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ABSTRACT 
This work statistically examines the impacts of the 1996 speed limit changes based on over 6,000 
Washington State highway segments.  Fixed-effects and random-effects Poisson and negative 
binomial regression specifications are employed to estimate six crash count measures during the 
1993-1996 period. The modeled crash measures are the numbers of fatalities, injuries, crashes, 
fatal crashes, injury crashes, and property-damage-only (PDO) crashes. 
 
The average segment length is just 0.131 mile, permitting tight control of geometric 
characteristics, such as curvature and grade, as well as vehicle miles traveled (VMT).  A 10 mph 
speed limit increase, typical of U.S. state policies pursued in the mid-1980s (on rural interstates) 
and in the mid-1990s, is estimated to increase fatalities and injuries by 78 and 24 percent, 
respectively, assuming other factors remain constant.  Speed limit effects on total crashes (and 
property-damage-only crashes), however, are predicted to be slightly negative, suggesting that 
crashes become more severe, but not more common.  As expected, tighter horizontal curves, 
fewer lanes, and lower traffic volumes (per lane) increase fatal and injurious crash rates.  
 
 
Key Words: Crash models; Panel data estimation; Speed limits; Poisson; Negative binomial; 
Fixed-effects and Random-effects; Highway Safety Information System (HSIS) 
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1. INTRODUCTION 
Changing speed limits on high-speed roads has been a contentious issue.  The prevailing 
hypothesis is that speed limit increases compromise traffic safety, due to reduced response times 
and higher speeds upon impact.  However, some suggest that raising speed limits reduces speed 
variations in traffic streams and diverts traffic from slower, low-design roads to faster, high-
design roads, thus enhancing overall safety.  Others emphasize the value of reduced travel times.  
Studies examining safety hypotheses generally have used spatially aggregate data.  Of course, 
spatial aggregation obscures the impacts of roadway design features, so this work focuses on a 
series of short roadway sections, with average lengths under 700 feet. 
 
Many studies on the safety effects of speed limit changes exist (e.g., Baum et al., 1991; Lave and 
Ellias 1994 and 1997; Houston, 1999; Ossiander and Cummings, 2002).  These have used a 
variety of statistical methods, including before-after comparisons, time-series analysis, cross-
sectional regressions, and panel data analysis.  However, all have relied on data that are highly 
spatially aggregate, encompassing entire state networks by class of road (e.g., rural interstate 
versus urban interstate).  Data aggregation invites an “ecological fallacy” in results, where 
individual-level relationships cannot be inferred (Robinson, 1950; Fridstrom and Ingebrigtsen, 
1991; Davis, 2002). 
 
Fortunately, relatively disaggregate road-section-specific data are available, such as those 
detailed by the U.S. Highway Safety Information System (HSIS) and provided by the Federal 
Highways Administration (FHWA).  Such data have been used to investigate traffic safety 
factors other than speed limits, including horizontal curvature and truck vehicle miles-traveled 
(VMT) (e.g., Miaou et al., 1992, 1993, 1994; Mohamedshah et al., 1993).  By using data that 
characterize traffic and road design, one can better control for all relevant factors, helping avoid 
bias in parameters associated with speed limits (since speed limits are tied to design, and often to 
traffic).  
 
Using a four-year panel of the HSIS data, this study investigates the safety effects of the speed 
limit increases that took place across Washington State in March 1996.  It employs panel 
regression methods for crash count data, using both fixed-effects and random-effects models to 
capture correlation in repeat observations of roadway sections.  It examines six different crash 
count measures, permitting a more robust understanding of the effects of speed limit changes on 
crash frequency and severity. 
 
2. LITERATURE REVIEW 
This section discusses the results of past models of crash occurrence and investigations into the 
safety effects of speed limit changes.  It is followed by sections that detail the data and models 
employed in the present study. 
 
Models of Crash Occurrence 
Researchers around the globe have modeled crash occurrence. The best methods employ count 
models, owing to the rarity of crashes and the non-negativity of their counts.  For example, 
Fridstrom and Ingebrigtsen (1991) assembled monthly crash data over 17 years for 18 
Norwegian counties, and modeled crash counts as a function of various factors (including 
weather, alcohol sales, network length, and annual maintenance expenditures). They employed 
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negative binomial specifications, thus allowing overdispersion1 in crash counts.  Their model 
specifications suggested use of panel models; however, they did not mention how serial trends 
were captured, so it is unclear whether these were reasonably accommodated. Moreover, they did 
not control for speed limits, as done here. 
 
Miaou et al. (1992) used 1985-1987 HSIS data for 1,644 rural interstate segments in Utah to 
explore the effects of geometric features on truck crashes, using Poisson regression models.  
Although the data tested positive for overdispersion (based on a test by Wedderburn [1974]), 
their conclusions regarding the nature and strength of different relationships was not predicted to 
change.  Miaou and Lum (1993) later used the same data to compare the results of ordinary least 
squares models with Poisson count models, and found the former severely lacking.  This is to be 
expected, given the count nature of the data.  Neither Miaou et al. (1992) nor Miaou and Lum 
(1993) models recognized the panel nature of the data. And they did not control for speed limits. 
Shankar et al. (1995) used negative binomial models for crash counts, while controlling for 
roadway geometry and weather (i.e., snow and rainfall).  Their data set focused on ten 3.8 mile 
(6.1 km) sections of I-90 in Washington State over the period of 1988-1993.  Shankar et al. 
(1997) then investigated the applicability of zero-inflated Poisson (ZIP) and negative binomial 
(ZINB) models using a two–year data set.  Zero-inflated models typically use a binary logit 
model for segmentation of roadways into zero and non-zero crash counts, and a count model 
(Poisson or negative binomial) for those exhibiting crashes.  They found the zero-inflated models 
performed better, in a statistically significant way, than the non-inflated models.  This suggests 
that some road sections may be characterized by a very low to no-crash state, distinguishing 
themselves from crash-prone roadways.  The zero-inflated models did not control for panel 
effects in the two-year data set, nor for speed limits.  
 
Research on the Safety Impacts of Speed Limit Changes 
Since 1974, three national-level changes in speed limit policy have occurred, and each has 
generated at least a few safety impact studies.  The National Maximum Speed Limit (NMSL) of 
55 mph was introduced across the U.S. in 1974; it was relaxed in 1985, and completely repealed 
in 1995.  The 1985 changes drew substantial research attention.  Since the 1995 repeal, only a 
few significant studies have been completed (Farmer et al., 1999; Moore, 1999; Patterson 2002).  
Among the earlier studies, inconsistencies in findings are relatively common, due in large part to 
different methodologies and data settings (including temporal and spatial aggregation).  In 
general, however, an increase in speed limits has been estimated to result in more fatalities, per 
mile driven.  Of course, increased speeds can result in saved travel time.  Thus, it is important to 
quantify both the costs and benefits, to permit conclusions regarding the overall impacts of speed 
limits. 
 
As for the impact of the 1985 relaxation of the NMSL, some studies employed time series 
models.  McKnight and Klein (1990) used ARIMA2 intervention models for yearly counts of 
fatal and injury crashes between 1982 and 1988.  They estimated a 22% increase in fatal crashes 
on rural interstates with the higher (65-mph) limit.  Wagenaar et al. (1990) also used an ARIMA 
intervention model, using all limited-access rural highways (with 65 and 55 mph speed limits) in 
Michigan and monthly data from 1978 to 1988.  They predicted count increases for all injury 
levels on rural 65 mph highways, including a 19% increase in fatalities.  They also reported a 
considerable speed-spillover3 effect onto 55 mph rural highways, resulting in a startling 38% 
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increase in predicted fatalities. If such results exist, even reductions in crash counts on roadways 
with high speed limits may not offset spillover effects. 
 
Rock (1995) employed an ARIMA intervention model using 1982 to 1991 monthly crash data 
for rural Illinois highways and reported adverse effects caused by the new, 65 mph speed limits 
across all injury levels on rural highways with and without speed limit changes.  Ledolter and 
Chan (1996) adopted a similar model; using 1983-1991 quarterly crash data, they attributed a 
57% increase in fatal crashes on rural Iowa interstates to the 65 mph limit.   
 
Before-after comparisons are very common methods of analyzing crash counts.  Using “naïve 
comparisons”4, without statistical measures, Upchurch’s (1989) plots for Arizona’s rural 
interstates indicate 12% and 17% increases in fatal and injurious crash rates, respectively, 
between April 1987 and April 1988.  He also noted a slight decline in crash rates on urban 
segments.  Lynn and Jernigan (1992) found a 54% increase in fatal crashes and fatalities on rural 
Virginia interstates during this time, but noted no statistically significant increases in crash rates 
on urban interstates.  However, their before-after comparison of counts, without any accounting 
for exposure (i.e., VMT), may not be entirely valid.  
 
Through a before-after comparison with odds ratios for monthly fatalities across 38 states in 
1987 and yearly fatalities across 48 states between 1987 and 1988, Baum et al (1989, 1991) 
concluded that the increased speed limits on rural interstates was harmful, with 15 and 29 percent 
increases in fatalities in 1987 and 1989, respectively.  Gallaher et al. (1989) used a linear trend 
regression and before-after comparisons of annual fatal crash rates for New Mexico between 
1982 and 1988, and concluded that the increase in speed limits resulted in a 93 percent higher 
crash rate.5  These results are quite different – but both, like others discussed here, suggest 
substantial increases in crashes, death, and injury. 
 
A few studies have investigated the impact of the 1985 speed limit change using cross-sectional 
regression methods.  Garber and Graham (1990) modeled monthly fatalities on rural roads in 40 
states and estimated median increases in crash fatalities to be 15% and 5%, on rural interstates 
and rural non-interstates, respectively.  They also estimated that some states experienced 
reductions in fatalities (on rural non-interstates in Alabama, Florida, Indiana, and Montana, and 
on non-rural interstates in California, Colorado, Louisiana, and Texas).  Lave and Ellias’ (1994, 
1997) 40 state-by-state linear regression models for monthly fatality rates between 1976 and 
1990 also indicated average reductions of 3.4 to 5.1% in statewide fatality rates (following the 
speed limit increase). 
 
There also are at least two studies where crash effects were ambiguous or negligible. Based on 
ARIMA models and before-after comparisons for 32 states between 1975 and 1988, Chang and 
Paniati (1990) could not arrive at a definite conclusion regarding effects of the 1985 speed limit 
changes; this may have been due to the short “after” period of their data.  Using a Poisson model 
for monthly crash rates across rural Ohio highways between 1982 and 1988, Pant et al. (1992) 
found no appreciable effect. 
 
Using similar specifications to Lave and Ellias’s (however, they used state-by-state regressions) 
with some additional specifications such as indicators for years and data for different road types 
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below the state level, Greenstone (2002) examined yearly fatality rates in all 50 states for the 
1982-1990 period and concluded that fatality rates increased by 30% on rural interstates but 
decreased by 17% on urban non-interstates.  His state-level aggregate models found no evidence 
of police resource reallocation after the speed limit increase, in contrast to Lave and Ellias’s 
(1997) suggestions.  
 
Based on a 20-year data set for Washington State, Ossiander and Cummings (2000) examined 
the effects of the 1985 speed limit changes (on rural interstates) by using Poisson and negative 
binomial regression models for fatal and total crash counts controlling for a logarithmic VMT 
with its coefficient equaling to 1.0.  They estimated a striking 110 percent increase in fatal crash 
rates on rural highways but no substantive change in urban highway crash rates after 1987.  
 
The work described in this paper relies on panel models for analysis of count data, and it 
examines the effects of the 1995/1996 speed limit changes.  Panel models have become popular 
in the safety literature only recently, but most relate to the 1985 speed limit changes and are 
continuous in nature, providing estimates of crash rates (rather than crash counts). For example, 
Houston (1999) estimated continuous fixed-effects panel models of fatality rates for all 50 U.S. 
states using 1981-1995 data on different road types.  He found rural interstate fatality rates to rise 
in the wake of higher speed limits, but noted lowered rates on all other road types, and lower 
overall fatality rates.  Hausman tests statistically supported for fixed-effects over random-effects 
models; however, Houston’s models did not account for improvements in vehicle and roadway 
design (often incorporated via a simple time trend variable). 
  
Relatively few studies exist that relate to the most recent speed limit change, the repeal of the 
National Maximum Speed Limit in 1995.  Moore (1999) reported reductions in all crash rates 
(including injury and fatal crash rates) based on before-after rate comparisons for the entire U.S. 
using 1995-1997 data.  Farmer et al. (1999) predicted fatality rates and counts using time series 
regression models of the 1990-1997 period.  Based on the data from all roads in 31 states, they 
estimated a 15% increase in fatalities and a 17% increase in fatality rates on interstate highways 
but no changes on non-interstate highways in the 24 states that raised their limits. 
 
Patterson et al. (2002) estimated cross-sectional regression models of fatality rates using 1992-
1999 data for 34 states with and without speed limit increases.  They reported 35 to 38% 
increases in fatality rates following the 1996 speed limit changes.  Haselton et al. (2002) used 
Hauer’s observational before-after approach (1997) and compared it to results from standard 
before-after and cross-sectional regression analyses.  Using crash rates of different severity on 
California freeways, they found the cross-sectional regression results to be unreliable; based on 
their before-after approach, they reported increases in crash rates (and crash counts). 
 
It is striking how distinct – and even contradictory – many of these works’ empirical results 
appear.  Even so, a few expectations seem reasonable.   For example, it may be that speed limit 
increases make more sense on high-design urban freeways than on rural interstates and similarly 
designed facilities.  It may be that route substitution offsets higher crash rates on corridors whose 
limits were raised. However, speed spillover can raise crash rates elsewhere. It also is possible 
that some states truly experienced overall safer conditions following speed limit changes, 
particularly the 1995/1996 changes. 
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Certainly, the methods and data sets used in the research described here differ, often 
dramatically. A key question arises: What are the best methods and the best data?    
Most studies have relied on highly aggregate data; and only a few have made use of panel 
approaches and/or recent data sets, particularly for count data.  This study focuses on the effects 
of the 1995 repeal of the NMSL using geographically disaggregate data and rigorous panel 
techniques for count data.  It is hoped that the meticulous approach and the detailed data permit a 
true relationship to emerge, at least as experienced by the State of Washington. 
 
3. DATA  
This study focuses on roadway section-specific crash data contained in the HSIS data set.  
Among several states voluntarily providing HSIS data, Washington State was chosen for this 
analysis because it offers curve and grade information6 and offers the possibility of linkage to a 
long history of loop detector data, at sites throughout the state.  Only interstate sections are 
examined here, in order to provide focus while moderating the number and type of unobserved 
effects7.  This focus produces 6,023 interstate segments, along I-5, I-82, I-90, I-205, and I-405.8  
Total one-way length of the included interstates is 747.58 miles (WSDOT, 2003). 
 
The Washington HSIS data are available from 1993 to19969.  Yearly crash counts were 
assembled at a segment level, along with roadway design and other variables; these are 
summarized in Table 1.  The average segment is 0.131 miles long, and the longest segment is 
1.69 miles.  Such spatial resolution is unusual and valuable.  The vehicle miles-traveled (VMT) 
variable was computed by multiplying segment length and segment estimated annualized 
average daily traffic (AADT). An average of 2.7 crashes occurred per segment per year, injuring 
almost two persons (per segment, per year).  The yearly counts are modeled using models that 
recognize both the panel nature of the data, and the integer crash values.  These methods are 
described here now. 

<Table 1> 
 
4. METHODOLOGY  
Poisson and negative binomial (NB) fixed-effects and random-effects models were used to 
predict six different crash measures.  Pooled Poisson and NB models are described first since 
these overlook the panel nature of the data and thus are the simplest.  Descriptions of their 
extended, panel specifications, based on fixed-effects and random-effects, follow.  For more 
details, readers may refer to Cameron and Trivedi (1998) and Hardin and Hilbe (2001).  
 
Pooled Models for Count Data 
The standard Poisson model specification is the following:  

!
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ii λλ ⋅
==

−

, where [ ] ( )βxx iiii yE ′== expλ , and iy = 0, 1, 2, …  (1) 

Here, i indexes individual observational units (in this study, individual roadway segments), 
ix denotes a vector of explanatory variables for i, and β is a vector of coefficients to be 

estimated.  In the context of our analysis, iy  is the number of crashes, injuries, or deaths 
occurring in a roadway segment i during a given time period.  This standard model does not 
recognize the possibility of repeat observations of units over time. 
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A distribution that is truly Poisson exhibits equidispersion, where mean equals variance: 

( )βx iii ′== exp2σλ .  However, if the underlying process is not Poisson in nature, or, for 
example, all sources of systematic variation are not appropriately controlled for, overdispersion 
may exist, and a Poisson specification will not be most appropriate.  In the case of 
overdispersion, a popular alternative is the negative binomial distribution, which can be specified 
as including a random variable iu  in the mean function, ( )ii u+′βxexp  (Fridstrom and 
Ingebrigtsen, 1991; Poch et al. 1996; Cameron and Trivedi, 1998; Mohamed et al., 2000).  If this 
random term iu  follows a Gamma distribution with shape and scale parameters both equalling 
θ , one has the following negative binomial model: 
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[ ] ( ) ( )βxβxx iiiiiii uyE ′=+′== expexp υµ       (2) 
Here, θα 1=  is the overdispersion parameter and ( )Γ  is the gamma function.  Given the mean or 
expected count, iµ , the count variance is [ ] ( )iiiiYV µαµσ ⋅+== 12 . Cameron and Trivedi 
(1986) refer to this mixed gamma-Poisson model as the Type II negative binomial model.10  
 
Panel Models of Count Data 
For each count model, Poisson and negative binomial panel model specifications involving 
fixed-effects and random-effects also are estimable.  
 
Poisson Panel 
The conditional joint distribution for a Poisson-based random-effects model is the following: 
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( )θθυ ,~ gammai  with [ ] 1=iE υ  and [ ] θυ 1=iV      (3) 
Here, iυ  represents the random-effects applicable to each group i (such as a specific roadway 
segment) and ( )βx itit ′= expλ  ensures non-negativity. 
Integrating out the gamma-distributed iυ  results in the following (unconditional) distribution: 
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For the fixed-effects version of this model, the fixed-effects, iυ , can take on any value.  By 

conditioning on ∑ =
iT

t ity1 , the fixed-effects disappear from the log-likelihood function, and the 
parameters β  become reasonably estimable in a situation with hundreds of observation sections 
(roadway units, in this case).  However, each unit’s probabilities are conditioned on total crash 
counts for that section:  
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Negative Binomial Panel 
In a panel analysis of negative binomial models, the individual effects do not apply to the mean 
rate, but to the distribution of the dispersion parameter.  Random-effects models are most 
appropriate when dispersion varies randomly across groups due to unidentified factors specific to 
groups.  This is similar to the linear, or continuous, panel case: individual effects are randomly 
distributed in a linear random-effects model, but can take any value in a linear fixed-effects 
model.  In the standard random-effects case, the dispersion varies randomly across groups 
according to a beta distribution with parameters r and s.  The gamma distribution is a special 
case of the more general beta distribution; it provides the following random-effects negative 
binomial example: 

)(~ ititit PoissonY γγ ,         (6) 

where ( )iitiit gamma δλδγ 1,~ . 
Here, ( )βxitit ′= expλ  and iδ  is a dispersion parameter. (StataCorp, 2003)  
 
This specification has not been utilized to a great extent in the past.  Recently, however, Noland 
(2003) used fixed-effects and random-effects negative binomial models to examine the effects of 
U.S. roadway improvements on traffic safety.  And McCarthy (1999) used fixed-effects negative 
binomial models to investigate fatal crash counts in a panel data set of 418 U.S. cities and 57 
U.S. regions.  Both studies adopted count panel models, but used highly spatially aggregate data 
(at the state and city levels).  In contrast, this study uses spatially disaggregate data, based on 
one-way roadway segments averaging just 0.13 miles in length, enabling detailed levels of 
control on speed limit and design variables. 
 
A more general version of random-effects negative binomial models allows the dispersion 
parameter to vary such that ( ) ( )srbetai ,~11 δ+ .  This approach, used for this study, yields the 
following joint probability for the ith group: 
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For a fixed-effects negative binomial model, each group’s dispersion parameter can take on any 
value.  By adopting a conditional likelihood estimation process, like the Poisson fixed-effects 
model described earlier, the dispersion parameter drops and the β  parameters can be 
identified/estimated without simultaneously trying to tackle all the fixed-effects parameter values 
(Hausman et al. 1994).  When conditioned on the group’s total count, a fixed-effects joint 
probability for group i, can be expressed as follows: 
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After initial tests using pooled fixed-effects and random-effects count models (both the Poisson 
and negative binomial specifications), the more complex panel models were employed.  For 
further details on count panel specifications, one may consult Cameron and Trivedi (1998) 
and/or StataCorp (2003). 
 
5. RESULTS AND DISCUSSIONS 
Cross-sectional (or pooled) count data models were first estimated for six different crash 
measures: the numbers of dead occupants, injured occupants, all crashes, fatal crashes, injury 
crashes, and property-damage-only (PDO) crashes (Table 2).  Given the large number of possible 
specifications (i.e., Poisson and negative binomial, pooled or panel), the first set of model 
estimates essentially disregarded the data set’s panel properties, and assumed independence of 
observations11.  Based on these results, the choice between Poisson and negative binomial 
specifications was made using the likelihood ratio test for the overdispersion parameter.  Then 
fixed-effects (Table 3) and random-effects (Table 4) panel specifications, based on the selected 
Poisson or negative binomial model, were estimated and compared.  
 
Several rate specifications were explored, with explanatory variables included either linearly or 
logarithmically within the exponential function. Those included logarithmically imply a 
multiplicative effect, subject to an exponential term, as illustrated for VMT in the following 
equation: ( ) ( ))ln(exp)exp(, VMTxxVMTVMTx αββλ α +== . 
 
Generally, VMT is expected to have a purely multiplicative effect, with an exponent of α=1.0.  
And, in the end, this specification provided the best predictions (highest goodness of fit 
statistics).  Tables 2 through 5 include all explanatory variables in a linear form of the 
exponential function, except for VMT.  VMT enters the rate function in a multiplicative fashion, 
to allow for the possibility of constant crash rates, with an exponent of 1.0.  The following 
describes the estimated effects of the numerous explanatory variables on the various crash crates 
(and the resulting counts). 
 
Interpretation of Coefficients 
Due to the exponential transformation used (to ensure process rate non-negativity), the effects of 
the model coefficients are not as obvious as in simple, linear models (i.e., where 

εβ += xxyE )( ).  In an exponential case, [ ] ( )βxx iiiyE ′= exp , and each variable’s marginal 
effect is as follows: 
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This implies that a unit change in the jth variable leads to a multiplicative change in [ ]iiyE x  of 

jβ .  In other words, if jβ =1.1, a unit change in ⋅jx  will increase the mean by 110%.  
Another way to interpret such effects is via an incidence rate ratio (IRR), also called factor 
change (Long, 1997; Long and Freeese, 2001; StataCorp, 2003): 
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Thus, if jβ = 1.1, then the IRR(xj) = exp(1.1) = 3.0, so a unit increase in ⋅jx  would be estimated 
to increase the mean by 300%, assuming other factors remain constant.   
 
In cases of logarithmically transformed variables such as VMT, the coefficient can be interpreted 
as an elasticity.  Thus, if VMTβ  equals 1.1, a doubling (100% increase) of VMT is expected to 
result in a 110% increase in average crash rate.  
 
Regression Results 
Based on comparisons of pooled-data model log-likelihoods, a Poisson model appeared adequate 
for counts of fatal crashes, whereas negative binomial specifications were needed for the other 
five crash counts, complete with statistically significant estimates of their dispersion parameters, 
as shown in Table 2.  Given that crashes are rare events, perhaps described by a Bernoulli with a 
very low probability of occurrence in any short time interval, one may hypothesize crash counts 
to be Poisson distributed (Fridstrom and Ingebrigtsen, 1991).  However, that hypothesis is often 
rejected in favor of overdispersion (e.g., Shankar et al., 1995; Poch and Mannering, 1996; 
Mohamed et al., 2000).  Miaou and Lum (1993) have suggested three sources of such 
overdispersion; these are omitted variables (such as human factors and vehicle information), 
uncertainties in exposure data (such as possible sampling errors for AADT estimates), and 
heterogeneous roadway conditions (such as differences in lighting and weather conditions).  All 
these may apply here.   

<Table 2> 
 
Panel Regressions 
Fixed-effects and random-effects count panel regression models for each dependent variable 
were estimated, and the results of these models are condensed in Tables 3 and 4.  Recall that 
pooled negative binomial specifications permit overdispersion and thus, to great extent, are able 
to reflect heterogeneity (that remains after controlling for various, explanatory factors).  
However, negative binomial panel models can offer further control, for remaining heterogeneity, 
particularly omitted variable biases (McCarthy, 1999).  Unfortunately, such models also may 
over-control for data overdisperion.   
 
Based on a likelihood-ratio test for comparison of random-effects and pooled models (analogous 
to Breusch and Pagan’s Lagrange multiplier test in linear panel models [Greene, 2000]), the 
pooled models for counts of fatal crashes and fatalities appear statistically appropriate.  
Interestingly, results of the fixed-effects and random-effects models differ, in terms of the effect 
of the factor of primary interest: roadway speed limits.  
 
Speed-limit effects in the random-effects models are consistent with those in the pooled models: 
higher speed limits have a positive effect on fatalities, yet a negative effect on total and PDO 
crash counts.  They have no statistically significant effects on counts of injuries, fatal crashes, 
and injury crashes.  In the random-effects and pooled model, a 1 mph increase in speed limits is 
predicted to result in fatal crash increases of 2.4 and 5.9 percent, respectively.  This same 
increase, however, is predicted to result in 0.8 and 0.6 percent reductions in PDO and total 
crashes, using the random-effects specifications.  In contrast, the fixed-effects models suggest 
increases in both PDO and total crash counts due to speed limit increases, and 2.1 and 4.1 
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percent increases in injuries and injury crashes, respectively, assuming a 1 mph increase in the 
posted speed limit. 
 

<Table 3> 
 

<Table 4> 
 
Hausman’s specification test (1978, 1984) can compare fixed-effects and random-effects in both 
linear and count panel specifications.  Random-effects models were clearly rejected for injury 
and total crash count measures; pooled models were already chosen for fatalities and fatal crash 
counts.  Such rejection suggests either misspecification or correlation between random-effects 
and explanatory variables.  Given how many valuable variables are unobserved yet likely to be 
correlated with control variables (such as sight distances, which generally are correlated with 
speed limits, weather, which may be correlated with mountainous terrain, and vehicle type, 
which may be correlated with the number of lanes), correlation between random-effects and 
explanatory variables is a likely culprit. 
 
Final Models 
Based on the results of three different tests in each count case (one test for overdispersion, one 
for random-effects versus pooled estimators, and one for fixed-effects versus random-effects), 
the final model specifications were determined.  The ostensibly best models based on three tests 
were fixed-effects negative binomial models (FENB) for counts of injuries and total crashes, 
random-effect negative binomial models (RENB) for counts of injury crashes and PDO crashes, 
pooled negative binomial models for fatalities, and pooled Poisson models for fatal crash counts. 
However, comparisons of actual counts and predicted rates showed that statistically insignificant 
constant term values were effectively biasing the results.  Ultimately, the best models were found 
to be a fixed-effects negative binomial model for injuries, a pooled Poisson model for fatal 
crashes, and pooled negative binomial models for fatalities, injury crashes, PDO crashes, and 
total crashes.  These are presented in Table 5.  In data sets longer than four years, and/or those 
with more observations per roadway section (e.g., monthly data), panel models may perform best 
for all count variables, since there is more reliable or consistent information available per 
section.  

<Table 5> 
 
Speed limit increases are predicted to result in more fatalities and injuries.  The adverse effects 
are estimated to be quite large for fatalities: a 1 mph speed limit increase is associated with a 5.9 
percent increase in fatalities and 2.1 percent rise in injuries, but reductions of 0.7 and 0.4 percent 
in PDO crashes and total crashes, respectively.  No statistically significant changes in the 
numbers of fatal and injury crashes were detected due to speed limit increases; however, there 
were significant increases in these numbers in 1996 (by 32 and 11 percent, respectively) due to 
unobserved changes occurring in that year.  Increases in the numbers of victims yet no changes 
in crash counts in fatal and injury crashes are probably due to the presence of more severe – 
though not fatal – crashes, where more involved travelers experience an injury12.   
 
The variable AADT per lane acts as a proxy for congestion (helping relieve some of the burden 
on the VMT variable).  As expected, it is predicted to have a negative effect on fatalities and 
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fatal crashes.  Roads with 1000 more vehicles per lane per day are predicted to have 6.0 and 8.3 
percent fewer fatalities and fatal crashes, respectively.  However, this variable appears to 
increase injury crashes, PDO crashes, and total crashes.  
 
In terms of geometric features, highways with more lanes are estimated to experience fewer 
crashes and crash victims in any severity level, everything else constant.  The effects are greatest 
for fatalities (26 percent) and fatal crashes (24 percent).  However, more lanes typically mean 
more traffic, an urban area, and regular congestion.  Such congestion slows the crash-involved 
vehicles and results in fewer deaths and injury, no doubt.  
 
A wider median is predicted to reduce non-fatal and total crashes slightly (less than 1 percent 
with 10ft wider medians).  Vertical grade appears to have no effect, except for PDO crashes 
(where it adds to crash rates), while an additional 100 ft in vertical curve length, is predicted to 
reduce fatalities and fatal crashes slightly (by 2 and 1 percent, respectively).  
 
Longer horizontal curves were estimated to decrease injuries, injury crashes, PDO crashes, and 
total crashes, but have no effect on fatalities and fatal crashes.  These reducing effects range from 
6 to 8 percent for every 1000 additional feet of horizontal curve length, perhaps because drivers 
must turn more tightly in order to stay in their lane.  The degree of curvature, which is inversely 
proportional to curve radius (∆ [deg/100 ft] = 5729/R, where R = radius [feet]), has a positive 
effect on all crash measures, as expected (due to higher centrifugal forces and tighter turning 
requirements).  A one-degree increase is associated with 21 and 13 percent more fatalities and 
fatal crashes, respectively.  
 
Remarkably, 71 percent fewer fatalities and 57 percent fewer fatal crashes are expected in 
mountainous terrain, compared to level terrain.  However, 81, 83, and 113 percent more injuries, 
injury crashes, and PDO crashes are predicted in mountainous terrain.  Rolling terrain’s effects 
lie somewhere between those of mountainous and level terrain.  Travelers appear to be at 
somewhat higher risk (to injury) but drivers appear to exercise more caution while in 
mountainous or rolling terrain than level terrain (resulting in fewer predicted fatalities).  Under 
wet or snowy road-surface conditions, expected fatalities and fatal crashes are 46 and 47 percent 
lower than on dry surface conditions, respectively.  This also is probably due to more careful 
driving, under poor driving conditions.  
 
Model Limitations 
McFadden’s likelihood-ratio index (LRI) (1974) suggests the estimated models have a likelihood 
not too much higher than that based on a constants-only approach.  However, low LRIs are 
common with count models and rare events, such as crashes, particularly in disaggregate studies 
such as this. For example, Shankar et al.’s models (1997), which controlled for geometry and 
weather, produced LRIs of 0.07 to 0.11.  Model enhancement is possible.  For example, zero-
inflated Poisson and negative binomial models may better capture the nature of crash counts, 
based on two underlying states: an inherently safe state and an potential-for-crash state.  Zero-
inflated models explicitly reflect high zero crash counts by changing the conditional mean’s 
structure (Greene, 2000).  And additional explanatory variables, such as speed and weather 
information, add explanatory power.  
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In order to examine how high of LRI the current model can reach, simulations were performed 
assuming the model estimates are true parameters.  For illustration, the negative binomial model 
for total crash counts was chosen for simulations.  The total crash counts were generated based 
on the negative binomial model specification: )(~ ii Poissony µ  and ),(~ 1

ii Gamma αλµ α where 
)exp( Xβ′=iλ .  Estimates of parameters, α  and β  from the negative binomial model for total 

crash counts were plugged in for the simulation.  Using the simulated total crash count, iy , the 
log-likelihood value was computed using the following equation: 
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10 sets of simulations were performed and the average simulated LRI is 0.079, which is still low.  
This indicates that the true regression model for total crash counts attains 0.079 of LRI. 
 
Although the low LRIs are commonly found in disaggregate geometric studies, models for the 
four non-fatal crash measures yielded very low LRIs and do not carry much weight.  In addition, 
due to the low crash counts per section, even over a period of a year, these data were aggregated 
temporally.  Such aggregation may result in “ecological fallacies” in interpretation of results. 
(Fridstrom and Ingebrigtsen 1991; Davis, 2002)  
 
6. CONCLUSIONS 
This study examined the HSIS data in order to model crash counts along short freeway segments 
in Washington State between 1993 and 1996.  Poisson and negative binomial fixed-effects and 
random-effects models were used to recognize the count and panel nature of the response 
variables (crash counts).  The safety effects of changing speed limits were the focus of this work, 
and six different crash measures were used: counts of injured occupants and deaths, as well as 
the number of all, fatal, injury, and PDO crashes.  Design variables such as horizontal and 
vertical curve lengths, degree of (horizontal) curve, grade, median width, number of lanes, and 
indicators for mountainous and rolling terrains were controlled for, along with AADT per lane 
(as a proxy for congestion), VMT, and pavement wetness. 
 
For each crash measure, an appropriate model was developed starting with the same set of 
explanatory variables.  This resulted in a fixed-effects negative binominal model for injury 
counts.  Pooled negative binomial models performed best for fatalities, injuries, PDO crashes, 
and total crashes, whereas a pooled Poisson model was appropriate for fatal crash counts.    
Through the statistical test, negative binomial panel models were selected for injury crashes, 
PDO crashes, and total crashes.  However, they resulted in unrealistic predictions.  Instead, 
pooled negative binomial models were chosen even after estimations of Poisson panel models for 
those three dependent variables. 
 
Raised speed limits appear to increase injuries and fatalities. Raising speed limits by just 10 mph 
is estimated to bring about 78 percent more fatalities and 24 percent more injuries (but 
reductions of 7 and 4 percent in PDO and total crashes, respectively).  More traffic counteracts 
the adverse effects, to some extent.  For example, 1,000 more AADT per lane is predicted to 
result in 6 and 8 percent fewer fatalities and fatal crashes, respectively.  And added lanes (which 
provide more space for maneuvering but also are likely to be correlated with congestion) reduce 
crash expectations by 4 to 26%.  As one might expect sharper horizontal curves increase crash 
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rate predictions, while driving in hilly or mountainous terrain reduces fatalities and fatal crashes.  
Interestingly, vertical grade has no effect on crash measures except for PDO crashes, though 
longer vertical curves operate more safely.  Median width is estimated to add to injury crashes, 
PDO crashes, and total crashes.   
 
Based on the crash rate estimates, travel time savings (due to higher speed limits) were compared 
to crash cost estimates.  Blincoe’s (1994) crash cost estimates (with a four percent inflation rate) 
are $3,600, $195,206, and $899,803 (all in 1996 U.S. dollars) per PDO crash13, injury, and 
fatality.  For time saving estimation, average speeds were assumed to equal to speed limits 
(which is a bit generous14).   And an $19/vehicle-hour value of travel time (in 1996$) was 
applied (based on McFarland and Chui’s [1987] findings, and inflated at an annual rate of 4 
percent.   For a hypothetical speed limit increase from 60 to 70 mph on a highway with the 
average characteristics (in this data set), the total increase in crash cost increase was estimated to 
be $750 million, versus a paltry time savings valuation of $2.61 million.  Among the crash costs, 
roughly 90 percent results from increased injury predictions. 
 
The study findings related to speed limits, geometric design, environmental factors, and traffic 
conditions are useful for roadway designers, law enforcement agencies and policy makers in that 
these stakeholders are in a position to affect a variety of factors, thereby influencing traffic 
safety.  For example, policy makers and enforcement agencies might want to predict the effects 
(including monetarized benefits and costs) of changing speed limits, given roadway geometry 
and traffic conditions.  Certainly, traffic engineers and roadway designers also can better 
appreciate the safety impacts of their management and design choices.   
 
Taken all together, these results suggest speed limits play a central role in driving safety and 
traffic fatalities.  They dominate most other factors, and the estimated cost impacts of raised 
limits overwhelm even the most liberal time saving estimates.  Though increasing speed limits 
may have some positive network or system effects (as suggested by work by Lave and Ellias 
(1994, 1997) and Houston (1999)), they appear to rather dramatically raise local crash injury 
counts and fatalities. Though crashes claim more human lives in the U.S. than any other disease 
or accident, they remain a rare event.  And, in the long term, vehicle design and driver choices 
may counteract more of the risks that Americans seem to be facing due to the raised speed limits. 
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Endnotes
                                                 
1 Overdispersion exists when the variance of a distribution exceeds its mean. 
2 AutoRegressive Integrated Moving Average (ARIMA) models were developed by Box and Jenkins in 1976.  The 
ARIMA(p, d, q), model relies on an autoregressive parameter p, nonseasonal differencing parameter d, and moving 
average parameter q. 
3 Speed spillover implies that drivers, accustomed to raised speed limits on some corridors, are more likely to speed 
on roads whose limits have not been altered. 
4 The origin of this term is Hauer’s (1997) “naïve” before-after studies.  However, such applications do not have to 
be in the context of after vs. before, so here the term naïve comparison is used. 
5 He observed 2.9 fatal crashes per 100 million VMT relative to an expected 1.5 such crashes, as predicted from a 
model of the previous 5 years. 
6 Only four HSIS-reporting states provide this information. 
7 Interstate road design is relatively standard, apart from the many variables controlled for here.  If a variety of 
roadway types were included, correlation of unobserved attributes with control variables may obscure true 
relationships while introducing substantial variation. 
8 It excludes I-705, which measures just 1.5 centerline miles in the State of Washington. 
9 Years 1999 through 2000 should become available by early 2004. Unfortunately, data from years 1997 and 1998 
are incomplete and thus not available from the HSIS. 
10 A Type I version results in )1(][ αµ += iiYV , requiring that dispersion be constant. Type II dispersion increases 
with mean value. 
11 No study was found that permits a direct choice between fixed- and random-effects Poisson and NB models. In a 
panel setting, with individual effects recognized via either a fixed- or random-effects specification, a Poisson 
approach may be sufficient, particularly if there are theoretical grounds for a Poisson specification.  In such cases, 
permission for overdisperion may result in “overkill”. 
12 This result also may be due to higher occupancy rates and/or crashes involving more vehicles. Vehicle occupancy 
data are not available for these data.  Number of vehicles per crash is, however, and it did not vary much over the 4 
year period of 1993-1996; the average number of vehicles per crash went from 1.89 in 1993, to 1.92 in 1994, to 1.94 
in 1997, to 1.90 in 1998. 
13 Blincoe’s (1994) costs were per PDO-crash-involved vehicle, rather than per PDO crash.  There are (slightly over) 
two vehicles involved in every PDO crash in this data set, so the per-PDO-crash cost used is double Blincoe’s PDO-
vehicle cost. 
14 Actual average speed increases may be more on the order of 50%.  Ossiander and Cummings (2002) reported 5.5 
mph speed increase following 10 mph speed limit increases on rural interstates.  However, there is also a cost of 
paying traffic fines when one exceeds the limit, which is no longer a factor for those who travel below the new, 
higher limit, and that is a cost savings/benefit as well. 
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TABLE 1. Variable Definitions and Summary Statistics (Annual Washington State HSIS 
Data) 

Variables Description Mean Std. Dev. Min Max 

Dependent Variables 
NUMDEAD Number of fatalities 0.019 0.161 0 4
NUMINJUR Number of injuries 1.968 3.413 0 76
NUMFATCR Number of fatal crashes 0.017 0.130 0 2
NUMINJCR Number of injury crashes 1.217 1.912 0 44
NUMPDOCR Number of PDO crashes 1.514 2.063 0 37
NUMCRASH Number of crashes 2.747 3.599 1 81
Independent Variables 
SEGLENTH Segment length (mile) 0.131 0.146 0 1.69
CURVLENTH Horizontal curve length (ft) 515.0 983.5 0 12683
DEGCURVE Degree of curve (degrees/100') 0.565 1.152 0 38
VCURLENTH Vertical curve length (ft) 721.3 678.8 0 6700
PCTGRADE Grade percent (%) 0.029 2.123 -5.130 5.550
MEDWIDTH Median width (ft) 72.97 119.1 0 999
NUMLANES Number of lanes 5.458 1.500 3 9

NDRYSURF Indicator for non-dry surface (at time 
of crash) 0.423 0.416 0 1

SPDLIMIT Speed limit (mph) 62.16 5.494 55 70
MOUNTAIN Indicator for mountainous terrain 0.069 0.253 0 1
ROLLING Indicator for rolling terrain 0.863 0.344 0 1

AADTPL AADT per lane 
=AADT / NUMLANES 13076 8511 814 48251

VMT 
Average daily vehicle miles traveled = 
segment length (miles) × 
Annual Avg. Daily Traffic (veh/day) 

7234 8422 77 81869

YEAR94 Indicator for year 1994 0.238 0.426 0 1
YEAR95 Indicator for year 1995 0.249 0.432 0 1
YEAR96 Indicator for year 1996 0.280 0.449 0 1
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TABLE 2. Pooled Count Data Regression Results for Six Crash Measures  
Dependent Variable & Selected Model 

NUMDEAD NUMINJUR NUMFATCR NUMINJCR NUMPDOCR NUMCRASH
Independent 

Variables 
NegBin NegBin Poisson NegBin NegBin NegBin 
-13.07 -7.634 -9.540 -8.719 -8.168 -7.588 Constant 
(1.575) (7.24E-02) (0.316) (6.66E-02) (0.242) (0.184) 

 -7.00E-05  -8.48E-05 -6.10E-05 -6.69E-05  CURVLENGTH 
 (1.64E-05)  (1.51E-05) (1.29E-05) (1.08E-05) 

0.186 7.35E-02 1.19E-01 8.12E-02 7.27E-02 7.77E-02  DEGCURVE 
(7.39E-02) (1.41E-02) (2.95E-02) (1.19E-02) (1.05E-02) (8.87E-03) 
-1.91E-04 4.34E-05 -1.24E-04 3.33E-05  2.65E-05  VCURLENGTH 
(1.20E-04) (2.06E-05) (1.00E-04) (1.85E-05)  (1.34E-05) 

    6.83E-03   PCTGRADE 
    (4.58E-03)  
 -1.84E-04  -2.61E-04 -1.40E-04 -1.48E-04  MEDWIDTH 
 (1.18E-04)  (1.11E-04) (9.16E-05) (7.58E-05) 

-0.270 -7.25E-02 -0.301 -4.62E-02 -4.54E-02 -5.46E-02  NUMLANES 
(6.64E-02) (9.60E-03) (5.96E-02) (7.86E-03) (7.53E-03) (6.18E-03) 

-0.609  -0.633 5.03E-02 0.303 0.188  NDRYSURF 
(0.203)  (0.179) (3.15E-02) (2.77E-02) (2.27E-02) 

5.76E-02    -7.45E-03 -3.73E-03  SPDLIMIT 
(2.13E-02)    (3.57E-03) (2.75E-03) 

-1.220 0.389 -0.842 0.607 0.758 0.647  MOUNTAIN 
(0.423) (6.00E-02) (0.365) (7.24E-02) (6.28E-02) (5.13E-02) 
-0.643  -0.491 0.112 0.199 0.134  ROLLING 
(0.244)  (0.191) (5.36E-02) (4.80E-02) (3.86E-02) 

 -0.152   0.181 6.44E-02  RURAL 
 (4.39E-02)   (4.06E-02) (3.26E-02) 

-6.20E-05 5.79E-06 -8.70E-05 1.57E-05 1.02E-05 1.01E-05  AADTPL 
(1.53E-05) (2.22E-06) (1.18E-05) (1.53E-06) (1.84E-06) (1.49E-06) 

    -5.60E-02   YEAR94 
    (2.69E-02)  

-0.342 4.36E-02  2.13E-02 0.144   YEAR95 
(0.194) (3.17E-02)  (2.76E-02) (2.50E-02)  

 0.118 0.276 0.108  0.134  YEAR96 
(3.05E-02) (0.146) (2.67E-02) (2.02E-02)

  lnVMT* 1.0 1.0 1.0 1.0 1.0 1.0 
14 94 1 253 0 501 0 417 0 348α ** 
2.870 (2.62E-02)

NA 
(1.72E-02) (1.31E-02) (8.05E-03)

Num. Obs. 13,494 13,494 13,494 13,494 13,494 13,494
 LL(Model) -1,223 -25,042 -1,142 -19,858 -22,238 -27,978 
 LRI*** 0.070 0.003 0.088 0.007 0.013 0.010 
   *: coefficient was constrained to 1.0  
 **: overdispersion parameter 
***: McFadden’s Likelihood Ratio Index (LRI) = )()(1 OnlyConstLLModelLL−  
Notes: Standard errors are provided in parentheses.  Variables with a p-value of 0.2 or higher remained in the model. 
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TABLE 3. Fixed-Effects (FE) Count Data Model Results for Six Crash Measures  
Dependent Variable & Selected Model 

NUMDEAD NUMINJUR NUMFATCR NUMINJCR NUMPDOCR NUMCRASH
Independent 

Variables 
FENB FENB FEPois FENB FENB FENB 
-13.86 -8.586 1.332 6.417 11.82 Constant 
(1.286) (0.407)  (29.21) (100.2) (30.91) 

 -7.04E-05  5.09E-04    CURVLENGTH 
 (5.07E-05)  (2.85E-04)   

1.826 6.58E-02      DEGCURVE 
(0.792) (4.39E-02)     

   8.42E-04 6.72E-04 7.01E-04  VCURLENGTH 
   (4.22E-04) (3.83E-04) (2.75E-04) 
     -8.81E-03  MEDWIDTH 
     (5.74E-03) 
 -0.191  -0.186  -0.159  NUMLANES 
 (2.77E-02)  (0.121)  (8.30E-02) 

-0.513 -4.65E-02 -0.567  0.157 7.24E-02  NDRYSURF 
(0.247) (3.23E-02) (0.246)  (2.90E-02) (2.17E-02) 

 2.12E-02  4.01E-02 9.78E-03 1.25E-02  SPDLIMIT 
 (4.44E-03)  (5.16E-03) (3.91E-03) (2.88E-03) 
 0.595      MOUNTAIN 
 (0.278)     
 0.453      ROLLING 
 (0.217)     
   -2.88E-05 -2.80E-05 -2.85E-05  AADTPL 
   (1.00E-05) (8.93E-06) (6.75E-06) 
 4.02E-02  4.73E-02    YEAR94 
 (2.62E-02)  (2.47E-02)   
   -0.106    YEAR95 
   (2.27E-02)   
    0.152 0.127  YEAR96 

(2.06E-02) (1.53E-02)
  lnVMT * 1.0 1.0 1.0 1.0 1.0 1.0 
Num Obs 565 10 412 565 10 373 11 012 11 509

 Num. Grps 180 3,557 180 3,541 3,809 4,038 
 LL(Model) -206 -10,664 -200 -7,701 -8,645 -10,733 
 LRI ** 0.026 0.005 NA 0.005 0.009 0.009 
   *: coefficient was constrained to 1.0  
 **: McFadden’s Likelihood Ratio Index (LRI) = )()(1 OnlyConstLLModelLL−  
Notes: Standard errors are provided in parentheses.  Variables with a p-value of 0.2 or higher remained in the model. 
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TABLE 4. Random-Effects (RE) Count Data Model Results for Six Crash Measures  
Dependent Variable & Selected Model 

NUMDEAD NUMINJUR NUMFATCR NUMINJCR NUMPDOCR NUMCRASH
Independent 

Variables 
RENB RENB REPois RENB RENB RENB 
-9.095 -7.245 -9.581 5.912 6.398 6.982 Constant 
(1.473) (9.15E-02) (0.321) (64.12) (57.88) (41.83) 

  -5.10E-05   -6.37E-05 -3.99E-05 -4.42E-05  CURVLENGTH 
  (1.76E-05)   (1.78E-05) (1.56E-05) (1.36E-05) 

0.123 6.99E-02 0.121 6.98E-02 6.54E-02 6.82E-02  DEGCURVE 
(3.49E-02) (1.33E-02) (3.29E-02) (1.35E-02) (1.23E-02) (1.10E-02) 
-1.33E-04 3.76E-05   4.45E-05   3.34E-05  VCURLENGTH 
(1.05E-04) (2.31E-05)   (2.30E-05)   (1.76E-05) 

      -1.81E-04   -1.48E-04  MEDWIDTH 
      (1.35E-04)   (1.02E-04) 

-0.301 -8.33E-02 -0.304 -5.47E-02 -5.00E-02 -6.14E-02  NUMLANES 
(6.26E-02) (1.10E-02) (6.06E-02) (1.05E-02) (9.85E-03) (8.52E-03) 

-0.612   -0.641   0.217 0.111  NDRYSURF 
(0.180)   (0.181)   (2.40E-02) (1.86E-02) 

2.42E-02       -8.21E-03 -6.34E-03  SPDLIMIT 
(1.75E-02)       (4.89E-03) (3.60E-03) 

-0.903 0.343 -0.885 0.453 0.670 0.546  MOUNTAIN 
(0.386) (6.56E-02) (0.373) (6.71E-02) (7.65E-02) (6.66E-02) 
-0.531   -0.532   0.193 0.104  ROLLING 
(0.211)   (0.199)   (5.88E-02) (4.97E-02) 

  -0.136   -0.186 0.132    RURAL 
  (4.73E-02)   (3.71E-02) (4.99E-02)   

-7.57E-05 -3.99E-06 -8.49E-05     -3.84E-06  AADTPL 
(1.40E-05) (2.51E-06) (1.17E-05)     (1.91E-06) 

  3.68E-02     -3.12E-02    YEAR94 
  (2.48E-02)     (2.15E-02)   
  6.64E-02   4.60E-02 4.67E-02 6.63E-02  YEAR95 
  (2.49E-02)   (2.03E-02) (3.18E-02) (2.27E-02) 
  0.150 0.274 0.138 0.183 0.184  YEAR96 

(2.42E-02) (0.147) (1.94E-02) (3.13E-02) (2.28E-02)
  lnVMT * 1.0 1.0 1.0 1.0 1.0 1.0 

9 395 4 539 2 83E+06 3 65E+06 3 30E+06 r 
(5.441) (0.173) 

NA 
(1.81E+08) (2.11E+08) (1.38E+08) 

1.352 2.722 2.131 2.436 2.723  s 
(1.642) (0.119)

NA 
(7.72E-02) (8.23E-02) (7.46E-02)

0 467α ** NA NA 
(0.561) 

NA NA NA 

Num Obs 13 494 13 494 13 494 13 494 13 494 13 494
Num. Grps 6,023 6,023 6,023 6,023 6,023 6,023 
LL(Model) -1,233 -24,678 -1,143 -19,098 -21,240 -26,110 
LRI *** 0.076 0.004 0.015 0.004 0.010 0.009 
   *: coefficient was constrained to 1.0  
 **: overdispersion parameter 
***: McFadden’s Likelihood Ratio Index (LRI) = )()(1 OnlyConstLLModelLL−  
Notes: Standard errors are provided in parentheses.  Variables with a p-value of 0.2 or higher remained in the model. 
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TABLE 5. Final Model Results for Six Crash Measures  
Dependent Variable & Selected Model 

NUMDEAD NUMINJUR NUMFATCR NUMINJCR NUMPDOCR NUMCRASH
Independent 

Variables 
NegBin FENB Poisson NegBin NegBin NegBin 
-13.07 -8.586 -9.540 -8.719 -8.168 -7.588  Constant 
(1.575) (0.407) (0.316) (0.067) (0.242) (0.184) 

 -7.04E-05  -8.48E-05 -6.10E-05 -6.69E-05  CURVLENGTH  (5.07E-05)  (1.51E-05) (1.29E-05) (1.08E-05) 
0.186 0.066 0.119 0.081 0.073 0.078  DEGCURVE (0.074) (0.044) (0.030) (0.012) (0.010) (8.87E-03) 

-1.91E-04  -1.24E-04 3.33E-05  2.65E-05  VCURLENGTH (1.20E-04)  (1.00E-04) (1.85E-05)  (1.34E-05) 
    6.83E-03    PCTGRADE     (4.58E-03)   
   -2.61E-04 -1.40E-04 -1.48E-04  MEDWIDTH    (1.11E-04) (9.16E-05) (7.58E-05) 

-0.270 -0.191 -0.301 -0.046 -0.045 -0.055  NUMLANES (0.066) (0.028) (0.060) (7.86E-03) (7.53E-03) (6.18E-03) 
-0.609 -0.047 -0.633 0.050 0.303 0.188  NDRYSURF (0.203) (0.032) (0.179) (0.031) (0.028) (0.023) 
0.058 0.021   -7.45E-03 -3.73E-03  SPDLIMIT (0.021) (0.004)   (3.57E-03) (2.75E-03) 
-1.220 0.595 -0.842 0.607 0.758 0.647  MOUNTAIN (0.423) (0.278) (0.365) (0.072) (0.063) (0.051) 
-0.643 0.453 -0.491 0.112 0.199 0.134  ROLLING (0.244) (0.217) (0.191) (0.054) (0.048) (0.039) 

    0.181 6.44E-02  RURAL     (0.041) (0.033) 
-6.20E-05  -8.70E-05 1.57E-05 1.02E-05 1.01E-05  AADTPL (1.53E-05)  (1.18E-05) (1.53E-06) (1.84E-06) (1.49E-06) 

 0.040   -5.60E-02    YEAR94  (0.026)   (0.027)   
-0.342   0.021 0.144    YEAR95 (0.194)   (0.028) (0.025)   

  0.276 0.108  0.134  YEAR96   (0.146) (0.027)  (0.020) 
 lnVMT* 1.000 1.000 1.000 1.000 1.000 1.000 

14.943 0.501 0.417 0.348  α ** 
(2.870) 

NA NA 
(0.017) (0.013) (0.008) 

 Num. Obs. 13,494 10,412 13,494 13,494 13,494 13,494 
 Num.Grps. NA 3,557 NA NA NA NA 
 LL(Model) -1,223 -10,664 -1,142 -19,858 -22,238 -27,978 
 LRI*** 0.070 0.005 0.088 0.007 0.013 0.010 
   *: coefficient was constrained to 1.0  
 **: overdispersion parameter 
***: McFadden’s Likelihood Ratio Index (LRI) = )()(1 OnlyConstLLModelLL−  
Notes: Standard errors are provided in parentheses.  Variables with a p-value of 0.2 or higher remained in the model. 
 
 


