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ABSTRACT
This study investigates the relationship between crash frequencies, roadway design and use 
features by utilizing the benefits of clustered panel data.  Homogeneous high-speed roadway 
segments across the State of Washington were grouped using TwoStep Cluster Analysis 
technique, resulting in grouped observations with reasonably continuous crash count values.  
This permitted application of both fixed- and random-effects linear regression models for the 
total number of crashes per million vehicle miles traveled (VMT).  A crash severity model also 
was estimated, using an ordered logistic regression, allowing transformation of total crash counts 
into counts by severity.  Speed limit information is found to be very valuable in predicting crash 
rates, and the models are seemingly able to predict “optimal” speed limits in order to minimize 
crash rates and crash costs.  However, speed limits may have biased coefficients, most likely 
attributable to unobserved safety-related effects.  For the “average” high-speed segment in the 
data set, a minimum expected crash cost is achieved at a speed limit of 70 mi/h, while the 
maximum crash rate is predicted to occur at a speed limit of 43.5 mi/h.  While these calculations 
may not be realistic, the models appear to accurately predict crash rates (R2 of 0.90 for total crash 
count) and the results provide useful information for a variety of design and use effects.  For 
example, crashes are more frequent on shorter horizontal curves, while uphill segments with 
wider medians are found to experience less severe crashes.

Keywords:  TwoStep cluster analysis, crash panel data, fixed-effects models, ordered logistic 
regression, safe speed limits.

INTRODUCTION



Traffic crashes remain a major public health problem.  In 2002 42,815 persons died on U.S. 
roads, and almost 3 million were injured in over 6 million police-reported motor vehicle traffic 
crashes (NHTSA 2003).  NHTSA (2003) estimates the total cost at $230 billion, or over $800 per 
person annually.  Through a better understanding of what impacts crash frequency and crash 
severity, effective life- and cost-saving measures can be pursued.  

Roadway segments vary dramatically in their design and use levels, even during the course of a 
mile along a single routing.  In modeling crash counts as a function of design details, like vertical 
grade and horizontal curvature, modelers often must analyze data from very short segments in 
order to obtain uniformity in design and use characteristics.  Over the course of a year, crashes on 
short segments are typically few, particularly fatal crashes.  Under these conditions, classical 
linear regression models are not workable.  Discrete models of counts are used.  For example, 
Miaou and Lum (1993) employed Poisson regression models to investigate the relationship 
between crash occurrence and highway geometric design features in Utah.  Shankar et al. (1995) 
used negative binomial models to investigate the effects of roadway geometrics and 
environmental factors on rural freeway crash occurrence. Poch and Mannering (1996) and Milton 
and Mannering (1998) also used negative binomial regression models. And Shankar et al. (1997) 
have used zero-inflated Poisson (ZIP) models.  McCarthy (1999) employed fixed-effects negative 
binomial models to examine fatal crash counts using 9 years of panel data for 418 cities and 57 
areas in the U.S.  Noland (2003) used fixed- and random-effects negative binomial models to 
investigate the effects of roadway improvements on traffic safety using 14 years of data for all 50 
U.S. states.  Kweon and Kockelman (2004) also used such models (along with zero-inflated and 
simpler, pooled models) to study the effects of speed limits, design, and use on crash occurrence 
in Washington State. 

There are certain drawbacks to using count models, such as possibly inconsistent estimation and 
inference due to potentially inappropriate distributional assumptions, together with difficulty in 
quantitative interpretation of parameters (due to exponential or other transformations of the rate 
equation in order to ensure positive predictions).  In order to account for these issues, another 
approach is taken here, which first classifies roadway segment observations into relatively 
homogeneous clusters.  Others in transportation safety analysis have used cluster analysis, but for 
different applications.  Almost three decades ago Moellering (1976) studied the patterns of traffic 
crashes using geographical cluster analysis.  Golob and Recker (2004) utilized cluster analysis to 
classify traffic flow regimes for different freeway crash types.  Le Blanc and Rucks (1996) 
clustered crashes occurring on the lower Mississippi River by crash type, traffic level, and 
location.  Wong et al. (2004) grouped safety projects for Hong Kong roadways and examined the 
relationship with crash rates using linear regression models with statistically significant time 
trends.  Wells-Parker and Cosby (1986) clustered DUI (driving while under the influence of 
alcohol or drugs) offenders into five subgroups based on number of traffic violations and other 
characteristics and examined relationships between variables like alcohol consumption and 
accident risk.  Gregersen and Berg (1994) clustered young persons by lifestyle and examined 
crash risk.  Ulleberg (2001) also clustered young drivers and investigated their responses to a 
traffic safety campaign.  Finally, Sohn (1999) investigated the relationships between crash 
counts, roadway design, and other factors using Poisson regression models for clustered Korean 



crash data.  Among all these, only Wong et al. (2004) and Sohn (1999) used regression analysis 
based on their clustered data, resulting in applications most similar to those pursued here. 

DATA SETS AND CLUSTER ANALYSIS

The crash data sets used here were collected from Washington State through the Highway Safety 
Information System (HSIS).  A total of 396,925 occupants were involved in 151,697 reported 
crashes, resulting in 2,909 fatalities from 1993 to 1996 on Washington State highways.  These 
data contain information on occupants’ demographics, roadway design features (including speed 
limits1), vehicle characteristics, environmental conditions (at the time of crash), and basic crash 
information (such as crash severity, time, locations and type). 

Speed limits are a key variable for this work, so the data emphasize the years 1993 through 1996, 
which bracket the repeal of the National Maximum Speed Limit (NMSL).  This work also 
emphasizes high-speed roadways, so roadway segments having speed limits less than 50 mi/h 
were removed from the data set. 

Cluster analysis groups observations into relatively homogenous collections (i.e., clusters) by 
essentially minimizing the variance or spread across defining variables of interest within the 
clusters, and maximizing that between clusters.  Chiu et al.’s (2001) two-step cluster analysis 
routine was employed here.  It is effective for very large datasets with both continuous and 
categorical variables, as used here.  Observations are pre-clustered using log-likelihood distances, 
creating a cluster feature “tree.” The resulting subclusters are further grouped, by comparing their 
distances to a specified threshold.  If the distance is larger than the threshold, the two clusters are 
merged. The distance between two clusters j  and s  is defined as the decrease in log-likelihood 
due to merging the two clusters:
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and where AK  is the total number of continuous variables used, BK  is the total number of 
categorical variables used, kL  is the umber of categories for the k -th categorical variable, jN  is 

the number of observations in cluster j , 2ˆ kσ  is the variance of the k -th continuous variable in 

the original data set, 2ˆ jkσ  is the variance of the k -th continuous variable in cluster j , 

1 The HSIS speed limit information is routinely provided off cycle from the other data, so correct speed limit 
information was obtained from Washington DOT’s Bob Howden.



jklN  is the number of observations in cluster j  whose k -th categorical variable takes the l -th 

category, and >< sj, represents the cluster formed by merging clusters j  and s .
In calculating the log-likelihood, continuous variables are assumed to be normally distributed, 
and categorical variables are assumed to follow multinomial distributions.  Chiu et al.’s first step, 
pre-clustering, adopts the clustering approach used in BIRCH, as developed by Zhang et al. 
(1996).  The typical cluster feature jCF  for a cluster jC  is as follows (Chiu et al., 2001):
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whose k -th sub-vector is of dimension/length ( )1−kL .

When two clusters jC  and sC  are merged, the merged cluster feature >< sjCF ,  can be obtained 

using the equation below (Chiu et al., 2001):
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Compared to K-means and hierarchical clustering techniques (Chiu et al., 2001), the CF structure 
saves a great amount of time for TwoStep cluster analysis.
The optimal number of clusters can be determined using either a Bayesian or Akaike Information 
Criterion (BIC and AIC).  For J  clusters, these can be obtained as follows (Chiu et al., 2001):
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Segments were clustered on the basis of their design attributes (including terrain, vertical grade, 
and horizontal curvature).2    Their associated dependent variable information (i.e., crash counts 
and VMT) were summed to create overall crash rates for each cluster in each year of the data set.  

2 AADT per lane also is an important variable that may be of value for clustering (so that high-demand roadways are 
not grouped with low-demand roadways).  However, it is not certain that the panel of clustered segments will remain 
stable in this attribute over time.  Therefore, this variable was not used for clustering purposes here.



For their associated independent variables, values were averaged In order to maintain a true panel 
after clustering, only the 1993 data were clustered.  The membership obtained from their 
clustering was employed to cluster the remaining observations, from 1994 through 1996.  The 
result is a panel data set for clustered segments.  Descriptive statistics for this final data set are 
shown in Tables 1 and 2.  Before clustering, there were around 59,500 segments, the average 
crash count was 0.3 crashes (per year per segment), and the average segment length was just 0.09 
miles.  812 clusters were created, resulting in average crash counts and lengths climbing to 21.7 
crashes (per year per cluster) and 6.6 miles (per cluster).  The average VMT before clustering 
was just 965 miles (per year per segment) before clustering, and rose to 69,793 after clustering. 
Clearly, the data have been made much more continuous in nature, permitting application of 
more standard – and easier to interpret – linear models.  

CRASH OCCURRENCE MODEL

Panel data permit identification of variations across individual roadway segments and variations 
over time.  Accommodation of observation-specific effects also mitigates omitted-variables bias, 
by implicitly recognizing segment-specific attributes that may be correlated with control 
variables. The results of pooled data models, which ignore the panel nature of the data, may be 
compared to those allowing for fixed and random effects.  In the fixed-effects (FE) linear model, 
the specification is as follows (Greene, 2002): 

itiitit xy εαβ ++′= for Ni ,,2,1 Λ=  and Tt ,,2,1 Λ= (4)

where iα  is the roadway segment’s specific effect, a constant term that does not vary over time.

The segment-specific constant term in the regression model can be computed using the following 
formula (Greene, 2002):

i i iy b xα ′= − (5)

where iy is the response variable mean over the T observations for segment i , ix is the means of 

control variables over the T observations for segment i , and b  is the least squares dummy 
variable (LSDV) estimator.  

In random-effects (RE) linear panel models, the specification is as follows (Greene, 2002):

( )it it i ity x uβ α ε′= + + + (6)

where iu  is the roadway segment’s specific random element.  The only difference between iu and 

itε  is that there is only one draw ( iu ) for each segment which remains constant over time, while 

the conventional random term ( itε ) varies both across segments and across time periods, for each 

segment.



The FE linear panel models can be estimated using a least squares dummy variable (LSDV) 
model (Hsiao, 2003).  The RE linear panel models can be estimated using a generalized least 
squares (GLS) approach, by assuming an appropriate distribution for the compound error term.  
Usually, RE estimates are more efficient than FE estimates since they are obtained by making use 
of both within-group and between-group variations (rather than only within-group variations) 
(Hsiao, 2003).  However, when there is correlation between unobserved, omitted variables and 
included control variables, the RE estimates are biased, while the FE estimates are unbiased. 
(Hsiao, 2003) The question arises as to which model should be used in practice.  If the FE 
models are used, there will be a loss of 1N − degrees of freedom in estimating the segments’ 
specific effects.  If the RE models are used, one must assume that segment-specific effects are 
uncorrelated with other, included variables.  Hausman’s test for such correlation can be 
performed by calculating the following chi-squared statistic (Greene 2002):

[ ] [ ] [ ]REFEREFE bbKW βψβχ ˆˆˆ1 12 −
′
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where [ ]ˆ ˆ
FE RE FE REVar b Var b Varψ β β   = − = −    (8)

where FEb  is the LSDV estimator for the FE panel model, and REβ̂  is the GLS estimator for the 
RE panel model.  Greene (2002) notes that Hausman’s implicit assumption for calculating ψ  is 
that the covariance of the difference in these estimators is zero and provides the proof behind 
Equation 8. 

Hsiao (2003) argues that a FE model is more appropriate when the investigator only aims to 
make infer results for individuals in the sample, while the RE model is preferred for inferences
relating to the larger population.  However, which specification gets used depends more on 
whether there exist correlations between omitted variables and the included control variables.  
Both the FE and RE model forms are estimated here, and Hausman’s test is applied to evaluate 
the possibility of error-term correlation with control variables.

CRASH SEVERITY MODEL

To estimate the ordered response of crash severity, an ordered logistic regression was used. Three 
general crash categories exist here; these are property damage only (PDO), injury, and fatal 
crashes, which are labeled 1 through 3.  Formally, an ordered logistic regression model’s 
specification can be expressed as follows (McCullagh, 1980, 1989): 
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where ( )|j Pr Y j xγ = ≤  is the cumulative probability up to and including category j , given x , 

k  is the number of categories for the response variable (3 in this case), and jθ  are the odds of the 

outcome if the clustered segment had a 0 for every variable in vector x , also known as the 



thresholds.  This model is also known as the proportional odds model, which is based on 
cumulative response probabilities rather than category probabilities.  McCullagh (1980) proved 
that these two kinds of probabilities are equivalent, but that cumulative probabilities are more 
likely to work well with ordered data than the models based on the category probability in 
practice. 

MODEL RESULTS

Crash Occurrence

Both FE and RE linear models were estimated for total crashes per million VMT (where VMT is 
the multiple of segment length and Washington DOT AADT estimates for each segment).  
Hausman test results suggest that correlation does exist between the RE models’ random error 
terms and included variables, so the RE estimates are expected to be biased.  F tests also were 
conducted, to compare the FE model results with their corresponding pooled models’ estimates.  
These all indicate the FE models to be preferred, suggesting that the segment-specific effects 
cannot be ignored.  The final estimation results for the FE model are shown in Table 4.  The R-
square goodness of fit statistic suggests that virtually 90% of the variation in crash rates is 
explained by the model’s control variables.  Segment-specific constant terms can be obtained 
using the Equation 5, as needed.

Table 4’s results suggest that roadway design and speed limits play important roles.  For 
example, crashes are more frequent on shorter horizontal curves and on roads with more lanes, 
which is consistent with Noland’s (2003) results.  Steeper sections also incur more crashes (per 
mile traveled), which is consistent with Milton and Mannering’s findings (1998), while sections 
with wider medians and more traffic per lane experience lower crash rates. 

Crash rates are predicted to be highest in 1995, which may be partly due to drivers’ lowest 
compliance rates before the November 1995 repeal of the NMSL.  There is no statistically
significant difference among the other three years.  Freedman and Esterlitz (1990) found that 
drivers’ compliance rates with the 55 mi/h NMSL had been falling over time.  Before the repeal 
of 55 mi/h NMSL in November 1995, it is plausible that a relatively heterogeneous pattern of 
chosen speeds existed, with many drivers exceeding and others obeying the 55 mi/h speed limit.  
This situation may have abated after speed limits were raised, with drivers tending to choose 
more similar travel speeds, thereby interacting less often and having fewer collisions in 1996.  

Crash severity is predicted to exhibit a concave relationship with respect to speed limits.  One 
can therefore estimate the speed limit that is expected to maximize the number of crashes per 
million VMT, based on a given segment’s attributes.  Here, the average roadway cluster has the 
following characteristics: horizontal curve length of 811 feet, no vertical grade, median width of 
38 feet, 9 ft total shoulder width, 3 lanes, and 4,486 AADT per lane.  Given these attributes, the 
maximum crash rate is predicted to occur at a speed limit of 43 mi/h, on the average roadway 
segment, which lies below the range of speed limit data used to calibrate the model (i.e., 50 to 70 
mi/h). Thus, the model implies that crash rates on the average segment are strictly falling for any 



reasonable speed limit choices. This finding is consistent with Milton and Mannering’s (1998) 
study of Washington State crashes from 1992 through 1993.  However, the speed limit cannot be 
increased beyond the standards of roadway geometric design, and other limitations such as 
restricted rights of way, urban designation.  In practice, it is a trade-off high-speed design and the 
cost of constructing such roads.  According to the standardized coefficients shown in Table 4, 
median width is predicted to be the most important factor affecting crash frequency, with a 
standardized coefficient of –5.3.  This means that one standard deviation increase in median 
width (or a sizable 108 feet) is expected to result in crash rate drop of 5.3 standard deviations (or 
5.3 times 1296 crashes per million VMT).  Other key design factors are the number of lanes 
(with a standardized coefficient of 1.03) and shoulder width (-1.08).  Speed limit and speed limit 
squared also carry very high standardized coefficients, reinforcing the power of this variable to 
predict crash rates.

Crash Severity

An ordered logistic regression model was estimated using the pooled data after filtering the zero 
crash observations.  The estimation results are shown in Table 5.  The table only includes a final 
model, wherein control variables not exhibiting statistical significance at the 0.05 level have been 
removed, via a process of step-wise deletion (Greene, 2002).  The descriptions of all variables 
can be found in Table 3.

Variables of every type were found to be informative in the final model.  Crashes occurred on 
longer and sharper horizontal curve are found to be more severe.  This may be because road 
environment is more likely affected by the long curve such as presence of limited sight distance 
while driving speeds remain high on such long but sharp curves.  Drivers are probably not 
expected such limitations confronted by the long and sharp curves.  The crash rate is predicted to 
increase as increases in the number of lanes.  This might be attributed to more chances available 
on multilane roads for drivers to overtake each other, resulting in more interactions.  Downhill 
driving is more deadly, most surely due to higher speeds and any needed braking having to 
overcome the added effects of gravity.  Wider shoulder is predicted to incur more severe crashes, 
but wider median help alleviate the severity of crashes.  The safety effects of speed limits exhibit 
a convex relationship in terms of crash severity.  Weighting each crash rate by the predicted cost 
of such crashes3, where each fatal crash is valued at $951,875, each injury crash at $296,275, and 
each PDO crash at $1663, the relationship between total crash cost per VMT and speed limit 
remains convex, and the optimal speed limit is predicted to be 70 mi/h for the average roadway 
segment.  Using this same technique, one finds that speed limits of 70 mi/h are only optimal for 
roadways in the data set with the following design characteristics: no horizontal curvature, uphill 
slope, 1000-foot median, no shoulders, 7,524 AADT per lane, rolling terrain, and no access 
control.  The highest optimal speed limit in the data set (65.7 mi/h) was found for roadway 
segments that had a 1941–foot horizontal curve of 2.6º curvature, -4.1% vertical grade, 215 feet 
median, 20 feet of total shoulder area, 4 lanes, 11,600 AADT per lane, and controlled access in 

3 In Washington State data set, the ratio of injury crashes to the number of persons injured is 1.642; for fatal crashes, 
this number is 1.144.  The cost of each crash can be approximately calculated by multiplying the ratios with their 
corresponding costs shown in Table 6. 



mountainous terrain.  This sort of design is unlikely to be feasible for most locations because of 
restricted rights of way, travel demand, and construction costs.

A more realistic scenario is probably the following:  500-foot horizontal curve with 10-degree 
curvature, -5% vertical grade, 10-foot median width, 20-foot total (2-side) shoulder width, 4 
lanes, 10,000 AADT per lane, controlled access, and mountainous terrain, in 1996. This situation 
is predicted to result in  4,994, 2,886, and 139 PDO, injury, and fatal crash counts per million 
VMT, respectively .

CONCLUSIONS

Traffic crashes remain a major health problem for the U.S., as well as for other countries.  
Roadway design and speed limit policies are important determinants of crash outcomes.  The 
models estimated here first employ cluster analysis, to create 812 groups of what were originally 
59,500 homogeneous high-speed roadway segments throughout the State of Washington.  These 
clustered data points then provide relatively continuous crash count and, therefore, crash rate 
data, permitting use of linear models and straightforward estimates of speed, use and design 
effects.  The four-year panel data sets were analyzed using three model specifications.  The FE 
models were preferred to both RE and pooled models, based on Hausman tests (for correlation 
between random effects and control variables) and F tests (for model fit), respectively.  
Additionally, a crash severity model was estimated using an ordered logistic regression.  The 
models reveal that speed limit information is highly valuable in predicting both crash rates and 
crash severity. Given roadway design and use characteristics, the models predict optimal speed 
limits to minimize crash rates; these conflict, however, with the direction of impacts when 
examining crash severity as a function of speed limits. While higher limits are estimated to 
reduce crash rates on this data set of high-speed roads, they also are predicted to result in more 
severe crashes.

As expected, many design, use, and speed limits variables are highly statistically and practically 
significant.  For roadways with average design and use attributes, speed limits at 44 mi/h are 
estimated to maximize total crash rates.  An ordered logistic regression model was estimated to 
examine the effects of speed limits as well as various geometric design features on crash severity. 
Speed limit information was found to be highly predictive of crash rates, and the models are 
seemingly able to predict “optimal” speed limits in order to minimize crash rates and crash costs.  
However, it seems speed limits have biased coefficients, most likely due to unobserved safety-
related effects.  For the “average” high-speed segment in the data set, a minimum expected crash 
cost4 is achieved at a speed limit of 70 mi/h (using Blincoe’s [1994] crash costs estimates for 
NHTSA, as shown in Table 6), while the maximum crash rate is predicted to occur at a speed 
limit of 43.5 mi/h.  While these calculations may not be realistic, the models accurately predict 
crash rates (R2 of 0.90 for total crash count) and the results also provide useful information for a 
variety of design and use effects.  For example, highly practically (and statistically) significant 

4 The optimal speed limit is calculated by minimizing the total cost incurred for all kinds of crashes.  The number of 
crashes for different severity levels is obtained by multiplying the total number of crashes predicted using the crash 
occurrence model with the probability predicted by the ordered logistic model.



variables are horizontal curve length, median width, total shoulder width, speed limit, total 
number of lanes and AADT per lane – each estimated to have total-crash-rate elasticities 
over100% (absolute value) when evaluated at their averages.

There is room for improvement here.  Many variables of interest are not available in the HSIS 
data set, but may be available for future analyses, including climate (e.g., annual rain and 
snowfall), pavement type and condition, police presence (for enforcement of speed limits and 
other roadway policies), truck use (as a fraction of AADT), proximity to a hospital (for life-
saving treatments), average travel speeds and speed variance among vehicles (which also are 
functions of design, use and speed limit variables).  A longer data panel would be useful.  In 
order to improve estimator efficiency, a single likelihood function combining both crash 
occurrence and crash severity models is felt to be superior. 

In sum, this work appears to be the first of its kind: clustering roadway segments in order to 
permit linear model calibration and estimating crash-rate- and crash-cost-minimizing speed 
limits.  Such estimates should prove useful in the design of new roadways and speed limit 
policies on new and existing roadways.
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Table 1. Descriptive statistics of dependent variables after clustering

Variable Obs Mean Std. Dev. Min Max
Number of persons injured 3248 16.21 32.50 0 398
Number of persons killed 3248 0.293 0.894 0 13
Number of PDO crashes 3248 11.55 22.88 0 270
Number of injury crashes 3248 9.906 19.75 0 240
Number of fatal crashes 3248 0.254 0.764 0 12
Number of total crashes 3248 21.71 42.66 0 512
Number of persons injured per million VMT 3248 444.9 1430 0 30915
Number of persons killed per million VMT 3248 26.81 493.6 0 14008
Number of PDO crashes per million VMT 3248 333.6 893.5 0 18300
Number of injury crashes per million VMT 3248 254.5 581.5 0 11009
Number of fatal crashes per million VMT 3248 14.15 170.2 0 4669
Number of total crashes per million VMT 3248 602.2 1296 0 21960
Aggregated roadway section length (miles) 3248 6.611 12.78 0.008 134
Vehicle miles traveled (VMT) 3248 69793 168428 9.829 2061947

Table 2. Descriptive statistics of independent variables after clustering

Variable Obs Mean Std. Dev. Min Max
Horizontal curve length (feet) 3248 810.9 1310 0 12683
Degree of curvature (degrees per 100 ft arc) 3248 4.789 14.56 0 164
Vertical grade (%) 3248 0.071 3.539 -24 47
Median width (feet) 3248 37.71 108.0 0 999
Total shoulder width (feet) 3248 9.039 7.556 0 50
Speed limit (mi/h) 3248 55.09 4.011 50 66
Squared speed limit (mi2/h2) 3248 3050 467.1 2500 4312
Total number of lanes 3248 3.075 1.604 1 9
AADT per lane 3248 4486 5126 80 23861
Indicator for an interstate highway 3248 0.229 0.420 0 1
Indicator for an access controlled segment 3248 0.446 0.497 0 1
Indicator for level terrain 3248 0.219 0.414 0 1
Indicator for rolling terrain 3248 0.621 0.485 0 1
Indicator for year 1994 3248 0.250 0.433 0 1
Indicator for year 1995 3248 0.250 0.433 0 1
Indicator for year 1996 3248 0.250 0.433 0 1



Table 3. Descriptive statistics for variables used in the Ordered Logistic Regression

Variable Obs.* Mean Std. Dev. Min. Max.
Number of PDO crashes 5873 15.21 26.70 0 270
Number of injury crashes 5873 13.15 23.10 0 240
Number of fatal crashes 5873 .410 .945 0 12
Number of total crashes 5873 28.77 49.89 1 512
Number of PDO crashes per million VMT 5873 355.6 892.0 0 18300
Number of injury crashes per million VMT 5873 280.3 574.3 0 11009
Number of fatal crashes per million VMT 5873 19.57 181.7 0 4669
Number of total crashes per million VMT 5873 655.4 1319 31 21960
Aggregated roadway section length (miles) 5873 8.620 15.18 .02 134
Vehicle miles traveled (VMT) 5873 92590 200528 162 2061947
Horizontal curve length (feet) 5873 776.0 1250 .00 12683
Degree of curvature 5873 2.399 4.886 .00 52.15
Vertical grade (%) 5873 .028 2.608 -7 7
Median width (feet) 5873 35.19 99.38 0 999
Total shoulder width (feet) 5873 9.523 7.367 0 43
Speed limit (mi/h) 5873 55.36 3.971 50 66
Squared speed limit (mi2/h2) 5873 3080 465.0 2500 4312
Indicator for access controlled segments 5873 .460 .499 0 1
Indicator for interstate highway 5873 .250 .433 0 1
Indicator for level terrain 5873 .210 .410 0 1
Indicator for rolling terrain 5873 .670 .469 0 1
Total number of lanes 5873 3.190 1.660 1 9
AADT per lane 5873 4863 5270 195 23861

*Note: Initially, the number of observations for 4 years was 3248.  To estimate the ordered logit model, each 
observation in the original data has been split into three, corresponding to three categories of severity level, resulting 
in 9,744 observations for model estimation.  However, zero crash observation likelihoods are not a function of model 
parameters (Allison, 1999), so those observations have been filtered, resulting in 5,873 observations for model 
calibration.



Table 4. Final crash occurrence model (linear fixed effects)
Variable Coef. Std. Err. Stdzd. Coef. P-Value

Horizontal curve length (feet) -0.898 0.0803 -0.908 0.0000
Vertical grade (%) 273.1 7.819 0.746 0.000
Median width (feet) -63.74 0.953 -5.313 0.000
Total shoulder width (feet) 176.3 5.502 1.028 0.000
Speed limit 233.5 70.88 0.722 0.001
Squared speed limit -2.687 0.610 -0.968 0.000
Total number of lanes 1172 31.42 1.450 0.000
AADT per lane -0.157 0.0067 -0.620 0.000
Indicator for year 1995 0.443 0.252 0.000 0.079
Constant -5445 2053 -0.908 0.008
Number of observations 3248
Number of non zero 
observations

2904

R-squared 0.898
Note: The dependent variable is #crashes per million vehicle miles traveled.



Table 5. Final crash severity model (ordered logistic regression)
Variable Coef. Std. Err. P-Value

1θ -8.204 0.328 0.000

2θ -4.667 0.328 0.000

Horizontal curve length (feet) 3.00E-05 1.66E-06 0.000
Degree of curvature -1.90E-02 1.38E-04 0.000
Vertical grade (%) -1.58E-02 4.25E-04 0.000
Median width (feet) -1.30E-05 2.30E-05 0.000
Total shoulder width (feet) 7.20E-03 2.98E-04 0.000
Speed limit -0.234 1.14E-02 0.000
Squared speed limit 1.66E-03 9.80E-05 0.000
Indicator for access controlled segments 5.81E-02 4.55E-03 0.000
Indicator for level terrain -0.2318 4.77E-03 0.000
Indicator for rolling terrain -0.3088 3.88E-03 0.000
Total number of lanes -9.14E-02 1.99E-03 0.000
AADT per lane -4.80E-05 1.39E-06 0.000
Squared AADT per lane 3.19E-09 6.94E-11 0.000
Indicator for year 1994 -3.54E-02 4.04E-03 0.000
Indicator for year 1995 -4.03E-02 3.99E-03 0.000
Indicator for year 1996 -2.52E-02 3.99E-03 0.000
LogLik value at constant -1,600,403
LogLik value (full model) -1,579,629
Number of Observations 5,873

Table 6. Injury Costs (in 1994 dollars) (Blincoe, 1994)
NHTSA PDO MAIS 0 MAIS 1 MAIS 2 MAIS 3 MAIS 4 MAIS 5 Fatal

$1,663 $1,129 $7,243 $34,723 $103,985 $230,042 $705,754 $831,919
This 

Work
PDO Injury Fatal

$1,663 $180,479 $831,919
Notes: The final Injury value of $180,479 is obtained by averaging MAIS 1, MAIS 2, MAIS 3, and MAIS 4 values


