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ABSTRACT 

A number of operational land use-transportation models make use of spatial input-output (SIO) 

models, some of which are based on random utility theory. The random-utility-based 

multiregional input-output (RUBMRIO) model has been solved in practice by iteratively 

applying a set of equations. Each of the model equations describes relationships among key 

model variables. This paper examines the existence and uniqueness of the RUBMRIO solution, 

which represents the spatial allocation of productive activities and commodity flows. 

Formulating the set of equations as a fixed-point problem illuminates these two key properties, 

and provides a general solution algorithm. Several numerical examples illustrate the solution 

uniqueness and algorithm convergence. These results are valuable for efficient application of 

such models to large-scale problems. By proving that a unique solution does exist and offering 

an algorithm that is guaranteed to converge, this work adds valuable support to the growing 

popularity of this integrated transportation-land use modeling framework. 
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1. INTRODUCTION 
A number of operational land use-transportation models make use of spatial (or interregional, 
interzonal) input-output (SIO) models, including Echenique and colleagues’ MEPLAN (Hunt, 
1993), de la Barra’s TRANUS (1995), and Kim’s model (1989). MEPLAN and TRANUS are 
random-utility-based, and thus may be referred to as random-utility-based multiregional input-
output (RUBMRIO) models. These combine traditional SIO models with a multinomial logit 
(MNL) model for trade and travel choices to represent the distributed nature of commodity flow 
patterns. The RUBMRIO model is usually solved by iteratively applying a set of equations 
(Hunt, 1993). Each equation describes a key model variable. This paper examines the existence 
and uniqueness of the equilibrium solution, which represents the spatial allocation of activities 
and commodity flow patterns, by formulating the original set of equations into a fixed-point 
problem. A modified solution algorithm also is developed, and several numerical examples 
illustrate the convergence of the proposed algorithm and compare it to the original algorithm. 

 

2. BACKGROUND 
Originally proposed by Leontief (1941), input-output (IO) analysis is a macroeconomic approach 
focused on a single region’s industries’ interactions via business expenditure patterns. The 
analysis is driven by exogenous demand for regional goods (e.g., exports).   In contrast to 
Lowry-type models, the IO approach endogenously determines interactions of basic and non-
basic industrial activities. SIO analysis extends the classical IO model to include spatial 
disaggregations (Isard, 1960; Leontief and Strout, 1963). Entropy concepts were then proposed, 
to establish a connection between SIO models, entropy-maximizing theory, and random utility 
theory (Wilson, 1970; Anas, 1984). In this section, we review the original, single-region IO 
models and then summarize the RUBMRIO model based on the literature of Hunt (1993) and de 
la Barra (1995).  While the RUBMRIO model has a connection to entropy theory, similarities 
between entropy maximization and RUBMRIO equations are not the focus of this research.  
Transport prices affect input prices here, in a manner very different from standard network 
equilibration approaches (as in, e.g., Oppenheim 1995 and Kim et al. 2002)). 

 

2.1 Single Regional IO Models 
IO models characterize the interactions between various market actors (typically producers of 
commodities and services). The actors are usually aggregated into sectors. If one has M industry 
sectors, the basic IO model identifies the flow of commodities and services mnx  between sectors 
within a single-region economy, where m is a producing sector and n is a purchasing sector (and 

, 1, 2,...,m n M= ).  For consistency of units, mnx  is the dollar value of sector m’s output that is 
purchased by sector n.  

The total output of any given sector of the single region economy, mX , is given by 
mYxX m

n

mnm ∀+=∑         (2.1) 

where mY  is the final demand for (or export of) sector m’s output.  
The direct purchase can be expressed as: 

nmXax nmnmn ,∀=         (2.2) 



where mna  is a technical coefficient, representing the amount of sector m product required to 
produce one dollar of sector n product. So equation (2.1) can be written as: 

mYXaX m

n

nmnm ∀+=∑        (2.3) 

This model assumes that equilibrium between total supply and total demand occurs, but 
substitution across inputs to production does not (i.e., one cannot substitute one input for another 
in producing any output; they are used in fixed ratios). The production technology does not 
change rapidly and is assumed constant over the period of model application. 

In matrix notation, the IO model is as follows: 

or
= +

=
X AX Y

(I - A)X Y
         (2.4) 

where Y represents a vector of final demand, X a vector of outputs, A the technical coefficient 
matrix { }mna , and I the identity matrix.  

Assuming that the (I-A) matrix is nonsingular, it is possible to solve for production 
levels, given final demand: 

YA)-(IX -1=          (2.5) 
Thus, the equilibrium solution for X is deterministic in equation (2.5), given Y and A. 

The only necessary condition is that the (I-A) matrix be nonsingular. Then mnx  is solved by 
equation (2.2).  

 

2.2 Random-Utility-Based Multiregional Input-Output Models 
The extension of the IO model to multiple regions was first proposed by Isard (1960), who 
introduced a spatial dimension into the intersectoral flow tables:  

,m m
i ij

j
X x i m= ∀∑         (2.6) 

where m
ijx is the flow of sector m from region i to region j, and , 1, 2,...,i j J= .   Equation (2.3) 

therefore becomes: 
,m mn n m

ij j jk j
i n k

x a x Y j m= + ∀∑ ∑ ∑        (2.7) 

where { }mn
ia  is the set of technical coefficients for production processes in region i, and 

1,2,...,k J= .  
Equation (2.7) describes the commodity balance condition, which requires that the flow 

of sector m’s goods into region j equals the use of that sector’s goods for producing goods of 
other sectors (intermediate demand) plus any final demand. Of course, a region can acquire many 
or even all of its inputs locally (i.e., from itself), but this is not required. 
 As one can see, Equation (2.7) is insufficient for determining flows since it describes 
only the origin and destination flow totals. Denoting , ,m m

j ij
i

C x j m= ∀∑  as the total consumption 

of commodity n in region j, one can rewrite (2.7) as the following: 
,m mn n m

j j j j
n

C a X Y j m= + ∀∑         (2.8) 

where n
jX  is defined as in equation (2.6). 



Random utility can then be adopted to describe how “industries” (including households) 
choose where to acquire their inputs, in a utility-maximizing or cost-minimizing way, subject to 
certain constraints. For example, MEPLAN and TRANUS determine trade volumes essentially 
based on the following disutility function1: 

, ,n n n n
ij i ij iju b d i j nε− = + + ∀         (2.9) 

where n
iju  is the utility of purchasing one unit (one dollar) of sector n’s goods from region i for 

use as inputs in region j2; n
ib is the price of producing a unit of n in region i; n

ijd  is the price of 
transporting a unit of n from i to j (which may be a logsum term, from lower-order mode choice, 
time-of-day choice, and/or transport choices within a nested logit model framework [see, e.g., 
Ben-Akiva  and Lerman, 1979]),  and n

ijε is a random error term. If n
ijε  follows the i.i.d. Gumbel 

distribution (McFadden, 1974), then the trade volume of sector n from i to j is given by: 
exp( )

, ,
exp( )

n n
ijn n

ij j n n
kj

k

v
x C i j n

v
λ
λ

= ∀
∑

       (2.10) 

where nλ is a dispersion parameter (inversely related to the standard deviation of the Gumbel 
error terms) and ( )n n n

ij i ijv b d= − + , the systematic utility.  

 Here we assume the final demand of each zone, m
jY , is known, which may be hard to 

determine and ideally should be endogenous (especially over the long run). One possible model 
improvement is to define a certain number of export zones (ports, airports, etc.) whose export 
amounts are observable, and use another logit model to distribute the export demands across 
production zones.  This has been done by Jin, Kockelman and Zhao (2002), and the utility 
function is similar to (2.9).  In addition, one may simply regard the export zones as regular 
(producing) zones but assume practically infinite interzonal transportation costs from these 
export zones, to prevent them selling/producing any products.    

Since Leontief technology is linear, the average cost of input n in region j is taken to be 
the weighted average (across input origins, i) of purchase prices ( n

ib ) plus the transportation 
prices ( n

ijd ) to region j. 

( )
,

n n n
ij i ij

n i
j n

ij
i

x b d
c j n

x

+
= ∀
∑

∑
        (2.11) 

The sales price of a good produced by sector n in region j, n
jb , is assumed equal to its 

manufacture cost3, which is given by the following: 
,n mn m

j j j
m

b a c j n= × ∀∑          (2.12) 

In practice, the transportation costs, n
ijd , are given exogenously (implying a non-

congestible network)4. The dispersion parameters, nλ , are generally estimated a priori, based on 
trade observations (for example, those included in the Commodity Flow Survey [BTS, 2001]). 

It is proven here that simultaneously solving equations (2.7) through (2.12) produces a 
unique spatial equilibrium solution for trade volumes. An equilibrium is characterized here as a 
situation that satisfies all equations.  In general, solving this complex set of equations requires 



iterative calculations.  The standard algorithm, as suggested by Hunt (1993), can be summarized 
as follows: 
 
Original RUBMRIO Algorithm, as Applied in Practice: 
Given m

iY , mn
ja , n

ijd , and nλ , solve for n
ijx , n

jb , and n
ic , for all , , ,i j m n . 

Step 0: Initialization. Set all n
ijx , n

ib , and n
ic to initial values (usually zeros). 

Step 1: Calculate all utilities n
iju  from equation (2.8); calculate production levels m

iX  from (2.6) 

and consumption levels n
jC  from equation (2.10). 

Step 2: Update all n
ijx  using equation (2.9). 

Step 3: Update all n
ic using equation (2.11) and n

jb using equation (2.12). 
Step 4: Convergence test. Check the predefined convergence criterion. (For 
example, ( ) ( 1) ( 1)max( ) 0.01 , , ,n t n t n t

ij ij ijx x x i j n− −− < ∀ , where t is the iteration number.)  If the 

convergence criterion is met, then stop and the current solution { n
ijx } is taken to be the 

equilibrium solution; otherwise, go to step 1.  
 
This iterative process is not clearly convergent. And it does not indicate whether its 

solution is unique (or whether it even exists). If the solution is not unique, a number of issues 
arise, such as which solution(s) could represent the system equilibrium and how the initial values 
should be chosen to obtain such a solution. The following section formulates the RUBMRIO 
model as a fixed-point problem. The fixed-point formulation reveals that prices are based on the 
exogenous transportation prices and other parameters. In addition, the fixed-point formulation 
suggests that there is a unique solution for prices when transportation costs and other parameters 
are known. Thus, commodity flows are unique, once prices are determined. Such information is 
crucial to successful implementation of RUBMRIO models, since non-existence and/or non-
uniqueness present serious problems for applications and predictions. 

 

3. A FIXED-POINT APPROACH TO THE RUBMRIO MODEL 
The fixed-point approach is a major mathematical tool for numerical analysis. It has been 
extensively used to demonstrate the existence and uniqueness of solution concepts in game 
theory and economics (Border, 1985). Within the discipline of transportation engineering and 
planning, a number of studies make use of fixed-point formulations for trip assignment to 
networks. Dafermos (1980) first proposed a fixed-point model for equilibrium assignment on 
road networks with fixed demand; her work also provided results for convergence analysis. More 
recently, the fixed-point approach has been adopted as a general framework to define user 
equilibrium (UE) and stochastic user equilibrium (SUE) problems and develop solution 
algorithms (Cantarella and Cascetta, 1995; Cantarella, 1997).  

A fixed-point formulation of the RUBMRIO model satisfies two objectives. First, it 
illuminates fundamental relationships among key variables to improve model understanding. 
Second, it allows one to determine solution existence and uniqueness, as well as specify 
convergent algorithms, suitable for large-size problems.  



 

3.1 The Fixed-Point RUBMRIO Formulation 

In order to simplify the equations, we denote m
ijP  as the probability (as defined in [2.10]) that 

region j purchases input m from region i: 
exp( ) exp[ ( )]

exp( ) exp[ ( )]

m m m m m
ij i ijm

ij m m m m m
kj k kj

k k

v b d
P

v b d
λ λ

λ λ
− +

= =
− +∑ ∑

                                                 (3.1)                             

Then, by substituting (2.11) for m
jc  and combining the result with (2.10), equation (2.12) 

can be rewritten as follows: 
( )

exp( )
( )

exp( )

exp( )
( )

exp( )

exp( )
( )

exp( )

exp[

m m m
ij i ij

n mn m mn i
j j j j m

m m ij
i

m m
ijm m m

j i ijm m
i kj

mn k
j m

m ij
i
m m

ijm m m
j i ijm m

i kj
mn k
j n

m j

m m
ijmn m m

j i ijm m
m i kj

k

mn
j

m

x b d
b a c a

x

v
C b d

v
a

x

v
C b d

v
a

C

v
a b d

v

a

λ
λ

λ
λ

λ
λ

λ

+
= =

+

=

+

=

= ⋅ +

−
=

∑
∑ ∑ ∑

∑ ∑
∑ ∑

∑∑
∑

∑ ∑∑

∑
( )]

( )
exp[ ( )]

( )

m m m
i ij m m

i ijm m m
i k kj

k
mn m m m
j ij i ij

m i

b d
b d

b d

a P b d

λ
+

+
− +

= ⋅ +

∑∑

∑ ∑
            (3.2) 

 In equation (3.2), the prices{ }n
jb  are clearly defined as functions of themselves, if the 

exogenous transportation prices { }m
ijd , dispersion parameters { }mλ , and technical coefficients 

{ }mn
ja  are known. One should notice that the prices { }n

jb  are not a function of the commodity 

flows { }n
ijx  or consumption levels when written in this way. This suggests perfectly elastic 

supply, thanks to constant-rate IO technologies and an implicit lack of resource constraints. 
Denote { }n

jb b=
v

, and let  

exp[ ( )]
( )

exp[ ( )]

m m m
i ijm

ij m m m
k kj

k

b d
P b

b d
λ

λ
− +

=
− +∑

v
       (3.3)  

And, from equation (3.2), let 



 ( ) ( ) ( )n mn m m m
j j ij i ij

m i
f b a P b b d= ⋅ +∑ ∑

v v
       (3.4)  

 Therefore, one has a fixed-point problem from (3.2) as follows: 
 ( )b f b=

v v v
          (3.5)  

And the elements of the function f
v

 are defined by (3.4).  
 
To guarantee solution existence, first impose a rather weak condition on the feasible set t. Let 

{ }*| 0 , , ,n n n
b ij ij ijK b b b i j n= ≤ ≤ ∀ , where { }*n

ijb  are upper bounds which we assume can be 

determined a priori.  (In practice, this is usually the case.) Then bK  is a bounded and closed 
convex subset (i.e., a compact set) on the space MJR . One easily can observe that, if the prices 
are bounded, the function f

v
 also can be considered bounded, since it is a convex combination of 

prices (plus transportation costs) across space (i.e., 1m
ij

i
P =∑ ) and across economic sectors (i.e., 

1mn
j

m
a ≤∑ ). If one assumes that the f

v
’s upper bounds also are { }*n

ijb , one essentially assumes 

that the upper bounds are large enough to accommodate the transportation prices’ contributions 
to f

v
. Then, f

v
is a mapping b bK K→ , and it is continuous. Following Brouwer’s theorem 

(Khamsi and Kirk, 2001), the following condition emerges: 
 
Existence Condition for Price Solution     
 The fixed-point problem (3.5) provides at least one solution if and only if there exist 
positive constants { }*n

ijb  such that the fixed-point problem (3.5) provides a solution in bK . 
Sufficient conditions for the uniqueness of a fixed-point problem solution are given by 

Banach’s theorem (Border, 1985) which requires that the function be contractive over a complete 
set, or the function be quasi-contractive (implying monotonicity) over a compact set.  For 
purposes of definition, a function f

v
provides contractive mapping of b

v
 if the following holds:  

( ) ( ') ' , ', 0 1f b f b b b b bϕ ϕ− ≤ − ≠ < <
v v v v v v v v

      (3.6)  

where ⋅  denotes the norm of the vector, which is a measure of distance on the vector space 
(see Golub and Van Loan, 1989).  Due to the mean-value theorem (see Khamsi and Kirk, 2001),  

( ) ( ') ( )( ')f b f b f b bδ− = ∇ −
v v v v v v vv

        (3.7) 
where δ

v
 lies between b

v
and 'b

v
. So one only needs to study the norm of the Jacobian matrix (a 

measure of distance on the matrix space).  In other words, if ( ) 1f b∇ <
v v

, then the fixed-point 

problem has a unique solution and the sequence ( 1) ( )( )t tb f b+ =
v v v

 converges on the unique solution 
( )b f b=

v v v
, if ( )o

bb K∈
v

. This property is illustrated for four general cases in Figure 3.1.  
 We first consider a simplified case where the probabilities { m

ijP } are fixed (i.e., they are 
not a function of prices). The Jacobian matrix is: 



 

1 1 1
1 1 1

1 1
1 2 11 1 11 1 1

1 11 1 21 1 11 1 1
2 2 2 11 1 11 1

2 12 2 221 1
1 2

1 1
1 2

( ) ( ) ( )...

...
( ) ( ) ( )... ...

( )

( ) ( ) ( )...

M
J M M

J

M
J

M M M
J J J

M
J

f b f b f b
b b b

a P a P a P
f b f b f b

a P a P
f b b b b

f b f b f b
b b b

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∇ = =∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂  

v v v

v v v

v v

M M M M
v v v

1
2 2

1 1 1 1
1 2 ...

M M
J

M M MM M
J J J J J JJ

a P

a P a P a P

 
 
 
 
 
  

M M M M
 (3.8) 

There are two properties of this Jacobian matrix: first, it is a positive matrix (i.e., all 
elements of it are strictly positive); and second, the row sums are the following: 

,

( )
( ) , ,

n
j mn m mn m mn

j ij j ij jm
i m i m m i mi

f b
a P a P a j n

b
∂

= = = ∀
∂∑ ∑∑ ∑ ∑ ∑

v

    (3.9) 

Therefore, we calculate the Jacobian matrix’s norm5 as follows (Golub and Van Loan, 
1989): 

1 1,1 1

( )
( ) max max( )

n
j mn

jmj J j Ji m min M n M

f b
f b a

b≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

∂
∇ = =

∂∑ ∑
v

v v
      (3.10) 

We also note that the technical coefficients have the following property: 
1 ,mn

j
m

a j n< ∀∑ ,         (3.11) 

because the total value of inputs required to produce one dollar of sector n product should be less 
than one dollar.  If not, final demand effects will multiply infinitely through an IO model with 
any column that sums to one (and the matrix (I-A) will not be invertible).  In practice, equation 
(3.11)’s constraint is met through import or profit leakages6, since labor is generally endogenous 
and represents an “industry” that can absorb all profits.  Thus, if ( ) 1f b∇ <

v v
, f
v

 is contractive on 

b
v

, and there exists a unique solution for the simplified, fixed-probability problem.  
Following the same process, consider now the general situation, where the probabilities 

are determined by the disutility which depends on prices.  

 
( )

[ ( ) ( )] ( ) ( )
n
j mn m m m mn m m m

j kj k kj j kj k kjm m m
m k ki i i

f b
a P b b d a P b b d

b b b
∂ ∂ ∂  = ⋅ + = ⋅ + ∂ ∂ ∂  

∑ ∑ ∑
v

v v
 

 (3.12) 
where  



( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) (

m m m m m m m m m
kj k kj kj k kj ij i ijm m m

k k ii i i

m m m m m m m m m m m
k kj kj ij ij i ij ij ij ij ijm m m m

k i ij i ij i

m m m
k kj kj

P b b d P b b d P b b d
b b b

b d P v v b d P v v P
v b v b

b d P P

≠

≠

∂ ∂ ∂     ⋅ + = ⋅ + + ⋅ +     ∂ ∂ ∂ 
∂ ∂ ∂ ∂= + ⋅ + + ⋅ +

∂ ∂ ∂ ∂

= + ⋅ −

∑ ∑

∑

v v v

) ( ) ( ) (1 )( )

{1 [( )(1 ) ( )]}

{1 [( ) ( )]}

{1 [( ) ]}

m m m m m m m m
ij i ij ij ij ij

k i
m m m m m m m m

ij i ij ij kj k kj
k i

m m m m m m m
ij i ij kj k kj

k
m m m m m

ij i ij j

b d P P P

P b d P P b d

P b d P b d

P b d c

λ λ

λ

λ

λ

≠

≠

⋅ − + + ⋅ − − +

= ⋅ − + − − ⋅ +

= ⋅ − + − ⋅ +

= ⋅ − + −

∑

∑

∑

            (3.13) 
 Then, equation (3.12) becomes: 

( )
[1 ( )]

n
j mn m m m m m

j ij i ij jm
i

f b
a P b d c

b
λ

∂
= − + −

∂

v

      (3.14) 

Notice that the second property of the Jacobian matrix in the simplified situation holds 
true here as well: 

,

( )
[1 ( )]

{ [ ( ) ]}

[1 ( )]

, ,

n
j mn m m m m m

j ij i ij jm
i m i mi

mn m m m m m m m
j ij ij i ij j ij

m i i i
mn m m m
j j j

m
mn
j

m

f b
a P b d c

b

a P P b d c P

a c c

a j n

λ

λ

λ

∂
= ⋅ − + −

∂

= − ⋅ + −

= − −

= ∀

∑ ∑∑

∑ ∑ ∑ ∑

∑

∑

v

    (3.15) 

If one wants to apply the finding from the simplified situation (i.e., with fixed 
probabilities), one needs to determine whether all Jacobian matrix elements are positive. There 
exist three specific situations, which can be characterized as the following: 

(i) , ,m m m
i ij jb d c i j m+ < ∀ . The economic meaning of this situation is that the sales price 

at region i plus the transportation price to region j is less than the average input cost for that good 
m in region j. Under this condition, region j will purchase a positive amount of sector m from 
region i, so the derivative in equation (3.14) is positive (for any solution that satisfies this 
inequality).   

(ii) , ,m m m
i ij jb d c i j m+ = ∀ . This situation is similar to a “spatial price equilibrium”, 

where the sales price at region i plus the transportation price to region j equals the average cost 
of input m in region j, and only under this condition there exist flows from i to j (see Nagurney, 
1999). Then, equation (3.14)’s derivative (for any solution that satisfies this condition) is 
positive. 

(iii) , ,m m m
i ij jb d c i j m+ > ∀ . The economic interpretation of this situation is that the sales 

price at region i plus the transportation price to region j exceeds the average cost of input m in 
region j. If the prices satisfy a “spatial price equilibrium,” as defined here, there will be no 
purchase from region i (Nagurney, 1999).  However, in the RUBMRIO model, the commodity 



flow distribution is based on random utility theory, so there is a certain (small) amount of any 
commodity that will be purchased from any origin region whose sales price plus transportation 
cost exceeds the average input cost at the destination region. Under this scenario, the condition to 
ensure that the Jacobian matrix elements are all positive is the following: 

1 ,

1
max ( )

m
m m m
i ij ji j J

m
b d c

λ
≤ ≤

< ∀
+ −

       (3.16) 

 Inequality (3.16) describes a situation wherein the dispersion parameters { }mλ  are 
sufficiently small: i.e., the commodity purchases are reasonably well spread over all regions. A 
uniqueness condition summarizes the above three cost situations:  
 
(Restrictive) Uniqueness Condition for Price Solution. 
 The fixed-point problem (3.5) results in at most one equilibrium price solution if the 
dispersion parameters { }mλ  are sufficiently small such that inequality (3.16) holds.  

This condition is rather restrictive for the dispersion parameters. So we next discuss 
conditions under which dispersion parameters are relatively large. If the { }mλ  are sufficiently 
large, then the commodity flows become local and concentrated (i.e., the origin regions offering 
minimum total cost [sales price plus transportation cost] will dominate the flow to the destination 
region). The flows (or the probabilities7) from all other regions to this destination will be close to 
zero. The average cost then tends to be very close to the dominant, minimum (total) price. This 
satisfies the above situation (ii). Therefore, the Jacobian matrix will have rows where the only 
positive elements tie to the dominant regions for each sector. And equation (3.15) holds true here 
as well. Then f

v
 is contractive on b

v
, and the fixed-point problem (3.5) provides a unique 

equilibrium price solution.  
Since the problem (3.5) has a unique price solution under the conditions that the { }mλ  are 

either sufficiently small or sufficiently large, it is natural to suspect that the uniqueness property 
holds with other, regular { }mλ  values (and that is the common case for the dispersion parameters 
in practice). Suppose we specify the origin index as the following: 

1 1 2 2 * * * 1 * 1,... ... ,m m m m m m m m m m m
j j i i j j i i j J Jjb d b d b d c b d b d j m+ ++ ≤ + ≤ ≤ + ≤ ≤ + ≤ ≤ + ∀  (3.17) 

Thus, a lower origin index indicates a lower total cost. And the equal signs in (3.17) do not all 
hold in general; otherwise, one has situation (ii) above (and there is a unique solution). The 
probability in (3.1) can be rewritten as:   

 1 1

1 1

exp[ ( )]
exp[ ( )]

m m m m m
i ij jm

ij m m m m m
k kj j

k

b d b d
P

b d b d
λ

λ
− + − −

=
− + − −∑

      (3.18) 

Clearly, the largest fraction of a commodity will be purchased from the region offering 
the lowest total cost (i.e., sales price plus transportation cost), and the purchase probabilities 
from other regions depend on differences between their total costs and the lowest total cost. If 
the difference is large enough, the probabilities approach zero. For example, if 10mλ =  and the 
difference is 2, then 

9

1 1
1

exp( 20) exp( 20) 2.06 10 0
1 exp[ ( )]

m
ij m m m m m

k kj j
k

P
b d b dλ

−

≠

−= < − = × ≈
+ − + − −∑

  (3.19) 



If for those regions satisfying situation (iii), where sales prices plus transportation costs 
exceed average cost (and therefore exceed the lowest cost), cost differences are so great that 
 *0, , ,m

ijP for i i j m≈ > ∀ ,        (3.20) 

the resulting purchase probabilities can be ignored, where *i  is the region with the closest (and 
lower) sales prices plus transportation cost to average cost. Under this assumption (and the rest 
regions satisfying situation (i) or (ii)), it is easy to obtain the following result: 

,

( )
1

n
j

m
i m i

f b
b

∂
<

∂∑
v

         (3.21) 

Then, almost certainly, there exists a unique price solution for the RUBRIO model for all 
dispersion parameter levels. This proof neglects purchase probabilities from regions whose total 
costs exceed average cost (for a given destination region); however, this omission is only viable 
for the fixed-point price-solution proof. These small probabilities cannot be neglected in the 
following commodity flow calculation, since the products of small probabilities and large 
commodity volumes can still result in large (monetary) flows.  

Once the cost vector, b
v

, is known, the probability vector P
v

 can be computed easily. 
From equation (3.2), one recognizes that b

v
can be written independently of commodity flows; in 

addition, from equation (3.3), it is clear that P
v

 is not implicitly a function of commodity flows.  
 From equations (2.9) and (2.10), one has the following: 

( ), , ,m m m m mn n m
ij ij ij ij j jk j

i n k
x P x P a x Y i j m= = ⋅ + ∀∑ ∑ ∑      (3.22)  

Denoting: 
( ) ( )m m mn n m

ij ij j jk j
n k

g x P a x Y= ⋅ +∑ ∑v        (3.23)  

produces another fixed-point problem: 
( )x g x=v v v           (3.24)  

Similar to earlier descriptions, we first impose a weak condition on the feasible set to 
guarantee solution existence: Let { }*| 0 , , ,m m m

x ij ij ijK x x x i j m= ≤ ≤ ∀ , where { }*m
ijx are upper 

bounds. Then, xK  is a bounded, closed, and convex subset of MIJR .  Also, assume that gvmaps 

x xK K→ and is continuous. Following Brouwer’s theorem (Khamsi and Kirk, 2001), one has the 
following condition: 
 
Existence Condition for Flow Solution.     
The fixed-point problem (3.24) permits at least one flow solution if and only if there exist positive 
constants { }*m

ijx , such that the problem permits a solution in xK . 

 Again, we study the contractiveness of gv  over xK  in order to obtain sufficiency 
conditions for uniqueness of the flow solution. The elements of the Jacobian matrix of gv  are:   

( ) , , , , ,
0

m mn
m ij j
ijn

kl

P a if k j
g x i j k l m n

x otherwise
 =∂ = ∀∂ 

v

      (3.25)
 

The Jacobian matrix of gv  is: 
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There are two properties of this Jacobian matrix: first, it is nonnegative (i.e., all elements 
are equal to or larger than zero); second, the column sums are the following: 

, ,

( )
( ) , ( ), ,

m
ij m mn mn m mn

ij j j ij jn
i j m i m m i mkl

g x
P a a P a k j l n

x
∂

= = = ∀ =
∂∑ ∑∑ ∑ ∑ ∑

v

   (3.27) 

Therefore, we have the following norm of the Jacobian (Golub and Van Loan, 1989): 

1 , 1 ,, ,1 1

( )
( ) max max ( ) 1

m
ij mn

jnk l J k l Ji j m mkln M n M

g x
g x a

x≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

∂
∇ = = <

∂∑ ∑
v

v v      (3.28) 

 This implies that gv  is contractive on xv , and so there exists a unique solution for the 
fixed-probability problem (3.24), producing the following condition:  
 
Uniqueness Condition for Flow Solution     
The fixed-point problem (3.24) results in at most one equilibrium flow solution. Thus, the 
existence and uniqueness of solution flows are very general, once prices and probabilities are 
known.  
 In summary, through a general fixed-point approach, one can easily find an interesting 
RUBMRIO model relationship where prices are independent of flows. Moreover, the price 
solutions exist and are unique under the conditions described above. In the next section, we make 
use of the fixed-point approach to verify the convergence of the original RUBMRIO model, and 
we propose a modified solution algorithm to efficiently apply the fixed-point formulation’s 
properties.  

3.2 A Modified RUBMRIO Algorithm 
Assuming that the conditions for price solution existence and uniqueness hold, the sequence 
generated by the iterative function ( 1) ( )( )t tb f b+ =

v v v
 converges on the unique solution ( )b f b=

v v v
, if 

( )o
bb K∈

v
  (Khamsi and Kirk, 2001). This price convergence does require that prices be bounded. 

But one easily can construct lower bounds of zero (since prices should be non-negative) and 
upper bounds as very large numbers. Once the unique price solution is obtained (through the 



fixed-point sequence), a similar sequence for computation of flows can be generated as: 
( 1) ( )( )t tx g x+ =v v v , if ( )o

xx K∈v .  
 Convergence of the fixed-point sequence also suggests that the original RUBMRIO 
solution algorithm is convergent, since its sequence of iterative price vectors is similar to the 
fixed-point sequence. The coincidence is not surprising because nearly all iterative solution 
algorithms rely on the fixed-point approach. However, only when solution existence and 
uniqueness are assured can this sequence be guaranteed to converge to the correct solution. 
Otherwise, different initial values could lead to different results, or the iterative process may 
never converge.   
 The original RUBMRIO algorithm calculates both prices and flows at each iteration. 
However, we have shown prices to be independent of the flows; so there is no need to calculate 
flows before the prices (or to compute prices after their convergence) in order to achieve the 
unique solution for prices and flows. A modified algorithm is now presented, which efficiently 
applies the fixed-point approach for price and flow calculations.  
 
The Modified RUBMRIO Algorithm 
Step 0: Initialization. Set ( )o

xx K∈v  and (0)
bb K∈

v
; let 1t = . 

Step 1: Computation of prices. Calculate the prices { n
jb } using the following fixed-point 

equation: 
( 1) ( )( )t tb f b+ =
v v v

         (3.29) 
where ( )f b

v v
 is defined in (3.4). 

Step 2: Verification of prices convergence. If ( ) ( 1)max( ) , ,n t n t
j jb b j nτ−− < ∀ , with a pre-specified 

tolerance 0τ > , then go to step 3; else, set 1t t= + , and go to step 1.  
Step 3: Computation of probabilities. Compute probabilities using equation (3.1). 
Step 4: Computation of flows. Set 1t = , and calculate the flows using the following fixed-point 
equation: 

( 1) ( )( )t tx g x+ =v v v           (3.30) 
where ( )g xv v  is defined in (3.23). 
Step 5: Convergence test of flows. If ( ) ( 1)max( ) , , ,n t n t

ij ijx x i j nτ−− < ∀ , then stop; the current 

solution, { n
ijx } is the set of equilibrium solutions.  Otherwise, set 1t t= + , and go to step 4.  

 

4. NUMERICAL EXAMPLE 
In this section a numerical example demonstrates RUBMRIO model solution existence and 
uniqueness and compares the original and modified algorithms. We consider a simple case with 
only two regions and two commodity sectors; the exogenous variables’ values are shown in 
Table 4.1. Dispersion parameters are arbitrarily set to 1 15λ = and 2 0.2λ = , with the larger value 
implying less dispersed flows.    

4.1 Convergence to the Unique Solution  
Given this example, we first examined convergence patterns for prices and flows using the 
original algorithm. The convergence criterion requires that absolute values of prices and flows 



between two successive iterations differ by no more than 0.0001. We tested two scenarios with 
different initial values: the first started with zero values (which are common start points), and the 
second used some randomly generated positive values.  
 The original algorithm converged after 138 iterations for the first scenario and 111 
iterations for the second scenario. Both converged to the same solution, as depicted in Figure 4.1. 
The second scenario used non-zero initial values and converged faster, which suggests that the 
traditional start values (zeros) probably are not the best choice.  Price patterns were evaluated as 
well, and these are shown in Figure 4.2. These actually converged after just 86 iterations for the 
first scenario and 95 iterations in the second scenario.  Finally, similar runs of both scenarios 
were made using the modified algorithm’s fixed-point sequence.  These are discussed here now.  

4.2 Algorithms Comparison  
It is rather natural and efficient to adopt the modified algorithm to eliminate unnecessary 
computations in the original algorithm. Table 4.2 compares the original and modified algorithms 
for the RUBMRIO model. Both algorithms converge to the same, unique solutions. But the 
modified algorithm reduces computational effort, especially in the computation of prices. 
 

5. CONCLUSIONS AND EXTENSIONS 
In this paper, a fixed-point formulation of a random-utility-based spatial input-output 
(RUBMRIO) model was constructed, in order to examine the properties of solutions to many 
integrated land use-transportation models. This formulation and the problem properties allowed 
us to develop existence and uniqueness conditions for the RUBMRIO model solutions.  
 Under weak conditions regarding sales prices, the set of solution prices were shown to be 
unique. Once prices and spatial purchase probabilities are known, commodity flows also are 
found to be unique. The fixed-point formulation established here verifies that the 
common/original RUBMRIO iterative algorithm always converges. However, a modified 
algorithm was demonstrated to be more efficient.  
 Several other, related issues are worthy of further research. For example, when applying 
the RUBMRIO model over a congestible transportation network, one needs to compute 
transportation costs as a function of commodity flows, rather than treating them as exogenous 
variables. One practical way to achieve this is to link the RUBMRIO model with a UE or SUE 
assignment model. It has been shown that there exist unique solutions to general UE and SUE 
problem specifications (e.g., Sheffi, 1985; Cantarella and Cascetta, 1995), and we demonstrated 
here that the RUBMRIO model solution is unique. Thus, the only gap is a theoretical analysis of 
the uniqueness of the overall/integrated congestible system solution. However, we fully expect 
that this exists (based on proofs of congestible travel demand model solution uniqueness using 
fixed-point approach [Cantarella, 1997]). 

Additionally, permitting substitution across inputs to production (through continuous 
production functions and explicit recognition of competing input prices) will make the problem 
more realistic.  However, it also will make the problem much more difficult.  Purchase decisions 
will become functions of all prices across all regions, rather than across just regions, and the 
straightforward matrix algebra of the IO model will disappear.   Moreover, calibration of such 
production processes, as functions of the variables tracked in these models is highly unlikely 
(due to anonymity, cost, and other issues).  However, progress is being made (e.g., Abraham and 
Hunt, 1999) and model improvements are expected. In future extensions to the RUBMRIO 



model, the fixed-point approach may continue to be very useful for proving solution existence 
and uniqueness, and for evaluating solution algorithms. 
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ENDNOTES: 
                                                 
1 In practice, there are other items in the disutility function, such as the “excess profit” made when producing a 
dollar of a commodity in a region, the region-specific (constant) disutility associated with producing a dollar of a 
commodity in a region, and the “size term” (proportional to the log of the number of sites available to a commodity 
in a region; see Hunt, 1993). The introduction of these exogenously determined components does not affect the 
findings in this paper.  
2 Note that this specification is independent of the user/consumer of the good.  With better data (for example, a 
Commodity Flow Survey that specifies producing and consuming sectors, for each commodity shipped), one could 
make these equations user-dependent.  As practiced in existing models (such as MEPLAN and TRANUS), however, 
they are independent. 
3 One can include profits here, if one wishes. 
4 This can be made more realistic by allowing travel-time feedbacks which update travel costs, n

ijd . However, the 
proofs of trade-solution uniqueness and existence would then require more mathematics; these proofs are not 
provided here. 
5 According to the Norm-Equivalence Theorem (see Ortege and Rheinboldt, 1970), all norms on Rn are equivalent.  
Here we use the l∞ -norm (and, later, the l1-norm) to obtain the sufficiency result.  
6 Money is spent outside the region, so no multiplying effects are locally or regionally generated by those 
expenditures.  
7 A formal discussion about the dominate probability due to the sufficiently large dispersion parameter can be found 
in Wehr and Xin (1996, Proposition 2.1, p. 5).  
8  Both UE and SUE solution uniqueness require that flows on distinct links do not interact.   
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TABLE 4.1.  Exogenous Values for Numerical Example (model specification) 
Variables Values Variables Values Variables Values 
Transportations prices ($)  Technical Coef.  Final Demand ($)  

11d  2 11a  0.2 1
1Y  100 

12d  10 12a  0.8 1
2Y  200 

21d  10 21a  0.7 2
1Y  20 

22d  1 22a  0.1 2
2Y  50 

 
 
TABLE 4.2. Comparison of the original and modified RUBMRIO algorithms 

Computation effort Scenario Variables 
Original Algorithm Modified Algorithm 

Prices 138 iterations 86 iterations 1  
(zero initial values) Flows 138 iterations 137 iterations 

Prices 111 iterations 95 iterations 2 
(arbitrary initial values) Flows 111 iterations 110 iterations 
 
 
 



 

 
 

FIGURE 3.1 Examples of fixed-point problem convergence to unique solutions 
Note: Fixed-point iteration for a general function g(x) for four cases of interest. Positive-slope cases 
are shown on the left. Negative-slope cases are shown on the right. The solution sequences converge 
to the fixed-point solution only when the slopes lie between -1 and 1. 
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FIGURE 4.1.  Convergence of Flows 

 
Note: The number label of the flow indicates in the order of sector, origin, and destination. For 
example, x121 stands for trade flow of sector 1 from zone 2 to 1.  
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FIGURE 4.2.  Convergence of Prices 

 
Note: The number label of the price indicates in the order of sector and zone. For example, b12 
stands for sector 1’s price at zone 2.  
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