zone and the accessibility of a zone’s workers to jobs in other zones as the 
principal factors in allocating households to zones. EMPAL allocates employment based on the 
employment in the previous time period and the attractiveness of the zone for households. Upon 
close inspection, their specifications may appear somewhat counter to expectations. For example, 
households are assumed to locate where employers would be most attracted to them (rather than 
in locations where they are most attracted to employers).  And jobs locate in positions where 
households would find them most accessible (rather than in positions where they find households 
to be most accessible).  Both perspectives make sense.  Our work strives to follow the traditional 
paradigm as closely as possible. 

Disaggregate Residential Allocation Model 
The original DRAM and EMPAL equations (9) have undergone several changes over the years, 
primarily due to data differences. In the current application households were allocated to zones 
based on the following DRAM formula: 
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where tiN ,
ˆ  is the estimated number of households in zone i  at time t , tiW ,  is an attractiveness 

measure for zone i  at time t , p
tjic , is the peak travel time between zones j  and i  at time t , op

tjic ,  
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and is the off-peak travel time between zones j and i  at time t, tr  is the region-wide ratio of 
households per employee at time t , and both βop and βp are empirically derived parameters. 

The attractiveness of a zone was calculated as follows: 
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where tiL ,  is the total land area of zone i  at time t , k
tiN ,  is the number of residents in zone i  who 

are in the thk  income quartile at time t , and θ  and 1γ … 4γ  are empirically derived parameters. 
There are 4 household categories (as defined by annual income) and, therefore, four versions of 
equations 2 and 3. Thus, there are 28 parameters used in the DRAM portion of the integrated 
model. 

Employment Allocation Model 
 In this application the EMPAL equation used for allocating employment to zones is as follows: 
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where tjE ,  is the employment in the relevant sector  (basic, retail, and service) in zone j  at time 
t , 1, −tiH  is the number of households in zone i  at time t , 1, −tjW  is the attractiveness function for 

zone j  at time 1−t , h
tr  is the region-wide ratio of employment at time t  to households at time 

1−t , e
tr  is the region-wide ratio of employment at time t  to employment at time 1−t ,  and δ  

is an empirically derived parameter.  

The attractiveness of a zone was calculated as follows: 
21 )()( 1,1,

δδ
jtjtj LEW ×= −−          (5) 

  

where jL  is the total land area of zone j , and 1δ  and 2δ  are empirically derived parameters.  
There are 3 sectors defined by employment type and, therefore, three versions of equations 4 and 
5. Thus, there are 15 parameters used in the EMPAL portion of the integrated model. 

The DRAM model parameters were calibrated using the 1997 household and employment 
allocations across Austin’s zones. Households were categorized into four groups based on 
estimates of average zonal annual income and its standard deviation (both as a function of 
available median income data); these groups were defined as having an annual household income 
less than or equal to $30,000, between $30,000 and $42,500, between $42,500 and $55,000, and 
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greater than $55,000. 

EMPAL’s parameters were calibrated using the 1997 household data, as well as 1997 and 
CAMPO-predicted 2007 employment data. The implicit assumption of this strategy is that job 
locations respond first (to prior employment and household allocations), and households respond 
second (to current employment allocations). Employment was categorized into three types: basic 
(Standard Industrial Classification (SIC) code 1-5199), retail (SIC code 5200-5999) and service 
(SIC code 6000-9799). Maximum likelihood estimation of all the parameters was performed 
using Gauss software (version 3.2.34 (13)). The parameter estimates and their associated t-
statistics are shown in Table 1.  All the parameter values are consistent with expectations.  The 
positive peak travel time parameters suggest that households and jobs are attracted to regions, 
which are congested during the peak period but this effect is compensated to a slight extent off-
peak effects.  

The standard ITLUP formulation has several limitations. A major one is that it does not account 
for land use intensity constraints. ITLUP models assign jobs and households to zones even if 
they do not have the capacity to accommodate more jobs or households. The current application 
deals with this limitation by reallocating excess allocation to zones which have the area to absorb 
more jobs and households. Maximum allowable residential and commercial densities used in this 
work are 25 households per residential acre and 100 jobs per commercial acre. These two 
maximum densities were calculated based on an envelope analysis of CAMPO’s 1995 land use 
data set. Unfortunately, the land use data were only available for 549 out of the 1074 TSZ’s, so a 
multinomial logit model for fraction of land by category (residential, commercial, and vacant), as 
a function of zonal area and network distance to the CBD, was developed to estimate the land 
use distribution in the remaining zones in the year 1995.  The household and job allocations 
obtained from EMPAL and DRAM are first used to fill up the commercial and residential area in 
a zone. If, the numbers require more area, any vacant area is allocated to jobs and households in 
proportion of their demand for land. If a zone cannot accommodate more development, that zone 
is removed from consideration and the remaining jobs and/or households are allocated to the 
other zones by re-running the DRAM and EMPAL models.   

Another limitation of ITLUP is that DRAM and EMPAL models are applied sequentially, 
neglecting simultaneous interactions between jobs and households. In addition, ITLUP does not 
consider land prices and commodity flows in allocating jobs and households; so it lacks 
important relationships and variables of great interest to planners, policymakers, and the public.  
However, its relative simplicity permits a fairly transparent analysis of uncertainty. In contrast, 
for example, Waddell et al.’s UrbanSim (14) requires on the order of 1,000 parameters and tens 
of thousands of input values that extremely few regions possess (such as development history 
and land prices by hectare). Analysis of uncertainty under that model was performed by Pradhan 
and Kockelman (1), but only with limited input combinations and reliance on given parameter 
sets (without covariance matrices). 

Travel Demand Model 
The Urban Transportation Planning Package's (UTPP) traditional four-step travel demand model 
(TDM) was adopted to link the land use allocations of jobs and households to the Austin 
transportation network. The trip purposes considered in this application are Home-Based Work 
(HBW), Home-Based Non Work (HBNW) and Non Home-Based (NHB) trips.  Details of the 
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four basic model steps follow here. 

Trip Generation 
Linear regression models for trip production and attraction were developed based on the 1996 
ATS data.  Trip purpose and mode split proportions in the ATS are as follows: 20.1% of trips 
were HBW, 49.3% were HBNW, and 30.6% were NHB; 88.6% were by automobile, 6.1% by 
transit, 3.8% by walking, and 1% by bike. Trip production models for HBW and HBNW trips 
were developed at the household level, whereas the trip production model for NHB trips was 
developed at the zonal level. 

The model specifications are given below: 

( )4321 ,,, IncIncIncIncfPHBW =  

                                               ( )4321 ,,, IncIncIncIncfPHBNW =  

    =NHBP  f(Basic,Retail, Service) 

where PHBW and PHBNW are the number of person trips (per day) produced by a household, and 
PNHB are the numbers of NHB trips produced/generated by a zone. Inci is the indicator variable 
for the ith   income category, and Basic, Retail and Service are the numbers of these jobs in a 
zone. 

Trip-attraction models also were developed at the zonal level, and their general functional 
specifications are the same as for the production of NHB trips (i.e., as a function of numbers by 
basic, retail, and service jobs per attractive zone). The parameter estimates for both production 
and attraction models are shown in Table 2. 

Trip Distribution 
Multinomial logit models of destination choice were calibrated for each trip purpose and for peak 
and off-peak times (15). The natural log of the total number of attracted trips (as estimated using 
Table 2’s values) and travel times were used as explanatory variables. The coefficient on the 
total number of trips attracted term was constrained to equal one, so that the model form is the 
same as a gravity model; and size is accommodated proportionally, which is consistent with 
probabilistic theory. The model specification is shown below: 

∑
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where ijp  is the percentage of trips produced in zone i  that are attracted to zone j, jA  is +the 

number of person-trips attracted to zone j, and ijt  is the travel time from zone i  to zone j (for 
both peak and off-peak periods, depending on the time of day). Calibration results are given in 
Table 3. 

Time of Day Characteristics 
Peak and off-peak times of day were used in this study.  According to CAMPO, the peak period 
lasts two hours in the morning (from 7:15 a.m. to 9:15 a.m.). The trip production-attraction (PA) 
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matrices were converted to trip origin-destination (OD) matrices by time of day (peak and off-
peak) using departure and arrival rates during the peak period, as shown in equation 7.  

                                      Θ×+Ψ×= TPeak PAPAOD                               (7) 

where Ψ is the departure rate for trips in the peak period, Θ is the return rate for trips in the peak 
period. This equation was used to calculate the OD matrices for HBNW, HBW, and NHB trips. 
These rates were calculated from the 1996 ATS data. 

Mode Split 
Binary logit models of mode choice were calibrated to assign person-trips to automobile and 
non-automobile modes. Six different models were estimated: one for each trip purpose and time 
of day. But each model form’s probability for auto choice is structured the same, as follows: 
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ββα
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      (8) 

The parameters and goodness-of-fit measures for these 6 mode-choice (MC) models are given in 
Table 3.  

All parameter estimates are consistent with expectations. But the low goodness-of-fit measures 
suggest that the preference for automobile use is independent of the CAMPO-provided travel 
times (which may be measured with significant error). In other words, simply a mode-specific 
constant will do almost as well in explaining mode choice as the available travel time data. As a 
result of this, the βm was not found to be important in sensitivity analysis, as described later in 
this paper.   

Vehicle Occupancy 
Vehicle occupancy for each trip purpose was calculated from the 1996 ATS data. Average 
vehicle occupancy levels of 1.20, 1.99, and 1.85 were for HBW, HBNW, and NHB trips, 
respectively.  (Unlike all other parameters, these parameters were not varied.) 

Traffic Assignment 
All automobile trips were assigned to the Austin network using the Stochastic User Equilibrium 
(SUE) (16) assignment method available in TransCAD (17). The following settings were chosen 
for the assignment: a probit route-choice model with 5% error (this represents the percentage 
error for the error term used in stochastic user equilibrium assignment), a convergence criterion 
of 0.01(convergence criterion of 1% refers to the maximum percentage flow difference between 
successive iterations), and a maximum of 30 iterations. Only 30 iterations were performed due to 
the time required.  An average of 18 minutes was needed for each traffic assignment. Two 
assignments (peak and off-peak) were done for each run, and four runs were performed for each 
of the 200 simulations (i.e., for the future years 2002, 2007, 2012, and 2017). Thus, on average 
2.4 hours were required to perform essentially just the traffic-assignment step for each of the 200 
simulations.  Travel times were not fed back to trip distribution stage; this would have required 
additional time. 

The link performance function is of the following type (based on the original Bureau of Public 
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Roads (18) formula), but using different parameter values for α and βlink): 
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where tf is the free-flow travel time, and α and βlink are link performance parameters, provided by 
CAMPO.  There are 8 sets of these parameters, depending on road type.  No information on 
these parameters’ uncertainty was available, so they were assumed to have standard deviations 
that are 30% of their given values and assumed to follow independent normal distributions.  

Background Flows 
Austin’s 43 external zones also attract and produce trips, which congest the network.  Counts of 
trips with at least one external zone (as the origin, destination, or both) were obtained from 
CAMPO’s 2007 OD matrix predictions, and these were loaded as “background flows” onto the 
network. For future model applications (i.e., 2012 and beyond), these year-2007 trip counts were 
assumed to grow at the (randomly drawn) population growth rate. 

 

SIMULATIONS 
200 full Monte Carlo simulations of input sets (including both model parameters and starting 
distributions of jobs and households, by type and zone) were performed. The demographic 
variables varied were population and employment growth rates. The means and the standard 
deviations of these rates were taken to be 3.3% +/- 0.5% (population growth rate), and 3.1% +/- 
0.5% (employment growth rate) (19). The mean growth rates were obtained from CAMPO’s 
newsletter, and standard deviation values were assumed. 

All model parameters were varied assuming multivariate normal distributions, based on their 
estimated variance-covariance matrices (an output of the software codes used to calibrate the 
various ITLUP and TDM submodels). The correlation matrices of parameters for DRAM and 
EMPAL models are shown in Tables 4 and 5.The link-performance parameters, and the peak/off-
peak splits were also varied, assuming independent normal distributions and coefficients of 
variation (mean divided by standard deviation) of 0.3. 

In all 95 parameters and 2 demographic variables were varied, and 200 simulations were 
performed. To observe the evolution of uncertainty over time, the land use and travel demand 
model were run every 5 years, and four such runs were performed for each simulation, for a total 
of 20 years of forecasts of population, employment, and travel, across the region. 

 

RESULTS 
Sensitivity analysis was performed by regressing various key outputs of the integrated model on 
input parameters. Standardized coefficients and p-values were used to gauge the practical and 
statistical impact of variables on the model outputs. (Note: A p-value provides a sense of the 
significance level for the two-tailed null hypothesis test that an explanatory variable has no effect 
on dependent variable (i.e. the regression coefficient is zero). Variables with p-value less than or 
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equal to 0.05 are considered very significant.) 

The outputs analyzed explicitly were weighted residential density, weighted commercial density, 
VMT and VHT for both peak and off-peak periods and link flows during peak and off-peak 
periods.  The final model specifications were obtained by removing the variables, which were 
not significant in any model. Different combinations of the remaining variables were considered 
to arrive at the specifications shown in Tables 6, 7, and 8. 

The results for off-peak and peak VMT and VHT are shown in Table 6. The results indicate that 
the employment and population growth rates do not impact VMT and VHT in a significant way. 
The exponent (βlink) on the volume-to-capacity term in the link performance function is the most 
significant variable for predicting both peak and off-peak VHT. This makes sense, since VHT is 
very dependent on link travel times. The coefficients in the trip production and trip attraction 
models are also highly significant.  

Peak-period VHT and VMT are estimated to be highly sensitive to peak-off peak splits, which is 
consistent with our expectation. Peak and off-peak VMTs also are sensitive to αi, the coefficient 
on the volume-to-capacity term in the link performance function.  

The three links chosen for analysis are: (1) IH35 Northbound, near Cameron Road; (2) Loop 
1Southbound, south of 5th and 6th Streets; and (3) IH35 Southbound, south of US290 and SH 71. 
These are critical links for the network, and each carried close to capacity flow in each 
simulation. Averages of flows on these three links were used to perform sensitivity analysis. The 
link flow results shown in Table 8 indicate that βlink is the most significant parameter in the 
initial years for off-peak period link flows. In the long term, however population growth rate has 
a significant impact on the link flows. As with peak period VHT and VMT, peak period link 
flows are also significantly dependent on peak-off peak splits. 

Sensitivity analyses also were performed on land use results, in the form of population- and jobs-
weighted averages of residential and commercial densities. The regression results are shown in 
Table 7, and results indicate that commercial density is significantly influenced by various 
DRAM and EMPAL model parameters, as well as trip production and attraction rates. 
Residential density is significantly impacted by EMPAL parameters, trip production and 
attraction rates, and mode choice model parameters.  

The “evolution” of uncertainty (as measured by coefficient of variation in several outputs) over 
time is shown in Figure 1. Since VHT is a final model output and is highly sensitive to 
congestion (e.g., v/c ratios near or above 1.0), it is not surprising that it was found to be the most 
variable of outputs studied. Uncertainty can compound itself across all the intermediate sub-
models, though there certainly are opportunities for variability reductions (such as in aggregation 
of individual choices and assignments).  Peak-period outputs also were found to exhibit greater 
variation than off-peak outputs, which is probably due to the exponential effects of congestion on 
travel times. These findings are consistent with Pradhan and Kockelman’s (20,21) investigations 
of ITLUP for Eugene-Springfield.  

CONCLUSIONS 
This work investigated the dependence of future location and travel choice predictions on 
integrated-model inputs and parameters.  Results indicate that output variations were most 
sensitive to the exponent of the link performance function, the split of trips between peak and 



 
   
 

  

                                                                                                                                                        12
  
  
                                                                                                                                                          
 

off-peak periods, and several trip generation and attraction rates.  20 years in the future, final 
uncertainty levels (as measured by coefficients of variation) due solely to input and parameter 
estimation errors were found to be on the order of 38% for total regional peak-period VMT, 45% 
for peak period flows, and 50% and 37% for residential and employment densities, respectively.  
This means that central point estimates of key model outputs are very likely (more than 30%) to 
fall 38% to 50% below or above the mean value.  In the Austin example, 15% of the 200 
region’s simulated peak-period VMT estimates fell below 3.7 million miles (per day) and 15% 
exceeded 8.4 million miles. Such substantial variation is due solely to standard model parameter 
and input uncertainties.  Other uncertainty about the future and human behavior also exists and 
will add further variation. 
 
This work builds on Zhao and Kockelman’s investigations of four-step travel demand models (4) 
and Pradhan and Kockelman’s investigations of integrated models by adding realism to 
parameter distributions (through controlled calibrations) and model specification (through 
detailed submodel assembly and an integration of land use and travel behaviors) (1,21).  In 
contrast to Zhao and Kockelman’s work, it examples the evolution of prediction uncertainties 
over time and across model stages, and travel conditions are permitted to impact location 
choices.  Due to these distinctions, simulation results indicate that the link performance 
parameter βlink is a key source of uncertainty in outputs; this is probably due to significant travel-
time feedbacks to location decisions, which are fundamental to travel patterns.  Population and 
employment growth rates only seem to have an effect in the long run. However, it should be 
emphasized that these results may be specific to ITLUP; in UrbanSim Pradhan and Kockelman 
observed that demographic inputs were principal sources of uncertainty in the short and long 
terms (1). 

This study is of value for MPO’s, which are using or hoping to use Integrated Transportation–
Land Use models in their forecasting and planning activities. MPOs can perform multiple runs of 
their models under different scenarios and then gauge the impact of inputs on the outputs. This 
provides a sense of which variables are greatly mis-predicted and which inputs or model 
parameters should be carefully observed or estimated, to minimize the uncertainty in model 
predictions. If MPOs do not have the capability to run multiple simulations under varying 
scenarios, they can make use of the key parameters identified in this study and the related 
estimates of output variation to forecast output variance and improve the model design and 
overall planning processes.  

The time-consuming nature of the simulations and a lack of data affected the investigations. For 
example, the lack of employment data for two past time periods required we use 2007’s 
predicted employment data for calibrating the EMPAL models, which could have some bearing 
on the parameter estimates and sensitivity analysis. Also, correlation information for certain 
variables (like peak/off-peak split and link-performance parameters) were not available, so these 
were assumed. External trips were not modeled explicitly; instead we relied on CAMPO’s 
estimates to load the network with growing background flows.  And vehicle occupancy rates 
were not randomly varied.  

Further work would be helpful for more fully understanding the growth in prediction 
uncertainties over time and across different model frameworks. Instead of random simulations, 
experiments could be performed by varying only one variable at a time (e.g., the population 
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growth rate), and gauging its marginal impact on outputs. This can be time-consuming, but it 
certainly can assist in drawing crisper conclusions about the impacts of individual parameters 
and inputs. Also, such work should be done with other land use transportation models, to draw 
general conclusions on the impact of certain variables and parameters on uncertainty in other 
models’ outputs. 
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               Table 1. Parameter Estimates: DRAM and EMPAL Models 
 

  
Group 1 

 
Group 2 

 
Group 3

 
Group 4

 
Basic 

 
Retail 

 
Service 

     βp 
0.0490 
(20.3) 

0.0264 
(7.55) 

0.018 
(2.72) 

0.0170 
(8.92) 

0.0937 
(18.2) 

0.0980 
(19.4) 

0.0322 
(14.8) 

    βop 
-0.3782 
(-94.6) 

-0.2859 
(-56.5) 

-0.236 
(-28.9) 

-0.1842 
(-102) 

-0.2781 
(-29.4) 

-0.3078 
(-38.1) 

-0.1308 
(-35.9) 

θ 
0.6548 
(157) 

0.6340 
(104) 

0.5985 
(96.6) 

0.5491 
(112)    

γ1 

71.49 
(47.2) 

56.33 
(30.9) 

44.81, 
(13.70)

12.60 
(0.999)    

γ2 

58.16 
(54.7) 

49.19 
(34.8) 

35.96 
(14.02)

14.13 
(1.55)    

γ3 

13.21 
(34.5) 

17.16 
(35.1) 

21.02 
(34.1) 

14.67 
(12.9)    

γ4 

67.19 
(45.9) 

54.35 
(30.6) 

44.22 
(13.8) 

18.16 
(1.48)    

δ     
-1.6350 
(-82.5) 

-1.5762 
(-64.5) 

0.633 
(-33.44) 

δ1     
0.2743 
(36.7) 

0.2018 
(19.9) 

0.4056 
(74.9) 

δ2     
0.8725 
(49.7) 

1.2590 
(56.0) 

0.5969 
(56.8) 

Log Lik 731.6 272.3 238.4 801.2 1618 617.6 1698 

LRI* 0.556 0.531 0.511 0.513 0.941 0.856 0.907 
Nobs 1074 1074 1074 1074 1074 1074 1074 

*LRI = Likelihood Ratio Index 
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                          Table 2. Parameter Estimates: Trip Production and Attraction Models 

 
 

 
 
 

 
 
 
 

    
    
 
 
 
 
 
 
 
 
 
 
 
 

Production Models 
 HBW HBNW NHB 

Inc1 1.325 (21.32) 4.049 (25.3)  
Inc2 2.092 (23.6) 4.423 (19.4)  
Inc3 2.115 (26.8) 4.881 (24.0)  
Inc4 2.443 (30.4) 5.547(26.8)  

Basic   0.4621 (4.12) 
Retail   5.186 (12.5) 

Service   1.481 (10.0) 
Adj. R2 0.559 0.525 0.538 

Nobs 1939 1939 586 
Attraction Models 

Basic 0.4892 (8.79)  0.4093 (3.33) 
Retail 1.668 (7.26) 5.419 (8.41) 5.659 (12.4) 

Service 1.020 (12.5) 1.723 (7.69) 1.287 (7.94) 
Adj. R2 0.526 0.303 0.491 

Nobs 613 665 568 
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Table 3. Parameter Estimates: Destination and Mode Choice Models 
 

Destination Choice Models 
HBW HBNW NHB 

 
 

Off 
Peak 

 
Peak 

Off 
Peak 

 
Peak 

Off 
Peak 

 
Peak 

β1 
-0.0804 
(-22.3) 

-0.0637 
(-22.4) 

-0.1449 
(-42.9) 

-0.1201 
(-40.0)

-0.1401 
(-44.6) 

-0.1299 
(-28.4) 

Adj. R2 0.374 0.349 0.500 0.515 0.446 0.475 
Nobs 971 1037 2571 2001 3307 1142 

Mode Choice Models 
 

ααυτο 
1.944 
(6.15) 

1.935 
(6.61) 

1.421 
(11.4) 

1.442 
(8.75) 

2.011 
(9.36) 

2.046 
(5.25) 

 
βm 

-0.0225 
(-2.58) 

-0.0306 
(-2.99) 

-0.0091 
(-2.62) 

-0.0004 
(-0.08)

-0.0216  
(-3.12) 

-0.0264 
(-1.88) 

Adj. R2 0.0154 0.0182 0.0022 0.0015 0.0084 0.0086 
Nobs 1085 1145 3154 1374 2507 792 

 
 
Table 4. EMPAL Parameter Estimates: Correlation Matrix 

                       
Basic δ2 δ1 δ βop βp 
δ2 1.000 -0.714 -0.751 -0.682 0.507 
δ1 -0.714 1.000 0.65 0.802 -0.487 
δ -0.751 0.65 1.000 0.566 -0.898 
βop -0.682 0.802 0.566 1.000 -0.475 
βp 0.507 -0.487 -0.898 -0.475 1.000 
Retail δ2 δ1 δ βop βp 
δ2 1.000 -0.62   -0.585 -0.701 0.216 
δ1 -0.627 1.000   0.611 0.771 -0.366 
δ -0.585 0.61    1.000 0.547 -0.858 
βop -0.701 0.77    0.547 1.000 -0.367 
βp 0.216 -0.36   -0.858 -0.367 1.000 
Service δ2 δ1 δ βop βp 
δ2 1.000 -0.723 -0.642 -0.772 -0.151 
δ1 -0.723 1.000 0.563 0.841 0.137 
δ -0.642 0.563 1.000 0.443 -0.551 
βop -0.772 0.841 0.443 1.000 0.197 
βp -0.151 0.137 -0.551 0.197 1.000 
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Table 5. DRAM Parameter Estimates: Correlation Matrix 

 
Group 1 θ γ1 γ2 γ3 γ4 βop  βp 

θ 1.000 0.026 0.037 -0.026 0.024 -0.358 0.066 

γ1 
0.026 1.000 0.98 0.837 0.999 -0.327 0.366 

γ2 
0.037 0.98 1.000 0.723 0.986 -0.326 0.359 

γ3 
-0.026 0.837 0.723 1.000 0.819 -0.275 0.329 

γ4 
0.024 0.999 0.986 0.819 1.000 -0.326 0.365 

βop -0.358 -0.327 -0.326 -0.275 -0.326 1.000 -0.843 

    βp 0.066 0.366 0.359 0.329 0.365 -0.843 1.000 

Group 2 θ γ1 γ2 γ3 γ4 βop  βp 

θ 1.000 -0.014 -0.001 -0.059 -0.016 -0.305 -0.017 
γ1 -0.014 1.000 0.941 0.636 0.998 -0.063 0.071 
γ2 -0.001 0.941 1.000 0.361 0.959 -0.066 0.071 
γ3 -0.059 0.636 0.361 1.000 0.592 -0.049 0.067 
γ4 -0.016 0.998 0.959 0.592 1.000 -0.063 0.072 
βop -0.305 -0.063 -0.066 -0.049 -0.063 1.000 -0.852 
    βp -0.017 0.071 0.071 0.067 0.072 -0.852 1.000 
Group 3 θ γ1 γ2 γ3 γ4 βop  βp 

θ 1.000 0.009 0.016 -0.041 0.008 -0.159 -0.029 
γ1 0.009 1.000 0.974 0.741 0.999 -0.665 0.684 
γ2 0.016 0.974 1.000 0.585 0.982 -0.648 0.666 
γ3 -0.041 0.741 0.585 1.000 0.717 -0.527 0.547 
γ4 0.008 0.999 0.982 0.717 1.000 -0.664 0.683 
βop -0.159 -0.665 -0.648 -0.527 -0.664 1.000 -0.955 
    βp -0.029 0.684 0.666 0.547 0.683 -0.955 1.000 
Group 4 θ γ1 γ2 γ3 γ4 βop  βp 

θ 1.000 0.692 0.691 0.664 0.692 -0.002 -0.536 
γ1 0.692 1.000 0.998 0.966 0.999 0.279 -0.708 
γ2 0.691 0.998 1.000 0.95 0.999 0.282 -0.709 
γ3 0.664 0.966 0.95 1.000 0.964 0.249 -0.671 
γ4 0.692 0.999 0.999 0.964 1.000 0.28 -0.708 
βop -0.002 0.279 0.282 0.249 0.28 1.000 -0.755 
    βp -0.536 -0.708 -0.709 -0.671 -0.708 -0.755 1.000 
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Table 6. Sensitivity Analysis Results: VMT and VHT 
 

  Offpeak VHT Peak VHT 
Parameters Description 2017 2017 

  Std Coeff. p - value Std Coeff. p - value
Emprate Employment Rate 0.033  0.610 0.032 0.633 
Poprate Population Rate 0.098 0.136 -0.049 0.450 
βlink 

Exponent Link Performance Function 0.289 0.000 0.283 0.000 

α6 

Parameter Link Performance 
Function 0.323 0.000   

ΨHBNW  Peak Off-peak Split   0.304 0.000 
ΨHBW 

Peak Off-peak Split   0.169 0.011 
θ (Group 4) DRAM Parameter 0.118 0.072   

Inc3 (HBNW) Trip Production Parameter -0.073 0.266   
Inc3 (HBW) Trip Production Parameter   0.088 0.187 
Basic (NHB) Trip Production Parameter -0.118 0.071   

Retail (HBNW) Trip Attraction Parameter   -0.131 0.102 
Service (HBNW) Trip Attraction Parameter   -0.132 0.100 

Retail (HBW) Trip Attraction Parameter 0.154 0.022   
Basic (NHB) Trip Attraction Parameter -0.080 0.225 -0.039 0.559 

Adj. R2  0.181  0.162  

  Offpeak VMT Peak VMT 
Emprate Employment Rate 0.079 0.232 0.001 0.984 
Poprate Population Rate 0.176 0.009 0.077 0.254 
βlink 

Exponent Link Performance Function 0.226 0.001   

α6 
Parameter Link Performance 

Function 0.313 0.000   

α8 
Parameter Link Performance 

Function   0.197 0.004 
ΨHBNW Peak Off-peak Split   0.297 0.000 

Inc3 (HBNW) Trip Production Parameter -0.080 0.224   
Retail (HBNW) Trip Attraction Parameter -0.060 0.371   
Basic (HBW) Trip Attraction Parameter   -0.072 0.286 
Retail (HBW) Trip Attraction Parameter 0.190 0.005   

Basic (NHB) 
Trip Attraction Parameter 

-0.105 0.113   
β1 (HBNW Offpeak) Destination Choice Parameter 0.196 0.004   

Adj. R2  0.164  0.105  
Nobs  200  200  
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    Table 7. Sensitivity Analysis Results: Weighted Residential and Commercial Density

 
 Weighted 

Commercial Density 
Weighted 

Residential  Density
Parameters  2017 2017 

  Std Coeff. p - value Std Coeff. p - value
Emprate Employment Rate 0.037 0.549 0.059 0.394 
Poprate Population Rate 0.048 0.447 0.031 0.661 

α2 
Parameter Link Performance 

Function 0.156 0.017   

α3 

Parameter Link Performance 
Function 0.099 0.113   

ΨNHB  Peak Off-Peak Split -0.094 0.134   
θ (Group 1) Exponent on Total Land DRAM 0.179 0.004 0.122 0.091 
γ1 (Group 3) Parameter DRAM -3.293 0 -1.152 0.166 
γ3  (Group 3) Parameter DRAM 0.21 0.021   
γ4 (Group 3) Parameter DRAM 3.081 0 0.998 0.231 
θ (Group 4) Exponent on Total Land DRAM 0.24 0.02   
γ3 (Group 4) Parameter DRAM 0.746 0.001   
γ4 (Group 4) Parameter DRAM -0.758 0.001   

βop (Group 4) Off-peak time Coefficient DRAM 0.176 0.219   
         βp (Group 4)    Peak time Coefficient DRAM 0.383 0.031   

δ2 (Basic) Exponent on Total Land EMPAL   0.181 0.041 

δ1 (Basic) 
Exponent on Previous 
Employment EMPAL   0.209 0.071 

βop  (Basic) Off-peak time Coefficient EMPAL -0.174 0.066 -0.266 0.05 

δ1 (Retail) 
Exponent on Previous 
Employment EMPAL 0.222 0.011 0.14 0.153 

    βop  (Retail) Off-peak time Coefficient EMPAL -0.189 0.052 -0.208 0.056 
   βp (Retail)  Peak time Coefficient EMPAL -0.282 0.001 -0.142 0.123 

δ (Basic) Previous Period Impact EMPAL -0.18 0.056 -0.156 0.142 
δ2 (Service) Exponent on Total Land EMPAL   -0.124 0.139 

βop  (Service) Off-peak time Coefficient EMPAL 0.073 0.231 -0.165 0.045 
Inc3 (HBNW) Trip Production Parameter   0.157 0.023 
Inc1 (HBW) Trip Production Parameter   0.097 0.151 

Retail (HBW) Trip Attraction Parameter 0.21 0.001 0.138 0.056 
Service (HBW) Trip Attraction Parameter   0.121 0.092 
Retail (NHB) Trip Attraction Parameter 0.09 0.158 0.188 0.009 
Basic (NHB) Trip Attraction Parameter 0.17 0.024   

Service (NHB) Trip Attraction Parameter 0.122 0.096   
Β1 (HBW Offpeak) Destination Choice Parameter   0.11 0.111 

αauto (HBNW Offpeak) Mode Constant 0.156 0.013 0.126 0.068 
αauto (NHB Offpeak) Mode Constant   -0.219 0.02 

βm (NHB Offpeak) 
Travel Time Coefficient in Mode 

Choice Model   0.189 0.044 
αauto (HBW Peak) Mode Constant -0.232 0.01 -0.247 0.01 



 
   
 

  

                                                                                                                                                        21
  
  
                                                                                                                                                          
 

βm (HBW Peak) 
Travel Time Coefficient in Mode 

Choice Model 0.293 0.001 0.247 0.011 
Adj. R2  0.32  0.171  

Nobs  200  200  
Note: Commercial density is employment divided by commercially used land area, per zone. 
 
                  
 

                            Table 8. Sensitivity Analysis Results: Average Flow 
 

 
 Off-peak Average 

Link Flow 
Peak Average 

Link Flow 
Parameters Description 2017 2017 

  Std Coeff. p - value Std Coeff. p - value
Emprate Employment Rate 0.135 0.049 0.011 0.872 
Poprate Population Rate 0.225 0.001 0.072 0.295 

βlink 
Exponent Link 

Performance Function 0.194 0.005   
ΨHBNW  Peak Off-Peak Split   0.206 0.000 
ΨHBW Peak Off-Peak Split   0.208 0.000 

Basic (NHB) Trip Production Parameter -0.119 0.079   
Retail (HBW) Trip Attraction Parameter 0.175 0.011   

βm (HBW Offpeak) 
Travel Time Coefficient in 

Mode Choice Model -0.123 0.071   
αauto (NHB Offpeak) Mode Constant -0.020 0.767   
αauto (HBW Peak) Mode Constant -0.087 0.201   

Adj. R2  0.115  0.068  
Nobs  200  200  
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Figure 1. Evolution of Output Uncertainty Over Time: Travel and Land Use 
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Note: HH Den = Household Density; Emp Den = Employment Density      
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