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ABSTRACT 

 

Relationships between speed choice and crash occurrence have been difficult to identify.  This work examines 
vehicle speeds (and their variations) derived from single loop detectors for several Southern California freeways, 
within and across freeway lanes, together with corresponding crash data. While a variety of factors clearly influence 
speed and speed variance, there is no evidence in these crash data sets, and observations of their corresponding 
series of 30-second traffic conditions, that speeds or their variation trigger crashes. 

 

BACKGROUND 
 

In the United States and elsewhere, traffic crashes claim more human years than any other incident or disease. They 
also result in tremendous property losses. U.S. crash costs for the year 2000 are estimated to well exceed $200 
billion per year, with roughly a quarter of this from property damage (Blincoe 2002).  These same crashes claimed 
42,636 lives in 2004 (USDOT 2005). Driver behavior, roadway design, weather and other factors all play a role in 
crashes.  The most debated component is probably driver behavior, in the form of speed choices.  While it is well 
understood that higher impact speeds produce more severe crashes (Joksch 1993, Kockelman and Kweon 2002, and 
Kockelman et al. 2006), it is not altogether clear what roles speed variation (across vehicles/drivers) and speed limit 
policies play (Lave 1985, Lave and Elias 1994, Johansson 1996, Aljanahi et al. 1999, Farmer et al. 1999, Davis 2002, 
Ossiander and Cummings 2002, Navon 2003, and Vernon et al. 2003). To this end, this paper focuses on the effect 
driver behavior has in creating crashes in the form of speed choice – while controlling for roadway design features 
and weather conditions. 

 

LITERATURE REVIEW 
 

The speed-crash literature provides a valuable background for the debate, and motivates the questions at the heart of 
this research. In the 1960’s Solomon (1964) and Cirillo (1968) found that many vehicles involved in rural and 
interstate highway crashes were traveling well above or below the average speed. They did not control for access 
point densities, however. Access points introduce practically stopped vehicles to the traffic stream, resulting in very 
dangerous conditions on high-speed roadways.  They also presumed their sampled speed data to apply to long 
roadway sections at all times of day. Lave (1985) cited their work when using models of aggregate speed and crash 
data to conclude that highway fatality rates depend more on speed variance (across vehicles) than on average speeds. 
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However, Davis (2002) has clearly demonstrated how aggregate relationships between speed, speed variance and 
crash frequency are not necessarily supported by the underlying, disaggregate data. 
 
Garber and Gadiraju (1989) investigated how differences in design speeds and posted speed limits influence speed 
choices.  They found minimal speed variation (with speed standard deviations on the order of 7.55 mph) when 
posted speed limits were 10 mph below design speeds, and essentially constant speed variation, regardless of the 
difference in posted and design speeds.  They also found that drivers chose higher speeds on roadways with better 
geometric design, irrespective of posted speed limits, and concluded that higher speeds do not necessarily result in 
higher crash rates, whereas higher speed variation does. 
 
Using data from rural highways with speed limits 80 kilometers per hour (km/h) or above in Adelaide, Australia, 
Kloeden et al. (2001) estimated that a vehicle’s risk of involvement in an injurious crash doubles when traveling just 
six miles per hour (mi/h) (10 km/h) above the roadway’s average speed.  This risk multiplier rises to six when 
traveling 12 mi/h (20 km/h) above the average speed.  They concluded that reductions in average speeds would be 
more helpful in reducing the risk of crash involvement than reductions in speed difference. Just one year later, using 
data from urban highways, Kloeden et al. (2002) concluded that differences in crash involvement arise mainly due to 
actual speeds at which drivers choose to operate their vehicles, instead of other factors, like driver type and speed 
variations.  However, they were unable to control for these other variables. 
 
Golob et al. (2003c) obtained crash and nearby single-loop detector1 data for all crashes reported along six freeways 
in California’s Orange County in 1998.  They distinguished eight traffic flow regimes based on speed variation and 
found the highest crash rates (6.3 crashes per million vehicle miles traveled (VMT) during the morning peak period) 
during heavily congested flow, corresponding to low mean speeds, low speed variation, low flows, and low flow 
variation.  In contrast, the lowest crash rates (0.6 per million VMT) appeared as morning-peak traffic approached 
capacity conditions, characterized by high speeds and low speed variation.  However, in order to avoid “assumptions 
of uniform speed, average vehicle length, and … the physical installation of each loop (detector)” (2003c p. 3), 
Golob et al. used the ratio of 30-second volume-to-occupancy as a proxy for speed2.  In addition, they characterized 
“speed variation” as the difference between the 90th and 50th percentile values of speed estimates during the 27.5 
minutes preceding each crash.  Thus, the presence of long vehicles (such as commercial trucks) will lower speed 
estimates, and the measure of variation is far from instantaneous.  If truck presence and/or local speed variations are 
important crash factors, these speed estimates will not capture such effects.   
 
In summary, based on a review of the literature, data and methodological limitations have prevented a resolution of 
the speed-crash debate.  This research employs some new methods, using a subset3 of Golob et al.’s data set.  30-
second detector data from single loops, paired with effective vehicle length assumptions, roadway conditions, and 
crash data result in estimates of instantaneous speed variation within and across lanes.  These permit models based 
on more disaggregate information, and allow one to ascertain the effects of various design variables, such as number 
of lanes, lane location and lighting conditions. 

DATA DESCRIPTION 

 
The data set used in this work involves crashes that occurred in January 1998 on six Orange County, California 
freeways: Interstates 5 and 405, and State Routes 22, 55, 57, and 91.  Crash-specific data were acquired from 
Caltrans’ Traffic Accident Surveillance and Analysis System (TASAS) database and assembled by Golob and Recker 
(2002).  Golob and colleagues compiled and have used the entire 1998 year’s data set in several studies of traffic 
crash typology (Golob and Recker 2002 and 2003, Golob et al. 2003a and 2003b). 
 
The January 1998 database subset contains all 744 crashes that resulted in police reports, and 55 of these resulted in 
injury or death; these are the subject of this investigation.  The database also contains basic traffic flow data for 30 
minutes preceding each crash.  These were derived from single-loop detectors upstream4 and within 2,000 feet of the 
crash mile-post locations5.  
 
Recognizing that actual crash times are not known precisely and that traffic conditions existing several minutes prior 
to a crash probably have little effect on the crash’s occurrence, Golob and Recker (2002) discarded the 2.5 minutes 
of traffic data immediately preceding each crash’s reported time.  This strategy also was employed here, resulting in 
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the removal of five 30-second (sec) intervals from each 30-minute period of traffic condition data that accompanies 
every crash record. 
 
In addition, the algorithm for within-lane speed variance estimation (discussed in the following section) results in 
the loss of the first two 30-sec traffic observations at each loop detector.  Thus, there remain 53 usable sequential 
30-sec observations preceding each crash.  After accommodating a small portion (less than 2%) of observations with 
incomplete detector data 2,858 30-sec roadway section observations remained.  All roadway sections in the data set 
contain from three to five (one-way) lanes, resulting in 12,243 30-sec lane observations.  Therefore, statistical 
results are based on either the section-specific 2,858 observations, or the lane-specific 12,243 observations. 
 
The loop detector data provide information on lane number, occupancy, volume, and time of day.  The crash reports 
provide information on lighting, pavement surface, and other crash conditions.  And the FHWA’s Highway Safety 
Information System (HSIS) data set (FHWA 2000) provided design speeds for the detector locations6. All these 
factors, along with lane location, presence of obstructions, and other readily available variables were controlled for 
in the models that follow.  However, before applying such models, flow and occupancy had to be translated into 
robust estimates of speed and speed variance. 
 

ESTIMATION OF SPEED & SPEED VARIANCE 

In 1998, the six freeways under study were instrumented with single inductive loop detectors.  Single loops provide 
only two measures of traffic conditions7: traffic counts (the number of vehicles registered as passing over the loop 
detectors) and occupancy (the fraction of time that the loop’s detection zone is occupied by a vehicle).  Speed 
estimates require vehicle length and detection zone length assumptions.  Speed variance estimates (across individual 
vehicles, both within and across lanes) require assumptions regarding speed distributions and their temporal stability.  
The methods of estimation used in this work are standard for average speed and novel for speed variance.   
 

Estimation of Average Speeds 

Under an assumption of zero acceleration (or deceleration)8, a vehicle’s speed is the ratio of the distance it travels 
and its travel time.  A single vehicle passing over a presence-type detector9 travels a distance equal to the vehicle 
length ( il ) plus the effective detection zone length10 ( dl ) during the detector’s occupancy time ( it ).  The speed 
formula is thus as follows:   
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where iv = speed of individual vehicle i  (miles per hour), il = length of vehicle (feet), dl = effective loop detector 
length (feet), and it = detector occupancy time (seconds). 
 
Many vehicles can traverse a detector during a 30-second interval.  The average speed during any such interval can 
be computed using Equation 2: 
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where v  is average speed and N  is the number of vehicles traversing the detector during the 30-sec interval. 
 
The final part of Equation 2 is only an approximation.  It holds exactly if the individual speeds are constant/equal 
during the interval. 
 
Assuming constant speeds, average occupancy times ( ot ) and vehicle lengths ( vl ) may be used to form the 
following average speed equation: 
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For a 30–second period, with constant speeds and an occupancy fraction11 of %OCCi,t, the average vehicle speed can 
be estimated using the following expression: 
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where ,l̂ tv  is the average speed estimate, ,l tn  is the number of vehicles and ,l tl  is the average vehicle length during 

the tht 30-second interval in the thl lane. 
 
Unfortunately, the effective vehicle length ( vl + dl ) is not known.  Much research has addressed estimation of 
vehicle speeds using single loop detector data. (See, for example, Pushkar et al. 1994, Wang and Nihan 2000 and 
2003, Coifman et al. 2003, Coifman 2001, and Bruce 2002.)  All require strong assumptions, and/or more data than 
are available to us.12  
 
After some initial and very disappointing13 work using effective loop- and vehicle-length assumptions of 10 feet and 
14.75 feet, respectively (in order to estimate speeds based on occupancy and count data), local “g factors” were used.  
These are estimates of total effective lengths ( vl + dl ), as provided by the Performance Measurement System (PeMS) 
group at the University of California, Berkeley, and based on historical data for every 5-minute period of every day 
of the year at every detector station in the system. (Jia et al. 2001, PeMS 2002)  They are based on free-flow-speed 
assumptions during uncongested periods. (Chen et al. 2002)  Figure 1 summarizes the g-factor (vehicle length) 
values used here, and Table 1 provides g-factor values for example sections and times of day.  While these g-factors 
typically provide very reasonable average speed estimates, the methods of their derivation are not entirely known.  
Based on these g-factors, Equation 4 offers estimates of the time-mean speed for each station, in every 30-second 
interval and every lane.  Vehicle count-weighted averages of these lane-based speed averages provided road section 
speed averages, recognizing all lanes.  Both within-lane and section speed averages are modeled here, and they are 
key inputs to the speed variance estimates described below. 
 

Estimation of Speed Variation 

Along with average travel speeds, speed variations may play important roles in crash occurrence and severity.  But 
disaggregate estimates, of instantaneous variation, are needed; and these are difficult to obtain, without individual 
speed measurements.  In this work, estimates of within-lane speed variation rely on the within-lane average speed 
estimates, while across-lane and total section speed variance estimates rely on both within-lane and section average 
speeds. 
 
To transform a series of 30-second speed averages into estimates of instantaneous speed variation, a strong 
assumption is needed.  It is that speed distributions, and thus speed variance, vary little across every five consecutive 
30-second intervals. Since significant shifts in traffic conditions generally occur on the order of hours (such as peak 
to off-peak periods of demand), this assumption of steady traffic conditions during each 2.5-minute interval seems 
quite reasonable. The observed variation in 30-second average speeds, around the 150-second interval’s grand mean 
( 150sec ,l tv ) can then be used to approximate the underlying speed distribution’s overall variation. 
 
These computations rely on the following equations: 
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where 150sec ,l tv  is the count-weighted average speed during the 150-second interval, and ,l tn   and ,l̂ tv   are as defined 
earlier (Equation 4).  
 
Equation 6 estimates the standard deviation ( ,

ˆ
l tSDSPDLANE ) of every 150-second interval’s middle speed profile 

(i.e., that of its third 30-second interval).  Thus, these estimates can vary every 30 seconds, even though the base 
assumption involves stationary 150-second traffic speeds.   If traffic conditions are not stationary, as in evolving 
traffic, actual speed variations – and thus standard deviations – are likely to be lower14. 
 
Estimation of variations in average speeds across lanes is more straightforward than that within lanes.  Average 
within-lane speeds and counts during each 30-second interval can be used as follows: 
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tSDACROSSLN  is the estimate of standard deviation in average within-lane speeds across lanes in time 

interval t.  
 
 Together, within-lane and across-lane (or “between-lane”) information on speed variation provides information on 
overall, road-section speed variations.  Using within and between sums of squared deviations (WSS and BSS) from 
within-lane and across-lane grand mean speeds, one has the following: 
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As a result of these operations, one has estimates of within-lane speed variation, across-lane speed variation, and 
total speed variation, for every road section instrumented with loop detectors.  Any one and all three measures may 
be relevant for crash analysis, so all three are modeled here15. 
 

METHODOLOGY 

This work’s objective is to find relationships among speeds, speed variation (measured as standard deviation), and 
crash likelihood.  Ordinary least squares (OLS), weighted least squares (WLS), and binomial regression models 
were used, while controlling for weather and lighting conditions, lane position, and other key variables. 
 
Based on simple rules of variance for mean estimates, average within-lane speed observations are weighted by the 
vehicle counts used in their computation.16  Non-constant variation of these estimated values is called 
heteroskedasticity.  The squared residuals of an OLS regression can be studied for indications of such variation.  As 
expected, those squared residuals for within-lane and section average speeds fell with traffic count, so the 
theoretically applicable weight of count (VOL and VOLUME, respectively) was used17.  When weights are 
appropriately chosen, WLS results offer more efficient parameter estimates than OLS (Greene 2000). 
 
In addition to OLS models of section-based speed averages and standard deviations in speeds, and a WLS model of 
within-lane speed average, binomial models of crash likelihood were explored.  If crashes are precipitated by special 
speed patterns, these features may be evident in the data, in the moments before a crash.  The data set’s time-till-
crash variable (TMTLCRSH) is the difference between the reported crash time and the traffic observation time.18 
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Based on the time-till-crash estimates, indicator variables of whether the crash occurred within a certain period 
(three minutes, five minutes, and 10 minutes) of the observed traffic were coded.  In the binomial models of crash 
likelihood, these indicator variables served as the response variable, Y:   
 

(13) ( )Prob Y 1
1
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X

e
e

β

β
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′= =
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( ) 1Prob Y 0
1 Xeβ ′= =
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where control variables X are defined as in Tables 2 and 5.  From the estimated values of their coefficients, β , one 
can appraise the predicted direction and magnitude of their effects on the short-term likelihood of crash occurrence.  
It was hoped that these binomial models would bear some fruit.   However, it is the models of speed and speed 
variation that provided the most useful results. 
 

RESULTS 

Tables 2 and 5 summarize the data used to estimate effects of speed and its variations on crash occurrence while 
controlling for a variety of factors that are expected to influence driver speed choices, such as roadway features, 
environmental conditions and traffic characteristics.  Tables 4 and 8 provide model results for average within-lane 
and section speeds.  Results for standard deviations of speeds, within-lanes, across-lanes, and in total, are shown in 
Tables 3, 6, and 7.  Crash-likelihood model results are not provided, since they perform little better than a constants-
only model.  
 
All tables provide a column for standardized coefficient (Std. Coef.) estimates, which represent the number of 
standard deviation changes in the response variables (speed and speed standard error) that would be expected 
following a one-standard deviation change in the associated explanatory variable.  These offer analysts a sense of 
the practical significance of all control covariates.  All potential control covariates are included in the Initial Model’s 
tabled results; Final Model specifications (shown alongside) emerged from a process of stepwise elimination, 
whereby statistically insignificant control variables (those having p-values greater than 0.10) were removed, one-by-
one. 
 
As expected, traffic density plays a critical role in virtually all model results, reducing travel speeds and generally 
moderating speed variation.  More dense traffic conditions mean less room for crash avoidance, causing drivers to 
proceed more cautiously, slow down and synchronize their speed choices (as independent speed choice becomes 
difficult).  Also as expected, more lanes result in higher average speeds, by permitting greater maneuverability and 
flexibility in driver speed choices.  As anticipated, greater speed variations are estimated to occur in the outer, right-
side lanes, due to the presence of ramps, slow vehicles, and weaving maneuvers.  Slower speeds generally are 
witnessed along wet pavements and in the vicinity of obstructions and construction zones (as expected, due to driver 
concerns for safety in such locations).  Finally, there is an obvious anticipation of higher speeds on higher design-
speed facilities (though all roadways in this data set shared the same posted speed limit), and this effect was 
discerned in the empirical results.  Other than these control variables, no clear expectations of behavioral response 
existed on the part of the researchers.  While some may expect increasing variability in recorded traffic speeds to 
signal the onset of crash conditions, no results – in any of the model specifications (Tables 3, 4, 6, 7, and 8) – 
suggest that vehicle speeds or speed variations rise (or fall) near the reported time of crash.  Essentially, it may be 
very difficult to anticipate the onset of a crash, based on loop detector data.  The following discussion provides more 
detail on these and other relationships apparent in the various speed and speed variance behaviors. 
 
Table 3’s results suggest higher (free-flow) speeds occur on four-lane and five-lane (one-way) freeways than on 
three-lane freeways19: average speeds on five-lane (one-way) freeways are estimated to be 3.81 mph faster than 
those on three-lane freeways, everything else constant.  And those on four-lane sections are estimated to be 2.16 
mph higher.  Essentially, drivers have more opportunity to operate the vehicle at their preferred speeds when there 
are more lanes to choose from.  These empirical results (3.81 and 2.16 mph) are consistent with, but 27% and 44% 
higher than, the HCM-suggested adjustments of 3.0 and 1.5 mph (TRB 2000). 
 
Also according to Table 3, the lowest average speeds arise in the next-to-right-side lane, and, as expected, the inside 
lanes (far left) boast the highest average speeds. Traffic in the left-side lanes travels, on average, 7.41 mph (5.25-(-
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2.16) = 7.41) mph faster than that in the next-to-far-right lanes.  The HCM offers no information in this regard, 
making these results all the more useful for the transportation engineering community. 
 
Table 4 suggests that the highest speed variations (averaging 2.68 mph higher) can be found in the far right-side lane.  
As noted earlier, those far-right lanes tend to have many weaving, merging and diverging maneuvers (from the left-
side lanes and the far-right ramps and auxiliary lanes) as well as the section’s slowest vehicles, so these results are 
consistent with expectations.  Within-lane speed variation tends to rise with average speeds, and average within-lane 
speeds rise with number of lanes; however, the highest within-lane standard deviations are predicted on four-lane 
sections (as shown in Table 4, and assuming everything else constant).  The results also indicate that higher within-
lane speed variability accompanies higher average speeds, and the presence of construction zones.  In some contrast, 
Tables 6 and 7’s estimates do not imply that higher across-lane or total speed variability accompanies higher average 
speeds.  Evidently, problem perspective is important: speed variations within lanes can exhibit very different 
relationships from those that exist across lanes.  Of course, it is probably within-lane variation that is more likely to 
provoke a crash than across-lane variation, but both may be relevant for safety analysis, particularly when lane 
changes are taking place. 
 
As anticipated, model results suggest that higher traffic densities result in lower average within-lane speeds and 
higher within-lane speed variation (Tables 3 and 4), while producing lower across-lane speeds and speed variation, 
and lower overall speed variations (Table 6, 7 and 8).  As alluded to earlier, the reason for such results is felt to be 
that tight spacings (high densities) lead to greater driver caution, via use of lower speeds.  They also require greater 
coordination of driver speeds, within each lane, since following drivers cannot afford to collide with those in front 
but want to travel as fast as possible, though conditions are relatively congested.  Across lanes, however, traffic 
congestion (and thus density) can result in less speed coordination, as shockwaves propagate back and forth lane by 
lane, and right-side lanes may back up, slowing to a crawl, while left-side lanes continue to flow. 
 
The results in Tables 3 and 8 also indicate that people drive slowest on freeways at night and without the benefits of 
streetlights, as compared to other lighting conditions.  And they drive faster on higher design-speed sections, as one 
would expect.  Within-lane and total speed variation (Tables 4 and 7, respectively) rise substantially under nighttime, 
streetlight conditions (by 4.129 and 4.224 mph, respectively), much more so than under no-streetlight nighttime 
conditions (1.789 and 0.786 mph).   The presence of lighting may provide great confidence to a subset of drivers, 
who then drive faster, thereby widening the range of speed choices under such nighttime conditions.  
 
Within-lane and total speed variations also rise with design speeds, suggesting that some drivers are not comfortable 
with and/or do not take advantage of the higher-design conditions.  The within-lane and total speed standard 
deviations are predicted to rise 1.8 mph (Table 4) and 4.6 mph (Table 7), respectively, for every 10 mph increase in 
design speed. 
 
As expected, average speeds are lower on roads that are wet or have obstructions (Tables 3 and 8), due to driver 
safety considerations.  Within-lane speeds tend to fall 4.72 mph on wet roads, as compared to dry roads, and across-
lane speeds drop 4.77 mph.  However, within-lane speed variations are higher when obstructions are present (Table 
4), perhaps because of variation in driver familiarity and response to such conditions.  The increases in within-lane 
speed variation and total speed variation due to roadway obstructions are estimated to average 6.02 mph (Table 4) 
and 2.38 mph (Table 7), respectively.   
 
Perhaps most interesting is the fact that the time-till-crash variables offer no predictive power in any of the speed 
and speed variation models (Tables 3, 4, 6, 7 and 8).  And, as previously mentioned, the crash-likelihood regressions 
(for three minute, five minute, and 10 minute cases) were not statistically significant (and thus not presented in 
tabular form).  This set of disappointing results is probably due to two key factors:  First, the reported crash times 
may be off by five minutes or more, in many cases.  Second, a lot can happen in 30 seconds, so the temporal 
aggregation inherent in the loop detector traffic reports obscures specific crash-precipitating events.  However, it 
also may be that most speed information says little about crash occurrence, and other factors are at play, provoking 
crashes.  Of course, speeds remain basic to crash severity, and may be fundamental to the types of crashes that occur 
(e.g., rear-end versus rollover crashes). 
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CONCLUSIONS 

The purpose of this research was to illuminate average speed and speed variation patterns across lanes and 
environmental conditions and to identify any connection between such patterns and crash occurrence.  Speeds are 
widely believed to be key to understanding crash severity, and their variation has been argued to be fundamental to 
crash occurrence.  However, in this study of speed information preceding injury and fatal crashes on Southern 
California freeways, no indication of changes in 30-second speed patterns emerged prior to crash occurrence.  All 
models controlled for traffic conditions (including density), weather conditions, lighting conditions, lane geometry, 
and road surface conditions. 
 
While no evidence emerged that supports a hypothesis of speed conditions influencing crash occurrence (probably 
due to data aggregation, crash-time reporting errors, local factors in the vicinity of crash site that are unobserved), 
there are many interesting results.  For example, higher design speeds result in higher speed variation (as well as 
higher overall speeds).  And higher within-lane speed variations accompany higher (within-lane) speeds.  Traffic 
density is a key predictor, associated with significantly higher speed variations, but lower average speeds – as 
expected.  Right-side lanes exhibit the greatest speed variation, while left-side lanes exhibit the highest average 
speeds. More lanes mean higher speeds, even higher than suggested by the Highway Capacity Manual.  As expected, 
poor lighting conditions and wet pavement surface tend to slow traffic. 
 
The key limitation of this work lies in its data.  Essentially, all loop detectors, whether they are single or double, 
aggregate counts and occupancies to 20-second or longer intervals.  Crashes are very rare events, so automated 
forms of traffic data collection are needed, in order to associate the two.  However, crash times are rarely known 
with great certainty.  And time-averaging obscures many odd speed events that may arise.  In addition, single-loop 
detector data requires one rely on effective length estimates, for average speed prediction.  Here, the g-factors vary 
every five minutes and are not based on the actual vehicles traversing a station in any given interval.  Furthermore, 
without individual speed information, speed variation had to be inferred from the variation in average speeds over a 
series of intervals and over a series of lanes.  This is a bold assumption.  In this time of emerging technologies for 
traffic monitoring and data manipulation, it is hoped that coming data sets will illuminate any relationships between 
speed choice and crash occurrence.  Europe is already encouraging moderate driving speeds to avoid the onset of 
forced-flow (or unstable) traffic conditions (Helbing and Huberman 1998, FHWA 1999, Helbing 2002, and 
Commonwealth of Australia 2002).  The world may be able to moderate speeds in order to avoid crash occurrence. 
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ENDNOTES 

                                                           
1  A single loop detector has a single electronic resonant circuit which measures the change of inductance caused by 
metal bodies that pass over the loop.  Basically, a single loop detector produces volume (the number of vehicles 
crossing the loop detector during a time interval T) and occupancy (the fraction of T during which a vehicle 
“occupies”/lies above the loop).  
2 Traffic flow equals traffic density multiplied by speed, and density equals occupancy divided by average vehicle 
length (assuming speeds and vehicle lengths are independent [Kockelman 1998]). Thus, traffic flow divided by 
occupancy is nearly proportional to speed, as long as vehicle lengths are relatively stable/constant. 
3 This subset is all 55 crashes involving injury or death. 
4 Upstream is defined as toward the direction from which vehicles come. 
5 Off-ramps, on-ramps, and lane drops within 2,000 feet of the detectors could influence crash occurrence but are 
outside the scope of the paper. 
6 All studied sections’ speed limits are 65 mph (Golob 2003c), so this invariable factor could not be controlled for in 
the analysis.  
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7 Double-loop detectors are the primary alternative to single loops.  They are closely spaced and provide the time 
interval between a vehicle’s arrival at each loop. Given the distance between the two loop heads, this information 
permits ready speed estimation.  Dual loops also permit direct estimation of vehicle length, given the speed estimate 
and assuming an effective detection zone length of either or both detectors. 
8 A constant-speed assumption during passage over a loop detector is reasonable here, given the short effective 
length of the detection zone (which is on the order of 25 feet). 
9 Presence-type detectors detect vehicle presence by measuring changes in sensor signals.  
10 Inductive loop detectors are “occupied” when able to detect the presence of metal bodies overhead.  At the level 
of the pavement, their effective detection zones typically exceed their physical length. However, at the level of a 
vehicle’s metal body, the effective zone length may differ.  Depending on the placement and sensitivity of each 
detector, as well as vehicle body heights, effective lengths differ (Reno A&E 2003). 
11 Occupancy fraction is the portion of the 30-sec interval during which a vehicle lies above the loop. 
12 For instance, Wang and Nihan’s (2003) method requires a distribution of vehicle lengths and classifies vehicles 
into just two classes (short and long) in order to compute average speeds for both types.   
13 Using these fixed-length assumptions, 6.32% of the average speed estimates exceeded 100 mph, and 0.93% 
exceeded 120 mph.  Only unreasonably low estimates of vehicle length could produce reasonable speed distribution 
estimates. 
14 If the speed distributions “shift” over the 150-second interval, but retain their spread (or instantaneous variance), 
the data will suggest more variation than actually exists.  If, instead, the means stay constant but variations change, 
estimates may be biased high or low for the middle 30-second interval’s speed variation. 
15 The database provides no information regarding crashes that start in one lane but end in another. 
16 Since the variance of a sample average is inversely proportional to the sample size (assuming independent 
observations), the observational weights are these sample sizes (i.e., traffic counts). (See Greene 2000.) 
17 Ideally, weights vary inversely with error-term variation.  Since the variation of averages is proportional to the 
inverse of sample size (assuming independent observational units), this weight should apply here, at least in theory.  
18  Since detector stations are within 2000 feet of all crashes, the travel times from detector to crash were negligible 
under most traffic conditions, relative to the 30-second aggregation period. Thus, the time-till-crash variable does 
not adjust for this length discrepancy.  
19 Five lanes was the maximum (one-way) freeway width found in the data set. 
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Figure 1. Frequency Distribution of g-Factors (i.e., mean effective vehicle lengths) 
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Table 1. Example g-Factors Values from Orange County Freeways 

Route 
Milepost, 

Time of Day,  
& Date 

 
Lane # Min 

(ft.) 
Max 
(ft.) 

Mean
(ft.) 

Std. Dev. 
(ft.) 

1 12.09 12.11 12.10 .00744 
2 11.10 11.10 11.10 .00000 
3 16.62 17.38 17.06 .24978 
4 15.88 16.42 16.18 .17783 

Interstate 5 
19.98 (NB) 
17:18-17:44 
Jan. 31, 1998 

5 16.31 16.77 16.58 .17373 
1 10.96 10.99 10.97 .00891 
2 21.17 21.61 21.38 .13787 
3 19.77 20.09 19.94 .09583 
4 16.95 17.54 17.20 .17198 

Interstate 405 
12.55 (NB) 
14:27-14:53 
Jan. 13, 1998 

5 16.38 17.08 16.70 .22373 
1 24.78 24.86 24.82 .02966 
2 20.89 20.95 20.92 .02053 
3 19.52 19.70 19.66 .05322 

State Route 22 
9.77 (WB) 
8:47-9:13 

Jan. 6, 1998 
4 19.77 19.93 19.85 .05787 
1 44.43 44.94 44.73 .16760 
2 31.68 31.96 31.80 .10888 
3 23.02 24.31 23.70 .47654 

State Route 55 
4.65 (SB) 
4:02-4:28 

Jan. 3, 1998 
4 36.13 36.69 36.42 .17883 
1 19.55 19.66 19.58 .03299 
2 18.84 19.20 18.99 .11294 
3 19.98 20.58 20.26 .19344 
4 15.56 15.74 15.63 .05403 

State Route 57 
16.17 (NB) 
19:07-19:33 
Jan. 5, 1998 

5 12.34 12.50 12.43 .05301 
1 21.65 22.06 21.92 .13871 
2 21.42 21.67 21.54 .07457 
3 24.17 24.46 24.32 .09807 
4 18.58 19.00 18.88 .12976 

State Route 91 
6.49 (WB) 
2:22-2:48 

Jan. 1, 1998 
5 22.51 22.93 22.79 .14326 
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Table 2. Description of Lane-Specific Variables 

Variables Description N Min. Max. Mean Std. Dev.
SDSPDLANE Std. deviation of speed within one lane (mph) 9716 0 87.78 6.60 6.99
AVGSPDLANE Average vehicle speed (mph) 9716 0 305.05 42.72 28.71
VOL Traffic count (in 30-second period, per lane) 9716 0 30 7.68 6.02
OCC Detector occupancy  9716 0 1 0.20 0.29
DENSITY #vehicles per lane per mile = 5280*OCC*g-Factor  9716 0 237.42 22.87 26.99
TMTLCRSH Reported crash time minus the time of the observation 9716 120 1680899.34 458.89
RGHTSIDE 1 if the lane is the far right side lane, 0 otherwise 9716 0 1 0.23 0.42
NXT2RGSD 1 if the lane is the next-to-right-side lane, 0 otherwise 9716 0 1 0.23 0.42
MIDDLELN 1 if the lane is the middle lane, 0 otherwise 9716 0 1 0.13 0.34
NXT2INSD 1 if the lane is the next-to-inside lane, 0 otherwise 9716 0 1 0.24 0.43
INSIDELN 1 if the lane is the inside lane, 0 otherwise 9716 0 1 0.24 0.43
FOURLN 1 if the road section has 4 lanes (per direction), 0 otherwise 9716 0 1 0.41 0.49

ABVFOUR 1 if the road section has more than 4 lanes (per direction), 0 
otherwise 9716 0 1 0.47 0.50

DUSKDAWN 1 if crash occurred during dusk or dawn, 0 otherwise 9716 0 1 0.02 0.13
DARKSTRL 1 if crash occurred at night with street lights working, 0 otherwise 9716 0 1 0.19 0.39
DARKNOSL 1 if crash occurred at night & without street lights, 0 otherwise 9716 0 1 0.32 0.47
WET 1 if the roadway was wet when crash occurred, 0 otherwise 9716 0 1 0.37 0.48

OBSTRXN 1 if there was a general obstruction on roadway when crash 
occurred, 0 otherwise 9716 0 1 0.01 0.11

CONSTRXN 1 if crash occurred in a construction zone, 0 otherwise 9716 0 1 0.14 0.34
WITHIN3MIN 1 if crash occurred within 3 minutes of observation, 0 otherwise 9716 0 1 0.06 0.23
WITHIN5MIN 1 if crash occurred within 5 minutes of observation, 0 otherwise 9716 0 1 0.13 0.34
WITHIN10MIN 1 if crash occurred within 10 minutes of observation, 0 otherwise 9716 0 1 0.32 0.47
TIME3MIN WITHIN3MIN* TMTLCRSH (secs) 9716 0 180 8.50 35.17
TIME5MIN WITHIN5MIN* TMTLCRSH (secs) 9716 0 300 27.71 74.34
TIME10MIN WITHIN10MIN* TMTLCRSH (secs) 9716 0 600115.73 187.69
DSGN_SPD Design speed (mph) 9716 60 70 69.83 1.30

 
Source: The data set used in this work involves crashes that occurred in January 1998 on six Orange County, California 
freeways: Interstates 5 and 405, and State Routes 22, 55, 57, and 91.  Crash-specific data were provided by U.C. Irvine’s Dr. 
Golob and Dr. Recker.



 

15-19 

 

Table 3. Weighted Least Squares Regression Results of Within-Lane Average Speeds 

Initial Model Final Model Variables 
Coef. Std. Err. Std. Coef. P-value Coef. Std. Err. Std. Coef. P-value

CONSTANT 30.021 7.446  0.000 29.79 7.437  0.000
FOURLN 2.126 0.455 0.0363 0.000 2.156 0.452 0.0368 0.000
ABVFOUR 3.837 0.491 0.0668 0.000 3.811 0.481 0.0664 0.000
DUSKDAWN 0.566 0.864 0.00256 0.512    
DARKSTRL -3.477 0.396 -0.0472 0.000 -3.516 0.39 -0.0478 0.000
DARKNOSL -4.73 0.301 -0.0774 0.000 -4.748 0.294 -0.0777 0.000
WET -4.781 0.302 -0.0799 0.000 -4.723 0.288 -0.0790 0.000
OBSTRXN -9.096 1.203 -0.0349 0.000 -9.094 1.203 -0.0348 0.000
CONSTRXN -0.05136 0.464 -0.000608 0.912    
RGHTSIDE -1.093 0.544 -0.0160 0.045 -1.098 0.544 -0.0161 0.043
NXT2RGSD -2.162 0.426 -0.0316 0.000 -2.164 0.426 -0.0317 0.000
MIDDLELN 1.689 0.432 0.0200 0.000 1.686 0.432 0.0200 0.000
NXT2INSD 3.551 0.431 0.0519 0.000 3.541 0.431 0.0518 0.000
INSIDELN 5.254 0.53 0.0787 0.000 5.247 0.529 0.0786 0.000
DSGN_SPD 0.623 0.106 0.0282 0.000 0.626 0.106 0.0283 0.000
TIME3MIN -0.00226 0.004 -0.00277 0.557    
TIME5MIN -0.00028 0.002 -0.000725 0.88    
TIME10MIN 0.000169 0.001 0.00110 0.799    
DENSITY -0.617 0.005 -0.580 0.000 -0.617 0.005 -0.580 0.000
R-sqrd .626 .626
Adjust R-sqrd .625 .625
Num. of Obs. 9716 9716
Dependent Variable: AVGSPDLANE – Average Vehicle Speed 
Weighted Least Squares Regression - Weighted by VOL 

 
Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 
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Table 4. Ordinary Least Squares Regression Results of Within-Lane Speed Variation 

Initial Model Final Model Variables 
Coef. Std. Err. Std. Coef. P-value Coef. Std. Err. Std. Coef. P-value 

CONSTANT -14.198 3.463  0.000 -13.847 3.45  0.000
FOURLN 1.785 0.243 0.125 0.000 1.52 0.149 0.107 0.000
ABVFOUR 0.352 0.257 0.0252 0.170    
DUSKDAWN -2.778 0.447 -0.0517 0.000 -2.805 0.446 -0.0522 0.000
DARKSTRL 4.119 0.182 0.230 0.000 4.129 0.182 0.230 0.000
DARKNOSL 1.783 0.15 0.120 0.000 1.789 0.15 0.120 0.000
WET 1.73 0.149 0.119 0.000 1.764 0.147 0.121 0.000
OBSTRXN 6.173 0.515 0.0971 0.000 6.018 0.498 0.0947 0.000
CONSTRXN 1.135 0.232 0.0552 0.000 1.201 0.226 0.0584 0.000
AVGSPDLANE 0.09484 0.004 0.390 0.000 0.09546 0.004 0.392 0.000
RGHTSIDE 2.896 0.274 0.174 0.000 2.68 0.169 0.161 0.000
NXT2RGSD 1.662 0.219 0.0999 0.000 1.51 0.153 0.0907 0.000
MIDDLELN 1.105 0.221 0.0537 0.000 0.981 0.185 0.0477 0.000
NXT2INSD -0.4 0.221 -0.0240 0.071 -0.56 0.153 -0.0336 0.000
INSIDELN 0.22 0.274 0.0135 0.422    
DSGN_SPD 0.179 0.049 0.0333 0.000 0.179 0.049 0.0333 0.000
TIME3MIN -0.00095 0.002 -0.00478 0.617    
TIME5MIN -0.00148 0.001 -0.0157 0.108    
TIME10MIN 0.000162 0 0.00435 0.627    
DENSITY 0.000198 0 0.000765 0.000 0.000197 0.000 0.000761 0.000
R-sqrd .169 .168
Adjust R-sqrd .167 .167
Num. of Obs. 9716 9716
Dependent Variable: SDSPDLANE – Within-Lane Speed Variation 

 
Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 
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Table 5. Description of Section-Specific Variables 

Variables Description N Min. Max. Mean Std. 
Dev. 

SDSPDSXN Std. deviation of speed across & within lanes (30-sec) 2585 0 123.28 10.83 10.02
SDACROSSLN Std deviation of speed across lanes (30-sec) 2585 0 107 7.88 9.88
AVGSXNSPD Average vehicle speeds across lanes (30-sec) 2585 0 123.06 42.89 22.05
VOLUME Sum of traffic counts across lanes (30-sec) 2585 0 83 32.18 19.94

DENSITY #vehicles per lane per mile = 5280*OCC*g-Factor (where OCC = 
fraction of 30 sec. period that detector is occupied) 2585 0 144.47 23.88 21.58

TMTLCRSH Reported crash minus the time of the observation 2585 120 1680900.08 458.94
FOURLN 1 if the road section has 4 lanes (per direction), 0 otherwise 2585 0 1 0.44 0.50

ABVFOUR 1 if the road section has more than 5 lanes (per direction), 0 
otherwise 2585 0 1 0.39 0.49

DUSKDAWN 1 if crash occurred during dusk or dawn, 0 otherwise 2585 0 1 0.02 0.14
DARKSTRL 1 if crash occurred at night with street lights working, 0 otherwise 2585 0 1 0.19 0.39
DARKNOSL 1 if crash occurred at night & without street lights, 0 otherwise 2585 0 1 0.30 0.46
WET 1 if the roadway was wet when crash occurred, 0 otherwise 2585 0 1 0.35 0.48

OBSTRXN 1 if there is obstruction on roadway when crash occurred, 0 
otherwise 2585 0 1 0.02 0.14

CONSTRXN 1 if crash occurred in a construction zone, 0 otherwise 2585 0 1 0.13 0.34
WITHIN3MIN 1 if crash occurred within 3 minutes of observation, 0 otherwise 2585 0 1 0.06 0.23
WITHIN5MIN 1 if crash occurred within 5 minutes of observation, 0 otherwise 2585 0 1 0.13 0.34
WITHIN10MIN 1 if crash occurred within 10 minutes of observation, 0 otherwise 2585 0 1 0.32 0.47
TIME3MIN WITHIN3MIN* TMTLCRSH (secs) 2585 0 180 8.50 35.18
TIME5MIN WITHIN5MIN* TMTLCRSH (secs) 2585 0 300 27.77 74.43
TIME10MIN WITHIN10MIN* TMTLCRSH  (secs) 2585 0 600115.31 187.41
DSGN_SPD Design speed (mph) 2585 60 70 69.82 1.35

 
Source: Same as Table 1. 
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Table 6. Ordinary Least Squares Regression Results of Across-Lane Speed Variation 

Initial Model Final Model Variables 
Coeff. Std. Err. Stdz. Coeff. P-value Coeff. Std. Err. Stdz. Coeff. P-value

CONSTANT 19.638 7.335  0.007 19.61 7.262  0.007
FOURLN 1.161 0.43 0.0588 0.007 1.138 0.43 0.0576 0.008
ABVFOUR -10.103 0.459 -0.501 0.000 -10.115 0.431 -0.502 0.000
DUSKDAWN -6.614 1.09 -0.0937 0.000 -6.247 1.039 -0.0885 0.000
DARKSTRL 0.104 0.445 0.00411 0.815    
DARKNOSL -0.405 0.366 -0.0189 0.269    
WET 0.359 0.365 0.0174 0.326    
OBSTRXN -2.996 1.091 -0.0425 0.006 -3.02 1.076 -0.0428 0.005
CONSTRXN -0.379 0.605 -0.0130 0.531    
AVGSXNSPD -0.29 0.01 -0.647 0.000 -0.29 0.01 -0.647 0.000
DSGN_SPD 0.207 0.106 0.0283 0.051 0.207 0.104 0.0283 0.047
TIME3MIN 0.000798 0.004 0.00284 0.859    
TIME5MIN -0.00329 0.002 -0.0248 0.131    
TIME10MIN 2.86E-05 0.001 0.000543 0.971    
DENSITY -0.292 0.009 -0.638 0.000 -0.293 0.008 -0.640 0.000
R-sqrd .470 .468
Adjust R-sqrd .467 .467
Num. of Obs. 2585 2585
Dependent Variable: SDACROSSLN – Across-Lane Speed Variation 

 
Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 

 

Table 7. Ordinary Least Squares Regression Results of Total Section Speed Variation 

Initial Model Final Model Variables 
Coef. Std. Err. Std. Coeff. P-value Coef. Std. Err. Std. Coef. P-value

CONSTANT -18.611 7.65  0.015 -18.666 7.646  0.015
FOURLN 1.369 0.449 0.0683 0.002 1.368 0.449 0.0683 0.002
ABVFOUR 9.965 0.479 0.487 0.000 9.965 0.479 0.487 0.000
DUSKDAWN -2.037 1.137 -0.0285 0.073 -2.039 1.137 -0.0285 0.073
DARKSTRL 4.223 0.464 0.164 0.000 4.224 0.464 0.164 0.000
DARKNOSL 0.784 0.382 0.0360 0.04 0.786 0.382 0.0361 0.040
WET -0.996 0.381 -0.0477 0.009 -0.996 0.381 -0.0477 0.009
OBSTRXN 2.381 1.137 0.0333 0.036 2.381 1.137 0.0333 0.036
CONSTRXN -4.002 0.631 -0.136 0.000 -4.005 0.630 -0.136 0.000
AVGSXNSPD -0.04178 0.011 -0.0919 0.000 -0.0414 0.011 -0.0911 0.000
DSGN_SPD 0.461 0.111 0.0621 0.000 0.460 0.111 0.0620 0.000
TIME3MIN -0.00144 0.005 -0.00506 0.759    
TIME5MIN -0.00126 0.002 -0.00936 0.579    
TIME10MIN -0.00012 0.001 -0.00224 0.882    
DENSITY -0.169 0.009 -0.364 0.000 -0.169 0.009 -0.364 0.000
R-sqrd .403 .403
Adjust R-sqrd .400 .400
Num. of Obs. 2585 2585
Dependent Variable: SDSPDSXN – Total Section Speed Variation 

 
Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 
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Table 8. Weighted Least Squares Regression Results of Section Average Speeds 

Initial Model Final Model Variables 
Coef. Std. Err. Std. Coeff. P-value Coef. Std. Err. Std. Coef. P-value

CONSTANT -70.53 13.668  0.000 -71.361 13.644  0.000
FOURLN 1.928 0.684 0.0437 0.005 1.947 0.498 0.0441 0.000
ABVFOUR 0.204 0.741 0.00453 0.783    
DUSKDAWN 1.938 1.596 0.0123 0.225    
DARKSTRL -4.522 0.729 -0.0800 0.000 -4.666 0.719 -0.0825 0.000
DARKNOSL -8.464 0.567 -0.177 0.000 -8.516 0.564 -0.178 0.000
WET -4.98 0.562 -0.108 0.000 -4.766 0.53 -0.104 0.000
OBSTRXN -8.353 2.217 -0.0530 0.000 -8.457 2.164 -0.0537 0.000
CONSTRXN 1.401 0.864 0.0216 0.105 1.476 0.832 0.0228 0.076
DSGN_SPD 2.081 0.196 0.127 0.000 2.094 0.196 0.128 0.000
TIME3MIN -5.53E-03 0.007 -0.00882 0.438    
TIME5MIN -3.26E-03 0.003 -0.0110 0.34    
TIME10MIN 6.44E-04 0.001 0.00547 0.601    
DENSITY -0.705 0.012 -0.690 0.000 -0.707 0.012 -0.692 0.000
R-sqrd .591 .591
Adjust R-sqrd .589 .589
Num. of Obs. 2585 2585
Dependent Variable: AVGSXNSPD – Section Average Speed 
Weighted Least Squares Regression - Weighted by VOLUME 

 
Note: Italics indicate the most practically significant variables, based on standardized coefficient values. 
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