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ABSTRACT: 

Household and employment counts (by type) are key inputs to models of travel demand. For a 

variety of reasons, spatial dependence is very likely present in and across these counts. In 

order to identify the nature of these unobserved relationships, this study performs a series of 

Lagrange multiplier tests to confirm the co-existence of spatial lag and error processes within 

individual equations (6 household types and 3 employment categories). It then provides the 

first application of a feasible generalized spatial 3SLS estimation procedure for a seemingly 

unrelated regression (SUR) model of these equations. 
 

In the resulting model of Austin, Texas data, local land use conditions offer substantial 

predictive power of households and jobs, and transportation access plays a role, as anticipated. 

The work demonstrates that SUR estimation of land use intensities from parcel-level data 

with two types of spatial dependence is feasible and meaningful. Coupled with an upstream 

model of land use type, this work offers the key inputs for travel demand analyses, with 

transportation system performance feedback. 
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INTRODUCTION 

As key inputs to travel demand models, zone-based household and employment counts (by 
type) are of interest to many. In-depth investigation of the factors that influence these 
variables and their spatial dependence is paramount for model predictions of job and 
population patterns. 

Tobler’s first law of geography states “everything is related to everything else, but 
near things are more related than distant things.” (Tobler 1970 pp. 236) Essentially, the 
condition of one point or parcel or zone correlates with the conditions of its neighbors. 
Anselin (1988a) suggested that dependence is often present in cross-sectional data obtained 
using arbitrary delineation of spatial units (e.g., traffic analysis zone [TAZ] and census 
tract). Thus, zonal-based household and employment are likely to exhibit correlation, even 
after controlling for observable factors. Models without explicit treatment of these spatial 
dependencies may result in inappropriate inferences and conclusions. 

Researchers in a variety of disciplines have investigated the interactions between 
jobs and population. Regional adjustment models (see, e.g. Steinnes and Fisher 1974; 
Mulligan et al. 1999) consist of two equations: one representing changes in population 
density (as a function of time-lagged population density and contemporaneous employment 
density, as well as other explanatory variables); the other tracking employment (as a 
function of time-lagged employment density, contemporaneous population density, and 
other explanatory variables). Carruthers and Vias (2005) examined whether population and 
employment growth are endogenously determined in the Rocky Mountain West. Their 
regional adjustment model suggests that there is a positive feedback at the county level, so 
that jobs follow people – in addition to people following jobs. However, other studies using 
different time lags and geographic scales (e.g. Clark and Murphy 1996, Henry et al. 1997, 
and Vias and Mulligan 1999), provide mixed evidence, and little work has considered the 
interactions between jobs and population at finer spatial scales, such as the TAZs used here. 
This work addresses that challenge, while allowing for spatial interactions and correlations 
among unobserved factors influencing household and employment intensities over space. 

The following sections discuss highly related spatial econometric techniques, the data 
sets used here, the new spatial SUR model specification recommended for these data, model 
results and conclusions. 

BACKGROUND 

Spatial dependence implies two-dimensional relationships across observations. Anselin and 
Bera (1998) summarized two strategies to address the restriction. One approach specifies 
the variogram as a continuous function of the distance between each pair observations. This 
is typically done in geostatistical studies (e.g. Cressie’s [1993] Chapter 2). The other 
approach specifies a spatial stochastic process in which a random variable at a given 
location is related to its neighbors, using a weight matrix, W.  Each element of W, wij, is 
non-zero when observation i and j are “neighbors” (i.e., they impact one another’s response, 
though they may be [and often are] non-contiguous). In this way, observed responses 
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and/or unobserved error components link to neighbors’ contemporaneous responses.  

The geostatistical approach is favored by mining engineers or geologists who seek 
to identify soil properties from a sample of known locations (Cressie 1993). It is seldom 
applied in studies when the data consist of counties or TAZs, because the continuous 
relation over space is hard to maintain. This study is in the line with the second strategy and 
considers spatial correlations among response variables and their error terms, while 
allowing cross-equation correlations in a system of linear regression equations.  

Two Spatial Processes 
There are two ways to incorporate spatial dependence via a weight matrix. The first is 
known as a spatial lag model, and the latter is a spatial error model.  The spatial lag model 
includes a lagged-response regressor, and is specified as y = ρ W y + X β + ξ, where y is an 
n by 1 vector of the response variable, ρ is the spatial lag autoregressive coefficient, X is an 
n by k matrix of explanatory variables, β is a k by 1 vector of parameters to be estimated, ξ 
is an n by 1 vector of independently and identically distributed error term. In contrast, the 
spatial error model specifies a spatial process for the error terms.  This is often an 
autoregressive error process1, specified as follows: ε = λ W ε + ξ, where λ are spatial error 
autoregressive coefficient.  

As Anselin (2001b, pp. 316) explains, a spatial lag is designed to reveal the 
“existence and strength of spatial interaction” while a spatial error seeks to correct for the 
“potentially biasing influences of the spatial autocorrelation”. A spatial lag model is 
appropriate when “spatial spillovers” exist across unit boundaries, or when the spatial 
scales for measurement and the true distance of interaction do not match.  A spatial error 
model is best when the spatial dependence is associated with unobserved, spatially 
correlated factors. (Anselin and Bera, 1998)   

 Model specifications with spatial lag and spatial error allow for both processes, and 
therefore represent higher-order dependencies. An analyst’s lack of strong prior beliefs 
regarding spatial relationships may require such flexibility (Anselin 2003a). Such a (single-
equation) model may be defined as follows: 
 y = ρ W1 y + X β + ε, with ε = λ W2 ε + ξ      (1)  
where W1 and W2 are two n by n spatial weight matrices, and other terms are as previously 
defined. W1 and W2 were specified distinctly, in order to avoid identification problems. 
(See, e.g., Chapter 6 in Anselin [1980] as well as Anselin and Bera [1998].) Anselin (1988a) 
described single-equation models with both spatial processes in detail, and Case (1991, 
1992) and Case et al. (1993) applied this formulation, for models of household rice demand, 
adoption of new technologies, as well as state government expenditures. 

 A reformulation of this model produces Eq. (2)’s reduced form, which emphasizes 

                                                        

1 Two alternatives to the spatial autoregressive error process are a spatial moving average error process (ε= λ

W ξ + ξ) (Cliff and Ord 1981, Haining 1988) and a spatial error component process (ε= λW ξ + ψ) (Kelejian 

and Robinson, 1993, 1995). 
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the higher-order spatial process: 
 (I – λ W2) (I – ρ W1) y = (I – λ W2) X β + ξ      (2) 
where I is an n by n identity matrix.  

The specification of the spatial weight matrix is rather arbitrary in practice. Many 
types of weight matrices have been suggested, and there is no agreement as to which form 
is most appropriate. (Anselin’s [1988a] Chapter 3 provides a detailed discussion of this.) 
Anselin and Bera (1998) argue that a poorly specified weight matrix (i.e., one that differs 
from the true, data-generating process) results in the need for higher-order spatial process 
specifications, allowing the second weight matrix to represent some portion of remaining 
spatial dependence. Using Monte Carlo experiments, Florax and Rey (1995) demonstrated 
how weight-matrix misspecification can affect the power of tests for spatial dependence, 
along with parameter estimation, in the presence of small sample sizes. A more general 
model specification is preferable, to help avoid such issues.  

In this study, four distinct weight matrices were specified in order to discern the 
most relevant ones. The first is a first-order contiguity matrix using queen criterion2. It was 
generated using GEODA3 software (Anselin 2003b, 2005). The second weight matrix relies 
on the inverse of Euclidean distance (in miles) between TAZ centroids (rather than 0’s and 
1’s, as in the first case), in order to reflect the decay of relationships with distance. The 
third and fourth matrices use the inverse of distance to the power of 1.5 and 2.0, 
respectively. These four weight matrices are defined as Wcon, Wdist1.0, Wdist1.5, and Wdist2.0. 
All matrices were row-standardized (so that the row elements summed to one), in order to 
facilitate interpretation (Anselin 1988a). More specifically, a right-hand-side weight matrix 
represents a weighted average of the variable under consideration in neighboring units.  

Seemingly Unrelated Regression 
In contrast to the widely used single-equation spatial specification, the model applied here 
recognizes dependencies emerging from three sources. First, response variables depend on 
neighboring unit responses, via a spatial lag component. Second, error terms are spatially 
correlated across observational units, via a weight matrix-based spatial error component. 
Third, these same error terms are correlated across equations, implying a seemingly 
unrelated regression (SUR) structure. 

Anselin (1988a) derived likelihood functions for SURs that include either spatial 
error autocorrelation or spatially lagged response variables (but not both). Since then, a 
limited number of studies have applied spatial SUR in empirical situations. Rey and 
Montouri (1999) investigated U.S. regional income convergence using a spatial SUR with 
spatial error autocorrelation. Similarly, Gallo and Dall’erba (2003) addressed European 
regional GDP convergence with an emphasis on the existence of temporal and spatial 
heterogeneity. Lundberg (2005) investigated the spillovers of recreational and cultural 
services using a spatial SUR with spatially lagged response variables. However, to the 

                                                        
2 Queen criterion defines neighbors as those that have either common boundaries or common corners. 
3 GEODA is free software developed by the University of Illinois at Urbana-Champaign’s Spatial Analysis 
Laboratory (SAL). 
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authors’ knowledge, no studies have applied a SUR model with both spatial error and 
lagged autocorrelation. 

Kelejian and Prucha (2004) proposed an estimation approach for this triple-
dependency in a simultaneous equations model (SEM), where response variables served as 
covariates in other equations.  Their three-stage least-squares (3SLS) estimation approach 
derives from their earlier work, using a generalized method of moments (Kelejian and 
Prucha 1999) and spatial two-stage least-squares procedures for single-equation models 
(Kelejian and Prucha 1998; Das, Kelejian and Prucha 2003). Their SEM-based approach 
was adjusted to fit a SUR framework, as described below (in the section titled Model in 
SUR Form). 

DATA DESCRIPTION 

In this study, TAZ-based densities4 of household categories and employment types were 
investigated using a 9-equation spatial SUR.  Households were classified into six categories 
(type I through type VI) according to the number of workers and the presence of children 
(under 18 years old) in each, and jobs were categorized as basic, retail and service types, 
according to the Standard Industrial Classification (SIC) codes. Table 1 provides the 
household and employment classifications used here. 

The data for this endeavor come from several sources. Austin’s Capital Area 
Metropolitan Planning Organization (CAMPO) provided employment estimates by type at 
the TAZ level for the year 2000. These derive from third-quarter ES202 reports maintained 
by the Texas Workforce Commission for the year 20005. Fregonese Calthorpe Associates, 
an Oregon-based planning firm (contracted for the Envision Central Texas project 
[http://envisioncentraltexas.org]), provided household counts (by type) at the TAZ level.  

Year 2000 land use parcel data was obtained from the City of Austin’s 
Neighborhood Planning and Zoning Department (NPZD). The study area is an approximate 
circular area, covering 420 square miles and 473 TAZs. The City classifies parcels 
according to 15 distinct land use categories, as listed in Table 2. For ease of modeling and 
interpretation, these 15 were grouped into 11 types. All 611 parcels labeled as “unknown” 
were checked against 1995 and 2002 orthophotos6, and an appropriate land use code was 
determined. In addition, a GIS shape file for existing protected lands, future protected lands 

                                                        
4 Since zone sizes can be quite arbitrary (and their variations can introduce heteroskedasticity in error term 
variation), density measures of households and jobs offer a more meaningful measure of land use intensity 
than counts. Since zone sizes are fixed, estimates of household and job counts emerge automatically from the 
model’s specifications. 
5 According to CAMPO’s Daniel Yang (May 30, 2006), American Business CD's were used to locate ES202 
data employers that could not be address-matched (e.g., those using PO box numbers and parent-child 
companies). Addresses were confirmed via survey. 
6 The 1995 orthophotos provide images with a 1m x 1 m resolution and were obtained from the Texas Natural 
Resource Information System (TNRIS) website. The 2000 orthophotos have a 2 ft x 2 ft resolution, and were 
downloaded from the Capital Area Council of Governments (CAPCOG) webpage. 
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and 100-year floodplain was assembled by the University of Texas at Austin’s Dr. Barbara 
Parmenter. As with open space and water categories in the City’s dataset, the protected 
lands and 100-year floodplains are excluded from future development.  

In order to examine the impacts of a zone’s general transportation access, Euclidean 
distances to the nearest major highway and average travel times to the region’s CBD7 
during the AM and PM peak periods were calculated (from zone centroids). Figure 1 
depicts the locations of these key elements. 

The fractions of each land use type in each TAZ were assumed known, and used as 
explanatory variables, along with a measure of land use balance, or entropy. (These 
fractions are based on an upstream land use change model [see, e.g., Zhou and Kockelman 
2006]. The land use balance variable is computed as suggested by Kockelman (1997): 

 ( ) ( )j

J

j
j PP

J
Entropy ln

ln
1 ∑−=       (3) 

where J is the number of land use types under consideration and Pj is the fraction of land in 
use type j. Only 6 developed land uses (single-family, multi-family, commercial, office, 
industrial and civic) were included in this entropy equation, so there were no penalties for a 
large undeveloped area. This land use balance term ranges from 0 to 1, with 0 indicating 
that all developed land in the zone is of a single type and 1 indicating that all 6 are present 
equally.  

In summary, the response variables are household and employment densities, and the 
explanatory variables include zonal land use conditions, travel time to the CBD, and distance 
to the nearest highway. Table 3 summarizes key statistics for all model variables. 

MODEL SPECIFICATION 

Both the spatial lag and the spatial error processes are very likely present in and across the 
households and employment counts for several reasons. It is quite possible that the 
boundaries of TAZs delimit the extent of households and employment distributions in an 
arbitrary way, which necessitates the inclusion of a spatial lag in our model specification, 
due to spatial spillovers (including, for example, agglomeration economies, in business as 
well as household uses). Furthermore, not all factors influencing the land use intensities are 
measurable and readily available to the analyst (e.g., microclimatic conditions, local crime 
rates, continuous measures of grammar school quality), so spatial error may be 
indispensable to the model’s specification. In addition, a pre-defined, arbitrary weight 
matrix also calls for use of higher-order spatial processes. Nevertheless, despite one’s 
expectation of the co-existence of spatial lag and spatial error processes, diagnostic tests 
are needed to support the inclusion of both components. Therefore, a series of diagnostic 
tests were performed, before estimating a SUR model with both spatial processes.  

                                                        
7 The CBD is defined as a 0.39-square mile rectangular area bounded by Guadalupe, Red River, Cesar Chavez 
and East 11th Streets. 
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Tests for Spatial Dependence 
A large number of diagnostic tests for spatial dependence have been proposed and their 
performance has been analyzed using Monte Carlo simulation in works by Anselin and 
Florax (1995), Anselin et al. (1996), and Anselin (2001b), among others. Recently, Florax 
and de Graaff (2004) provided a quantitative meta-analysis of Monte Carlo simulation 
results from a series of studies. 

The most common test statistic for spatial dependence in a regression model is 
Moran’s I (see, e.g, Cliff and Ord 1972).  It is computationally simple and does not require 
that one specify a spatial process as the alternative hypothesis. Thus, it does not indicate the 
nature of the spatial process (e.g., whether it is due to an omitted spatially lagged response 
variable or a spatial error process). Anselin and Kelejian (1997) derived an asymptotic form 
of Moran’s I for spatial error autocorrelation when endogenous variables and/or a spatially 
lagged dependent variable exists. Like Moran’s I, the Kelejian-Robinson (K-R) test (1992) 
does not identify the cause of spatial dependence. However, it does not assume normality 
of the error term or linearity of models8, so it may be preferred in certain instances. Here, 
tests against specific spatial processes were used. 

Tests against specific spatial processes generally are constructed as significance 
tests of the spatial autoregressive coefficient under consideration. These include the Wald, 
Likelihood Ratio (LR) and Lagrange Multiplier (LM) tests. The Wald and LR tests are 
relatively demanding because they require maximum likelihood estimation under the 
alternative hypothesis. Asymptotically equivalent to the Wald and LR tests, the LM test 
(e.g., see Burridge 1980; Anselin 1988a) does not require estimation of the more 
complicated model. The robust forms of LM tests can test for spatial lag dependence 
without assuming zero spatial error autocorrelation, and they can test for spatial error 
autocorrelation without assuming zero spatial lag autocorrelation. (Bera and Yoon 1993; 
Anselin et al. 1996) 

Anselin (1988b) derived a LM test for spatial error autocorrelation in the presence 
of a spatially lagged response variable as a special case of a general LM test for spatial 
dependence and spatial heterogeneity. Specifically, for a candidate model specification like 
Equation (1), the null hypothesis is λ = 0 in the presence of ρ (which is estimated by a MLE 
of the spatial lag model, y = ρ W y + X β + ξ). The LM statistic is defined as follows: 
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where 
∧

e  is a vector of residuals in the MLE results for the spatial lag model, and the “hats” 

(^) indicate values estimated using MLE. Under the null hypothesis, the LM statistics will 

                                                        
8  Kelejian and Robinson (1998) extended the K-R procedure to a test for spatial autocorrelation and 
heteroskedasticity.  Together with other tests for high-order spatial dependence (e.g. Anselin 2001b), this test 
is beyond the scope of this study. 
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converge to a chi-squared distribution, χ2, with one degree of freedom.  

In addition, Anselin et al. (1996) and Anselin and Bera (1998) provided an LM test 
for spatial lag autocorrelation in the presence of a spatial error autocorrelation9. In 
considering candidate model specifications like Equation (1), the null hypothesis is ρ = 0 in 
the presence of λ (which is estimated via MLE of the spatial error model, y = X β + ε with ε 
= λ W ε + ξ ). However, the equations given in these two papers neglect one term (the 

square of 
∧

2σ )10. The correct LM statistic is defined as follows: 
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where 
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u  is a vector of residuals in the MLE results for the spatial error model. 

Furthermore, 2WIB
∧

−= λ , ( )'2,,' σλβθ = , and ρH and θρH  are defined by Equations (6) 

and (7). Under the null hypothesis, the LM statistics also converge to a χ2 distribution with 
one degree of freedom. 
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These two LM tests serve the investigative goal of this study and were applied for 
each of the 9 equations individually (since no spatial-SUR tests currently exist for this).  
Before calculating the LM statistics, spatial lag and spatial error models had to be estimated 
via MLE (using Anselin’s [1980] likelihood functions). Each distinct pairing of the four 
weight matrices (Wcon, Wdist1.0, Wdist1.5, and Wdist2.0) was used in spatial lag and spatial 
error processes, representing a total of 12 weight-matrix model cases. Table 4 provides the 
LM test results. The high χ2 values indicate that the unrestricted model specification is 
preferred to either the spatial lag or spatial error models for most equations in all 12 cases. 

                                                        
9 Anselin and Bera (1998) also provided a joint test with a null hypothesis that both spatial autoregressive 
coefficients equal zero. This procedure is not relevant in this study, since it is not possible to identify whether 
the misspecification is due to lag or error dependence. 
10 The authors have informed Luc Anselin of this error. 
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More specifically, when spatial lag is the restricted model (the top division of the table), 
spatial error process exists in all of the 9 individual equations for 7 out of 12 cases. In the 
other 5 cases, only the basic employment equation has low χ2 values. When spatial error is 
the restricted model (the bottom division of the table), spatial lag process exists in all of the 
9 individual equations for 3 out of 12 cases. In the other 9 cases, at most 3 equations have 
low χ2 values. In order to maintain the general SUR structure proposed here, all 9 equations 
were specified with spatial lags and spatial error terms, as described below. 

Model in a SUR From 
The SUR model specification, with both spatial lag and spatial error processes, is a multi-
equation extension of Equation (1). The model is specified as follows 

 
( ) ( )

mmmm

mmmmmmmmmmmmmm

ξεWε
εZδεXyWβεXβyWy

+=
+=+=++=

2

11 ',',
λ

ρρ
 (8)  

where m = 1:M, ( )''...,,',' 21 Mξξξ=ξ , [ ] 0ξ =MXXXE ...,,| 21 , and 

[ ] Ωξξ =MXXXE ...,,|' 21 . In addition, ym is an n by 1 vector of response variables for 

equation m, Xm is an n by km matrix of explanatory variables for equation m (Xm could have 
different numbers of columns for different equations), βm is a k by 1 vector of  parameters 
to be estimated, ρm and λm are two scalars.  

Kelejian and Prucha’s (2004) model is a simultaneous equation model (SEM). It 
was altered here, to provide a SUR system, by disallowing all direct dependencies between 
response variables across equations and by assuming that each response variable depends 
only on its own spatial lag (rather than the spatial lag of other response variables in the 
equation system).  

The proposed SUR model with two spatial processes was estimated in three steps. 
First, the model with spatial lag process was estimated via a two-stage least-squares (2SLS) 
process, using instrumental variables. Here, a matrix H is composed of linearly 
independent columns X, W1X, and W2X, where X is an n by kmax matrix, and instrumental 
variables for equation m are H(H’H)-1HZm. 

Next, the residuals from this first step ( Mεεε ~,...,~,~
21 ) were used to estimate the 

spatial error autoregressive coefficients (λm) and the variances of error terms for each 
equation (σm

2), using a generalized method of moments (GMM), as originally proposed by 
Kelejian and Prucha (1999). More specifically, three equations were constructed by 

squaring mmmm ξεWε =− 2λ  and mmmm ξWεWWεW 2222 =− λ  and then taking their 

product. Consistent with Kelejian and Prucha’s (2004) notation, the two equations could be 

simplified as mmmm ξεε =− λ and mmmm ξεε =− λ , where mm εWε 2= , mm ξWξ 2=  and 

mm εWε 2= . Essentially, λm and σm
2 are nonlinear least squares estimators, based on the 



 10

following equation: 
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where ζm is a 3 by 1 vector of regression residuals. 

In the third step, a Cochrane-Orcutt transformed regression model 

mmmm ξZδy += *'*  (with mmmm yWyy 2* λ−=  and mmmm ZWZZ 2* λ−= ) was estimated 

using feasible generalized least squares techniques. (Readers may consult Greene’s (2000) 
Chapter 14 for more details on this estimation procedure.) 

 The above estimation procedure was applied using each of the 12 combinations of 
weight matrices described earlier. Equation (10)’s goodness-of-fit measure for the SUR 
model (McElroy 1977) were calculated for each case: 
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where ijσ̂  is the ijth element in matrix 1ˆ −Ω  , iy  is the mean of response values for 

equation i, and other terms are as previously defined. The case with Wcon and Wdist1.0 for 
spatial lag and error yielded the highest goodness-of-fit value (at 0.674, as compared to 
0.422 through 0.635 for the other 11 cases). Therefore, this pair of weight matrices was 
used in the final specification, and the model was calibrated by first incorporating all 
explanatory variables, and then refining the specification using a process of stepwise 
deletion (removing explanatory variables with t-statistics less than 1.645 [p-values over 
0.10]).  

MODEL RESULTS 

Table 5 provides the SUR model’s final estimation results. Single-family, mining and utility 
land-use proportions were statistically insignificant in all 9 equations, and thus were 
removed from the SUR system. 

 As expected, all of the spatial lag autocorrelation coefficients (ρ) were estimated to 
be positive and statistically significant, confirming the existence of strong spatial 
dependence. 7 out of 9 spatial error autocorrelation coefficients (λ) were estimated to be 
negative, with one corresponding to the LM statistics that did not support inclusion of 
spatial error components (the basic employment density). The statistical significance of the 
error autocorrelation coefficients (λ) was unknown from the three-step estimation 
procedure, which means the inference on co-existence of two spatial processes could not be 
derived directly. However, the series of LM tests, before application of the spatial 3SLS 
SUR model, confirmed the co-existence of the two processes in the final model 
specification (the case with Wcon and Wdist1.0), except for the spatial lag model of basic 



 11

employment. 

 The estimates of parameter coefficients are tangible and reasonable. Most have 
expected signs. For example, the multi-family land-use proportion is estimated to exert a 
positive impact on household densities of all types, though with different magnitudes. In 
contrast, commercial, office, industrial and civic use proportions are estimated to generally 
decrease household densities (as they compete for space). Peak-period travel time to the 
regional CBD is estimated to have a positive impact on household type III densities (i.e., 
those with two-plus workers and children). This type of household tends to live at the city 
periphery, where larger home sizes prevail.  

 Somewhat interesting is the fact that household densities do not increase with the 
percentage of excluded land (open space and protected areas). While such spaces may be 
attractive to certain household types, land development intensities nearby are generally 
lower. 

 In terms of employment densities, all three respond positively to increases in the 
proportion of office land use. Retail density also was found to rise with commercial land 
use, in a form of complementarity. In addition, retail densities were estimated to rise with 
reductions in the land use entropy term, indicating that zones with a single, relatively 
homogeneous land use types (perhaps mostly commercial in nature) tend to have higher 
numbers of retail jobs. Service-job densities were found to fall in response to multi-family 
use proportions.  This may be due to the fact that Austin’s service facilities are focused on 
the region’s core (where the State capitol and other government facilities exist, amid other 
business uses).  

Retail densities were estimated to decline with travel times to the CBD, suggesting 
that shopping is rather centralized, everything else constant.  It is surprising that all three 
job densities are estimated to increase with distance to the region’s major highways (after 
controlling for all other explanatory variables, two spatial processes and error-term 
interactions across equations). Office proportions, which positively affect these three job 
densities, may be heavily attracted to the major highways, resulting in a marginally positive 
effect.  

CONCLUSIONS 

This paper investigates the spatial distribution of jobs and households at the level of TAZs 
in the Austin region. These variables are key inputs to travel demand and air quality models 
as well as regional policymaking. Thus, their accurate estimation is of great interest. 

 There is little doubt that spatial dependence exists across spatially proximate zones.  
However, it is unclear what kinds of spatial processes are most appropriate in capturing the 
underlying relationships. Prior studies (e.g., Clark and Murphy 1996; Deller et al. 2001; 
Carruthers and Vias 2005) have demonstrated interactions between jobs and population at 
relatively large geographic scales, like counties. Few have considered such interactions at 
geographic scales comparable to TAZs, while recognizing spatial correlations. This study 
applied LM tests for the co-existence of spatial lag and spatial error processes. It then 
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estimated 9 equations simultaneously, using feasible generalized spatial 3SLS, permitting, 
for the first time, the presence of both such processes in a SUR model. This procedure was 
derived from Kelejian and Prucha’s (2004) SEM results, by disallowing direct 
dependencies between response variables across equations and by assuming that each 
response variable depends only on its own spatial lag. 

The model includes a series of explanatory variables, including local land use 
composition (which can be generated, for example, from Zhou and Kockelman’s [2005] 
upstream models of land use change), land use balance, travel time to the region’s CBD, 
and Euclidean distances to the nearest major highway.  As expected, knowledge of local 
land use conditions offers substantial predictive power for equations of land use intensity. 
Estimation results are reasonable with relatively high R2 statistics when two spatial 
processes and equation-system effects are recognized. As expected, all spatial lag 
autocorrelation coefficients are statistically significant (and all are positive), confirming the 
existence of spatial lag effects. Spatial error effects also exist, but estimates of t-statistics 
for their associated coefficients are unidentifiable.11  

This SUR model was designed to work together with an upstream land use change 
model (Zhou and Kockelman 2006) in predicting the spatial distributions of households 
and employment. The land use change model provides the dynamic nature of the modeling 
system, while the SUR model utilizes only cross-sectional data to allocate jobs and 
populations in a projection year. Therefore, this study analyzes related, but distinctive, data 
situations; direct dependencies between response variables across equations were 
eliminated and correlations in the error terms were designed to take care of the interactions 
between households and employment counts. It may not completely address the 
endogeneity issue (for example, service jobs may follow residential development in 
population counts, rather than developed area). However, land use conditions that were 
determined before our household and employment SUR model were used as explanatory 
variables, so the endogeneity is not nearly so much an issue as it would be in a simple 
model of household and employment totals/densities, without an upstream model of land 
use change.    

Key extensions of this work are felt to lie in the use of panel data, to permit an 
additional layer of correlation across observed values, and the use of full-information 
maximum likelihood estimate (MLE) approaches that are mathematically tractable for such 
complex specifications. Additionally, application of the model, in concert with the 
upstream model of land use change (Zhou and Kockelman 2006), and validation relative to 
current and coming land use patterns should prove insightful, particularly in comparison 
with predictions from simpler model specifications. 

                                                        
11  T-statistics for the spatial error autocorrelation coefficients are not directly available from the estimation 
procedure. Thus, proper tests, as used here, are needed to confirm the co-existence of spatial lag and spatial 
error before applying a SUR with the two spatial processes. 



 13

ACKNOWLEDGEMENTS 

We wish to thank Dr. Parmenter at the University of Texas at Austin and Daniel Yang at 
CAMPO for the valuable data sets, Darla Munroe at the Ohio State University and Bill Pan at 
Johns Hopkins University for insightful advice on model specification, and Annette Perrone 
for editing assistance. We also want to thank the Environmental Protection Agency for 
financially supporting this study under its STAR (Science to Achieve Results) Grant 
program. The multi-team project is titled “Predicting the Relative Impacts of Urban 
Development Policies and On-Road Vehicle Technologies on Air Quality in the United 
States: Modeling and Analysis of a Case Study in Austin, Texas.”



 14

REFERENCES 

Anselin, L. (1980). Estimation methods for spatial autoregressive structures. Regional 
Science Dissertation and Monograph Series 8. Field of Regional Science, Cornell 
University, Ithaca, N.Y. 

Anselin, L. (1988a). Spatial Econometrics: Methods and Models. Kluwer Academic, 
Dordrecht. 

Anselin, L. (1988b). Lagrange multiplier test diagnostics for spatial dependence and spatial 
heterogeneity, Geographical Analysis 20, 1-17. 

Anselin, L. (2001a) Spatial econometrics. In A companion to theoretical econometrics, edited 
by B. Baltagi, 310-330. Oxford, England: Blackwell. 

Anselin, L. (2001b). Rao’s score test in spatial econometrics. Journal of Statistical Planning 
and Inference 97, 113–139.  

Anselin, L. (2003a). Spatial externalities, spatial multipliers, and spatial econometrics. 
International Regional Science Review 26, 153–166. 

Anselin, L. (2003b). GeoDa 0.9 User’s Guide. Retrieved June, 2006 from 
https://geoda.uiuc.edu/pdf/geoda093.pdf. 

Anselin, L. (2005). Exploring Spatial Data with GeoDa: a Workbook. Retrieved June, 2006 
from https://geoda.uiuc.edu/pdf/geodaworkbook.pdf. 

Anselin, L. and Bera, A. (1998). Spatial dependence in linear regression models with an 
introduction to spatial econometrics. In: A. Ullah and D. E. A. Giles, Eds., Handbook 
of Applied Economic Statistics, p 237–289. New York: Marcel Dekker. 

Anselin, L. and Florax, R.J.G.M (1995). Small sample properties of tests for spatial 
dependence in regression models: some future results. In L. Anselin and R. Florax 
(Eds.), New Directions in Spatial Econometrics, p 21–74. Berlin: Springer-Verlag. 

Anselin, L. and Kelejian H.H. (1997). Testing for spatial error autocorrelation in the presence 
of endogenous regressors. International Regional Science Review 20, 153–182. 

Anselin, L., Bera, A.K., Florax, R.J.G.M., and Yoon, M.J. (1996). Simple diagnostic tests for 
spatial dependence. Regional Science and Urban Economics 26, 77–104.  

Bera, A. and Yoon, M. (1993). Specification testing with locally misspecified alternatives, 
Econometric Theory 9, 649–658. 

Burridge, P. (1980). On the Cliff–Ord test for spatial autocorrelation. Journal of the Royal 

Statistical Society B 42, 107–108. 

Carruthers, J.I. and Vias, A.C. (2005) Urban, suburban, and exurban sprawl in the Rocky 
Mountain West: evidence from regional adjustment models. Journal of Regional 
Science 45, 21–48. 



 15

Capital Area Council of Governments (CAPCOG). Retrieved June, 2005 from 
http://www.capcog.org/Information_Clearinghouse/Orthoimagery_main.asp. 

Case, A. (1991). Spatial patterns in household demand. Econometrica 59, 953–965. 

Case, A. (1992). Neighborhood influence and technological change. Regional Science and 
Urban Economics 22, 491–508. 

Case, A., Rosen, H.S., and Hines, J.R. (1993). Budget spillovers and fiscal policy 
interdependence: evidence from the States. Journal of Public Economics 52, 285–307. 

Clark, D.E. and Murphy, C.P. (1996) Countywide Employment and Population Growth: An 
Analysis of the 1980s. Journal of Regional Science 36, 235–256. 

Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York. 

City of Austin, Land Use Survey Project Description. Retrieved June, 2005 from 
http://www.ci.austin.tx.us/landuse/lupd.htm.  

Clark, D.E. and Murphy, C.A. (1996). Countywide employment and population growth: an 
analysis of the 1980s. Journal of Regional Science 36, 235–256. 

Cliff, A. and Ord, J.K. (1972). Testing for spatial autocorrelation among regression residuals. 
Geographical Analysis 4, 267–284. 

Cliff, A. and Ord, J.K. (1981). Spatial Processes: Models and Applications. London: Pion. 

Das, D., Kelejian, H., and Prucha, I. (2003). Finite sample properties of estimators of spatial 
autoregressive models with autoregressive disturbances. Papers in Regional Science 
82, 1–26. 

Deller, S.C., Tsai, T.H., Marcouiller, D.W., and English, D.B.K. (2001). The role of amenities 
and quality of life in rural economic growth. American Journal of Agriculture 
Economics 83, 352–365. 

Florax, R.J.G..M., and Rey, S. (1995). The impacts of misspecified spatial interaction in linear 
regression models. In L. Anselin and R. Florax (Eds.), New Directions in Spatial 
Econometrics, p 111–135. Berlin: Springer-Verlag. 

Florax, R.J.G.M. and de Graaff, T. (2004). The performance of diagnostic tests for spatial 
dependence in linear regression models: a meta-analysis of simulation studies. In L. 
Anselin, R. Florax and S.J. Rey (Eds.), Advances in Spatial Econometrics: 
Methodology, Tools and Applications, p 29–66. Berlin: Springer-Verlag. 

Gallo, J.L. and  Dall’erba, S. (2003). Evaluating the temporal and the spatial heterogeneity of 
the European convergence process, 1980-1999. Presented at presented at the 50th 
North American Meetings of the Regional Science Association International (RSAI), 
Philadelphia, November 20-22, 2003. 

Greene, W. (2000). Econometric Analysis. Upper Saddle River: Prentice-Hall. 

Haining, R. (1988). Esitmating spatial means with an application to remotely sensed data. 
Communications in Statistics: Theory and Methods 17, 573–597. 



 16

Henry, M.S., Barkley, D.L., and Bao, S. (1997). The Hinterlands’ Stake in Metropolitan 
Growth: Evidence from Selected Southern Regions.  Journal of Regional Science 37, 
479–501. 

Kelejian, H.H. and Prucha, I. (1998). A generalized spatial two stage least squares procedure 
for estimating a spatial autoregressive model with autoregressive disturbances. 
Journal of Real Estate Finance and Economics 17, 99–121. 

Kelejian, H.H. and Prucha, I.R. (1999). A Generalized Moments Estimator for the 
Autoregressive Parameter in a Spatial Model. International Economic Review 40, 
509–533. 

Kelejian, H.H. and Prucha, I.R. (2004). Estimation of simultaneous systems of spatially 
interrelated cross sectional equations. Journal of Economics 118, 27–50. 

Kelejian, H.H. and Robinson, D.P. (1992). Spatial autocorrelation: A new computationally 
simple test with an application to per capita country police expenditures. Regional 
Science and Urban Economics 22, 317–333. 

Kelejian, H.H. and Robinson, D.P. (1993). A suggested method of estimation for spatial 
independent models with autocorrelated errors, and an application to county 
expenditure model. Papers in Regional Science 72, 297–312. 

Kelejian, H.H. and Robinson, D.P. (1995). Spatial autocorrelation: a suggested alternative to 
the autoregressive model. In L. Anselin and R. Florax (Eds.), New Directions in 
Spatial Econometrics, p 75–93. Berlin: Springer-Verlag. 

Kelejian, H.H. and Robinson, D.P. (1998). A suggested test for spatial autocorrelation and/or 
heteroskedasticity and corresponding Monte Carlo results. Regional Science and 
Urban Economics 28, 389–417. 

Kockelman, K.M. (1997). Travel behavior as a function of accessibility, land use mixing, and 
land use balance: evidence from the San Francisco Bay Area. Transportation 
Research Record 1607, 117–125. 

Lundberg, J. (2005). A Spatial Interaction Model of Spillovers from Locally Provided Public 
Services. Forthcoming in Regional Studies. 

McElroy, M. (1977). Goodness of fit for seemingly unrelated regressions: Glahn’s R2
y,x and 

Hooper’s 2r . Journal of Econometrics 6, 381-387. 

Mulligan, G. F., Vias, A.C. and Glavac, S.M. (1999). Initial Diagnostics of a Regional 
Adjustment Model. Environment and Planning A, 31, 855–876. 

Rey, S. and Montouri, B (1999). U.S. regional income convergence: a spatial econometric 
perspective. Regional Studies 33, 143–156. 

Steinnes, D.N. and Fisher, W.D. (1974). An Econometric Model of Interurban Location. 
Journal of Regional Science 14, 65–80. 

Texas Natural Resource Information System (TNRIS). Retrieved June, 2005 from 
http://www.tnris.state.tx.us/DigitalData/doqs.htm. 



 17

Tobler W.R. (1970). A computer movie simulating urban growth in the Detroit region. 
Economic Geography 46, 234–240. 

Vias, A.C. and Mulligan, G.F. (1999). Integrating Economic Base Theory with Regional 
Adjustment Models: The Nonmetropolitan Rocky Mountain West. Growth and 
Change 30, 507–525. 

Zhou, B. and Kockelman, K.M. (2006).  Neighborhood Impacts on Land Use Change: A 
Multinomial Logit Model of Spatial Relationships. Presented at the 52nd Annual North 
American Meeting of the Regional Science Association International, Las Vegas. 



 18

TABLES AND FIGURES 

Table 1. Employment and Household Classification 

Category Definition 
Type I household 0-worker household, with at least one child under 18 years of age 
Type II household 1-worker household, with at least one child under 18 years of age 

Type III household 2 or more-worker household, with at least one child under 18 years 
of age 

Type IV household 0-worker household, with no children 
Type V household 1-worker household, with no children 
Type VI household 2 or more-worker household, with no children 

Basic Employment 

Division A (agriculture, forestry, and fishing) 
Division B (mining) 
Division C (construction) 
Division D (manufacturing) 
Division E (transportation, communications, electric, gas, and 
sanitary services) 
Division F (wholesale trade) 

Retail Employment Division G (retail trade) 

Service Employment 
Division H (finance, insurance and real estate) 
Division I (services) 
Division J (public administration) 
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Table 2. Land Use Categories 

Original Land Use 
Classification Description Final 

Classification
Large Lot Single-
family 

Single-family detached, two-family attached with lot 
size bigger than 10 acres 

Single-family Single-family detached, two-family attached 

Single-family 

Mobile Homes Mobile homes 

Multi-family Three/fourplex, apartment/condo, group quarters, 
retirement 

Multiple-
family 

Commercial 

Retail and general merchandise, apparel and 
accessories, furniture and home furnishings, grocery 
and food sales, eating and drinking, auto related,   
entertainment, personal services, lodgings, building 
services 

Commercial 

Office Administrative offices, financial services (banks), 
medical offices, research and development 

Office 

Industrial Manufacturing, warehousing, equipment sales and 
service, recycling and scrap, animal handling 

Industrial 

Civic Semi-institutional housing, hospital, government 
services, educational meeting and assembly, cemetery 

Civic 

Mining Resource extraction Mining 
Utilities Utility services Utility 
Undeveloped/Rural Rural uses, vacant land, land under construction Undeveloped 

Open Space Parks/greenbelts, golf courses, camp grounds and 
open spaces set aside for preservation or protection. 

Water Water 

Excluded 

Transportation Railroad facilities, transportation terminal, aviation 
facilities, marina parking facilities 

Transportation

 Source: Land Use Survey Project Description, City of Austin
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Table 3. Summary Statistics for All Variables 

 Minimum Maximum Mean Std. Deviation 
Response Variables  

Type I household density (HHs/mile2)  0 80.3 5.92 8.23 
Type II household density (HHs/mile2)  0 870.4 96.4 115.7 
Type III household density (HHs/mile2)  0 1,044 171.8 179.6 
Type IV household density (HHs/mile2)  0 1,341 128.9 190.3 
Type V household density (HHs/mile2)  0 7,167 539.2 815.2 
Type VI household density (HHs/mile2)  0 2,584 336.4 368.1 
Basic employment density (jobs/mile2) 0 56,498 918.9 3,609 
Retail employment density (jobs/mile2) 0 20,041 696.6 1,866 
Service employment density (jobs/mile2) 0 116,916 2,723 10,966 

Explanatory Variables  
Single-family use fraction 0 0.808 0.271 0.202 
Multi-family use fraction 0 0.559 0.049 0.076 
Commercial use fraction 0 0.850 0.050 0.085 
Office use fraction 0 0.626 0.033 0.068 
Industrial use fraction 0 0.596 0.035 0.080 
Civic use fraction 0 0.929 0.058 0.134 
Undeveloped land fraction 0 0.868 0.153 0.184 
Mining use fraction 0 0.504 0.0057 0.042 
Utility use  fraction 0 0.412 0.0056 0.033 
Excluded land fraction 0 0.979 0.171 0.199 
Land use entropy 0.1 0.830 0.391 0.170 
Distance to nearest highway (miles) 0 6.57 1.20 1.27 
Travel time to the CBD (minutes) 0 37.2 12.4 8.30 
Number of observations 473 
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Table 4. Lagrange Multiplier Test Results 

Equations LM Statistics (spatial error autocorrelation in the presence of spatial lag) 
Spatial lag matrix Wcon Wcon Wcon Wdist1.0 Wdist1.0 Wdist1.0 Wdist1.5 Wdist1.5 Wdist1.5 Wdist2.0 Wdist2.0 Wdist2.0

Spatial error matrix Wdist1.0 Wdist1.5 Wdist2.0 Wcon Wdist1.5 Wdist2.0 Wcon Wdist1.0 Wdist2.0 Wcon Wdist1.0 Wdist1.5
Type I household 
density (HHs/mile2) 262.8 620.0 633.2 123.0 246.9 204.3 239.1 2,646 598.9 433.4 12,398 3,633 

Type II household 
density (HHs/mile2)  268.6 642.4 715.4 155.4 307.3 263.0 180.6 327.0 308.6 449.9 8,193 2,935 

Type III household 
density (HHs/mile2) 370.2 755.1 786.7 266.2 1,511 794.8 535.2 12,975 1,849.1 296.3 1,746 1,231 

Type IV household 
density (HHs/mile2) 59.0 128.1 127.9 39.2 102.5 66.8 51.8 498.3 109.8 73.6 241.2 670.1 

Type V household 
density (HHs/mile2) 581.2 1,031 919.5 529.7 4,096 1,579 12,706 917,056 67,807 2,402 138,185 34,276

Type VI household 
density (HHs/mile2) 132.1 262.0 265.1 122.7 485.6 273.1 788.5 37,717 3,371 621.2 33,443 8,253 

Basic employment 
density (jobs/mile2) 0.790 9.67 18.6 1.281 9.74 11.8 1.34 8.04 17.2 1.59 1.81 18.7 

Retail employment 
density (jobs/mile2) 53.6 173.9 205.0 61.8 477.9 343.8 401.8 25,712 2,265 71.2 484.1 605.1 

Service employment 
density (jobs/mile2) 112.6 399.8 492.4 204.9 1,340 709.4 3,223 214,229 17,485 510.2 19,978 6,025 
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Table 4. Lagrange Multiplier Test Results (continued) 

Equations LM Statistics (spatial lag autocorrelation in the presence of spatial error) 
Spatial lag matrix Wcon Wcon Wcon Wdist1.0 Wdist1.0 Wdist1.0 Wdist1.5 Wdist1.5 Wdist1.5 Wdist2.0 Wdist2.0 Wdist2.0

Spatial error matrix Wdist1.0 Wdist1.5 Wdist2.0 Wcon Wdist1.5 Wdist2.0 Wcon Wdist1.0 Wdist2.0 Wcon Wdist1.0 Wdist1.5
Type I household 
density (HHs/mile2) 82.4 44.8 14.4 2.59 42.5 7.86 8.14 124.6 12.4 8.68 114.8 54.2 

Type II household 
density (HHs/mile2)  85.2 48.1 13.5 1.91 48.7 6.49 7.73 131.7 10.6 8.72 136.1 68.3 

Type III household 
density (HHs/mile2) 72.8 38.9 8.98 7.95 57.3 8.41 24.8 148.1 13.8 30.5 153.2 80.0 

Type IV household 
density (HHs/mile2) 15.7 5.53 1.77 0.407 1.64 0.435 0.468 16.6 0.680 0.0491 13.1 1.39 

Type V household 
density (HHs/mile2) 133.8 94.0 51.4 3.86 82.8 27.9 7.92 154.6 30.4 5.09 131.5 75.5 

Type VI household 
density (HHs/mile2) 107.4 74.4 37.4 13.6 92.2 38.5 28.3 155.0 40.4 25.4 136.4 84.7 

Basic employment 
density (jobs/mile2) 4.86 0.455 0.0320 6.56 3.25 0.0362 20.1 26.0 3.36 25.0 24.0 8.16 

Retail employment 
density (jobs/mile2) 24.9 5.59 0.129 16.8 21.3 0.0241 40.5 94.2 1.10 34.0 77.9 24.5 

Service employment 
density (jobs/mile2) 117.1 69.5 27.4 8.01 78.8 15.3 30.7 213.1 34.3 36.2 204.8 115.4 

Notes:  1. Numbers in bold represent statistically insignificant LM statistics at 90% confidence level. 
2. The critical value for a 90% confidence level in a χ2 distribution with one degree of freedom is 2.706. 
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Table 5. Result of Seemingly Unrelated Regression with Spatial Lag and Spatial Error Processes 

Variables Type I 
Household 

Type II  
Household

Type III 
Household

Type IV 
Household

Type V 
Household

Type VI 
Household

Basic 
Employment

Retail 
Employment

Service 
Employment 

Constant 2.28 
(3.12) 

52.73 
(4.49) 

117.7 
(6.40) 

37.60 
(1.77) 

187.7 
(2.96) 

207.5 
(6.86) 

-521.9 
(-4.59) 

183.7 
(1.09) 

-1,171.3 
(-3.47) 

Multi-family use 
fraction 

13.32 
(4.15) 

446.3 
(9.27) 

410.4 
(5.12) 

472.9 
(5.34) 

4,468.2 
(14.89) 

1,469.4 
(10.75)   -7,318.6 

(-2.25) 
Commercial use 
fraction 

-10.39 
(-3.39) 

-139.3 
(-3.24) 

-384.1 
(-5.62) 

-147.3 
(-1.77) 

-628.7 
(-2.51) 

-456.0 
(-4.05)  9,072.9 

(13.89)  

Office use 
fraction 

-12.99 
(-3.81) 

-296.8 
(-5.80) 

-502.5 
(-6.20)  -649.7 

(-2.20) 
-864.0 
(-6.59) 

14,323.3 
(6.58) 

2,798.2 
(2.85) 

40,466.6 
(8.42) 

Industrial use 
fraction 

-6.00 
(-2.06) 

-118.5 
(-2.81) 

-336.9 
(-4.99) 

-222.3 
(-2.80) 

-935.2 
(-3.67) 

-579.7 
(-5.23)    

Civic use fraction -6.06 
(-3.20) 

-86.54 
(-3.12) 

-253.2 
(-5.60) 

-192.9 
(-3.65) 

-1,088.2 
(-6.72) 

-547.0 
(-7.65)    

Undeveloped land 
fraction 

-3.90 
(-2.65) 

-76.02 
(-3.54) 

-238.6 
(-6.49) 

-80.18 
(-1.84) 

-381.9 
(-2.87) 

-342.0 
(-5.77)    

Excluded land 
fraction 

-4.36 
(-3.19) 

-97.94 
(-5.08) 

-284.2 
(-9.05) 

-77.71 
(-2.04) 

-493.3 
(-4.24) 

-358.3 
(-6.83)    

Land use entropy        -1,594.4 
(-4.78)  

Dist to nearest 
highway (miles)       153.15 

(2.22) 
98.19 
(2.13) 

341.4 
(2.05) 

Travel time to the 
CBD (minutes)   0.95 

(2.22)     -10.07 
(-1.86)  

ρ 1.00 
(24.02) 

0.813 
(13.91) 

0.995 
(12.56) 

0.952 
(13.64) 

0.798 
(15.80) 

0.823 
(17.53) 

0.851 
(14.60) 

0.864 
(16.07) 

0.923 
(31.89) 

λ -4.39 -0.170 8.66 -2.90 0.092 -0.805 -5.08 -2.32 -4.57 
R2 0.67812 
No. of 
Observation 473 

                                                        
12 The R2 is slightly higher than that with all the explanatory variables. Greene (2000) argued there is no assurance that dropping one variable will result in a 
decrease in the R2, because the estimation procedure is based on minimizing the generalized sum of squares in stead of sum of squares. (page 209) 
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Figure 1. Austin’s Major Highways and Central Business District 
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