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ABSTRACT 

In transportation studies, variables of interest are often influenced by similar factors and have 
correlated latent terms (errors). In such cases, a seemingly unrelated regression (SUR) model is 

normally used. However, most studies ignore the potential temporal and spatial autocorrelations 

across observations, which may lead to inaccurate conclusions. In contrast, the SUR model 

proposed in this study also considers the spatial and temporal correlations across observations, 

making the model more behaviorally convincing and applicable to circumstances where a three- 

dimensional correlation exists, across time, space and equations. An example of crash rates in 

Chinese cities is used. The results show that incorporation of spatial and temporal effects 

significantly improves the model. Moreover, investment in transportation infrastructure is 

estimated to have statistically significant effects on reducing severe crash rates, but with an 

elasticity of only -0.078. It is also observed that though vehicle ownership is associated with 

higher crash per capita rates, elasticities for severe and non-severe crashes are just 0.13 and 0.18 

respectively; much lower than one. The techniques illustrated in this study should contribute to 

future studies requiring multiple equations in the presence of temporal and spatial effects. 
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INTRODUCTION 
In transportation studies and other regional analyses, many variables relate. If dependent 

variables are co-dependent, a simultaneous equation model (SEM) is appropriate. In other cases, 
these variables are simply correlated in their regression error terms, and a seemingly unrelated 
regression (SUR) approach becomes more reasonable. Some transportation examples include: (1) 
trade flows by different industries (Egger and Pfaffermayr 2004), (2) sales impacts of highway 
bypasses on different industry sectors across cities and over time (Srinivasan and Kockelman 
2002), and (3) travel demand induced by road capacity increases (Noland, 2001). In addition, 
observations are often panel data with spatial interaction: The same units are observed for 
multiple periods, and nearby units tend to have stronger correlations. Previous models are 
incapable of including all these correlated effects. Thus, the primary motivation for – and the 
most important contribution of – this study are an econometric model and estimation techniques 
that recognize all these effects.  

In this study, correlations across equations are specified in a general way: temporal 
correlation across observations is assumed to be a random-effect, and spatial effects are 
incorporated via a spatial autoregressive (SAR) component in the error term. The estimation 
techniques are a mixture of generalized least squares (GLS) and maximum likelihood estimation 
(MLE) and can handle these complicated correlation patterns. The overall methodology is an 
important extension to existing studies and may serve as a useful tool for future work. 

The model is applied for analysis of city-level severe and non-severe crash rates (per capita) 
across China. While numerous studies on vehicle crash rates and counts using disaggregate 
(segment-based) data can efficiently disclose the effects of geometric design, such models can 
miss the effects of broader, non-design policies and trends. In contrast, aggregated city-level data 
can better illuminate the effects of regional policies. Such continuous response variables also 
lend themselves to more convenient linear regression methods (rather than integer crash counts, 
for example). Of course, the cost of this convenience is that the aggregation process obscures 
information on driver, road and vehicle characteristics. Such covariates are absorbed into the 
models’ unobserved terms. For the same city, these unobserved, error terms for crash rates of 
different severities are interrelated. Meanwhile, neighboring cities tend to have similar 
topography, educational attributes, weather patterns, industry and reporting rates; they also may 
have similar traffic volumes on national highways. All these factors are influential and tend to be 
spatially correlated; yet, as uncontrolled variables, all are absorbed into the error term. In 
addition, for panel data, it is natural to consider the temporal correlations in these unobserved 
effects (for the same city, over time). Hence, the methodology used here is very well suited to 
such situations.  

Another reason for analyzing Chinese crash rates is the rapid, recent motorization taking 
place there. From 1994 to 2004, the total number of motor vehicles in China (including 
motorcycles) has increased from 19.5 million to 107.8 million (Su, 2005), with an average 
increase over 16% per year.  As a point of comparison, in 2004 there were 242 million motor 
vehicles in the U.S. (also including motorcycles). In 1994 there were 201.8 million such vehicles 
in the U.S., suggesting an average growth rate of just 1.8 % per year (FHWA, 1994-2004). 
Meanwhile, due to the unbalanced regional economic development, some areas in China have 
been experiencing much more rapid motorization than others. For example, of the 169 cities in 
the sample data, the highest motorization rate (from 2001 to 2002) is 60% while the lowest one is 
–3%. The standard deviation of this speed is as high as 12%. Such variability provides an 
analysis of transportation issues related to motorization in developing countries.  
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The following sections discuss previous studies on related topics and offer a detailed 
explanation of the model specification and estimation techniques. The data set’s statistics and 
potential data quality problems are explored. The estimation results are examined and compared 
to other, more restrictive models, highlighting the superiority of the model proposed here.  

 
LITERATURE REVIEW 

Zellner (1962) first proposed seemingly unrelated regression (SUR) in order to analyze 
multiple equations with correlated error terms. Each equation may have a different set of 
explanatory variables; however, in referring to responses of the same set of observational units, 
the errors of these equations are likely to correlate. Originally applied in micro-economic 
contexts, SUR is now used broadly in many research areas. Anselin (1988) first extended an 
SUR model to a spatial environment. By incorporating spatial autoregression into the error term, 
the model exhibits spatial autocorrelations across observations. Anselin’s focus was a Lagrange 
multiplier test for spatial SUR, and he did not explore estimation techniques. Nevertheless, the 
likelihood function and some information matrix elements presented in his work provide 
important inspiration for this study. Interestingly, Anselin’s work originally was designed for 
panel data analysis, where each equation stands for a period and the correlation across periods is 
in a general form with the assumption that the data is a short panel (i.e., T is small compared to 
N). For most regional and transportation studies, this assumption of short panel holds true. 
However, computational burdens can increase dramatically with the number of periods. 
Therefore, in most present studies, the temporal dependence is often structured by decomposing 
the error term into an individual time-invariant effect plus a time variant term.  

Elhorst (2003) first provided a comprehensive illustration of how to combine panel data with 
spatial analysis. In his study, “spatial dependence” can be either spatial error autocorrelation or a 
spatially lagged dependent variable. The panel nature of the data can be recognized using fixed 
or random effects, and fixed or random coefficients. As Elhorst concludes, fixed-effects models 
are suitable for short panels and coefficient estimates can be inconsistent for larger time periods 
(T). In comparison, the random-effects model is restricted by an assumption of zero correlation 
between the individual effects and explanatory variables. However, when the cross sectional 
dimension (N) is large (while T is fixed), the random-effects model may be preferable. The 
fixed-coefficients model is quite similar to Anselin’s model (1988), except that Elhorst treated 
every spatial unit as a separate equation. In this way the spatial correlation structure is not 
restricted; however, as Elhorst notes, due to the large number of parameters, such a model is 
useful only when the cross-sectional dimension is small. As for a random-coefficients model, in 
addition to computational issues, it may become “asymptotically suspect” for large panels (when 
N is large relative to T).  

Another important contribution to spatial panel data analysis is Kapoor et al.’s work (2004), 
where a mixture of generalized moments estimators and feasible generalized least square (FGLS) 
is used. The most attractive feature of their method is that it is computationally feasible for large 
panels. However, in many circumstances (e.g., for evaluating estimators’ asymptotic properties 
or for various hypothesis tests), it may be necessary to calculate the full information matrix. For 
this reason, Elhorst’s MLE method remains preferred.   

In terms of crash rate analyses, many studies exist. For example, Aarts and Shagen (2006) 
analyzed the effect of driving speed on crash rates, Kweon and Kockelman (2005) studied the 
impact of roadway design and speed limits on crash rates, and Ivan (2004) explored the relation 
between traffic volumes and crash rates. Most studies define crash rate as the crash count divided 
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by VMT; here, however, as in Noland and Karlaftis (2005), crash rate is defined as the ratio of 
crash count to population.  

Sophisticated crash rate analysis using a Chinese database is quite limited, due primarily to a 
lack of data. As Yi and Ran (2003) pointed out, Chinese traffic accident data acquisition, 
communications, and analysis systems need improvement. Among the few such studies, Qin et al. 
(2004) investigated 1085 crashes occurring in 1998 and 1999 on a single 198-mile highway 
section and concluded that crash rates (though not necessarily crash severities) increase with 
traffic volume, and safety policies can have a significant effect on reducing such rates. A city-
based aggregate study of Chinese crash rates remains absent, and is addressed by this work.  

Furthermore, no previous study of crash rates has simultaneously explored the temporal, 
spatial and cross-equation correlations which exist. The methodology proposed in the following 
section fills this void, offering new opportunities for spatial analysts. By recognizing error terms 
that correlate over three dimensions, this model can be viewed as a panel-based extension of 
Anselin’s (1988) spatial SUR model, as well as an SUR extension to Elhorst’s (2003) spatial-
random effects model. Thus, the work provides a new model for use with panel data and a 
system of seemingly-unrelated equations. Of course, the methods are applicable for any type of 
data, not simply various crash rates.  

 
METHODOLOGY 

In this study, spatial effects are incorporated via autocorrelation in spatial error terms. A 
spatial lag model (with a spatially lagged dependent variable) can be specified and estimated in a 
similar way but is not discussed here, due to space limitations. Interested readers may refer to 
Elhorts’s (2003) study for a comparison of these two model types. Derivation of a panel spatial 
lag SUR model via modifications similar to those discussed here should be relatively 
straightforward.  

Here, panel effects are incorporated via random effects, and the reasons for and limitations of 
a random effect assumption are discussed below. In “model estimation”, a three-step method 
involving a (FGLS) regression and MLE is introduced. A comparison with previous studies 
demonstrates that these estimation techniques can be viewed as an extension of and a counterpart 
to Kapoor et al.’s (2004) work (which is based on a generalized method of moments).  
 
Model Specification 

In general, a spatial SUR model for panel data can be described as follows: If the problem 
under study is composed of G  equations (each potentially having a different set of explanatory 
variables) for N  individuals and the study relies on balanced panel data (such that each 
individual is represented T times, for each of the G equations), the system can be specified as 
follows: 

git git g g ity X β ξ= + , 1, 2,...,g G= , 1, 2,...,i N= , 1, 2,...,t T=     (1) 

where gity  denotes the dependent variable value of the thi  individual in period t  in equation g , 

gitX  is a 1 gK×  vector of explanatory variables, gβ  is a 1gK ×  vector of parameters, and gitξ  is a 
scalar error term.  

Stacking the observations (first by equation, then by time, and finally by individual), the 
system can be denoted as Y X β ξ= + , where       
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Here Y  is of dimension 1GTN × ; X  is a diagonal block matrix of dimension ∑×
g

gKGTN , 

with each sub-matrix gX  (located along the main diagonal) representing an  gKTN ×  matrix; β  

is 1g
g

K ×∑  ; and ξ  is 1GTN × .  

For standard, a-spatial panel data, the error term can be decomposed into two parts: an 
individual-specific (or time-constant) error term and a time-variant error term:  

gitgigit a εξ +=           (3) 
 In this study, a random effects model is assumed to be appropriate, implying that individual 

effects are independent of explanatory variables. Thus, 
( ), 0E a Xε =           (4) 

( ) 0E a X =           (5) 
The individual-specific error a  and the idiosyncratic error ε  also are assumed to be 

homoscedastic (within each equation), so that:  
( ) 2

gi gi agE a a σ⋅ =  (or aggσ , in a more generalized form), for all ,g i    (6) 

( ) 2
git git egE ε ε σ⋅ =  (or eggσ ), for all , ,g i t        (7) 

It is also assumed that, by incorporating the individual-specific error, the idiosyncratic errors 
will be serially uncorrelated: 

( ) 0git gisE ε ε⋅ = , for all g, i
 
and t s≠        (8) 

For an SUR model, the correlations between equations also need to be considered: 
( )gi hi aghE a a σ⋅ =  , for all i  and g h≠        (9) 

( )git hit eghE ε ε σ⋅ = ,  for all ,i t  and g h≠        (10) 
It should be noted that, as compared to a fixed-effects model, the assumption of zero 

correlation between individual effects and explanatory variables is restrictive and can be 
unrealistic at times. However, as Anselin (1999, pp 14) notes, “since the estimation of the spatial 
process models requires asymptotics in the cross-sectional domain ( N →∞ )”, fixed effects will 
lead to inconsistent estimation due to the incidental parameter problem1 – and this is 
incompatible with spatial processes. Moreover, a standard fixed-effects approach cannot give 
coefficient estimates for time-constant variables, whereas random-effects models can. In light of 
all these facts, a random-effect models is specified here.  

In a spatial error model, the error terms are spatially autocorrelated:  

g t g g g t g g tW aξ λ ξ ε• • • •= + +  or ( ) ( )1

g t N g g g g tI W aξ λ ε
−

• • •= − + ， for all ,g t    (11) 

                                                 
1 An incidental parameters problem means that, for a fixed-effects model, when T is small, estimators of the constant 
terms do not converge, leading to inconsistent estimators of all coefficients. [See Lancaster (2000).] 
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where gW  is the weight matrix for equation g  and gλ  is the corresponding autocorrelation 
coefficient.  gW  is an NN ×  exogenous matrix that reflects the spatial dependence pattern 
across observations, with zero-valued diagonal elements. Normally, gW  is row standardized to 
sum to 1 and gλ  is restricted so that -1< gλ <1. In this way, the stationary autocorrelation is 
assured, without loss of (much) generality. Thus, in the spatial SUR model of panel data, the 
error term can be expressed as follows: 

[ ]1H aξ ε−= +           (12) 

where 

1

2

0 0
0 0

0 0

T

T

T G

I H
I H

H

I H

⊗⎡ ⎤
⎢ ⎥⊗⎢ ⎥=
⎢ ⎥
⎢ ⎥⊗⎢ ⎥⎣ ⎦

 with each g N g gH I Wλ= −    (13) 

Therefore, as Anselin (1988) shows, the inverse of variance-covariance matrix is 
( )1 1

NH I H− −′Ω = Σ ⊗ , where NIΣ⊗  is the variance-covariance of the composite error term 

( )a ε+ , with 

T T TA l l B I′Σ = ⊗ + ⊗          (14) 
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    (15) 

and where Tl  is a 1T ×  vector of 1’s. 
If the error terms are assumed to be normally distributed, following Anselin’s model 

specification, the log-likelihood function (without the constant term) is 

( ) ( )11 1ln
2 2

L Y X Y Xβ β−′= − Ω − − Ω −       (16) 

and some basic mathematical manipulations result in the following: 

( ) ( ) ( )11ln ln
2 2g n

g

NL T H Y X H I H Y Xβ β−′ ′= − Σ + − − Σ ⊗ −∑    (17) 

 
Model Estimation 

The parameters are intertwined in the above log-likelihood function, so ordinary regression 
methods are not feasible. The model can be estimated using a three-step method: first, β  can be 
estimated using a generalized least squares model (GLS), conditional on A, B and λ . Then A 
and B can be estimated conditional on β  and λ . These first two steps are iterated until the 
optimal A, B and β  are found (conditional on λ ). The third step is to substitute the values of 
estimated A, B and β  values and to maximize the concentrated log-likelihood function over λ . 
The estimated λ  then re-enters the estimation of A, B and β . This procedure is iterated until 
convergence. In short, first ( ), ,L A Bβ λ  and ( ), ,L A B λ β  are iteratively maximized over A, B 
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and β , in order to maximize ( ), , ,L A Bβ λ . Then, ( ), ,L A Bλ β  and ( ), , ,L A Bβ λ  are 
iteratively maximized to find the complete MLE parameter. 

It should be noted that the log-likelihood function specified in Equations (11) through (17) 
can be further simplified by following the second part of Magnus’ (1982) lemma : Let 

1
1

T TM l l
T

′= , (which has rank 1) and 2
1

T T TM I l l
T

′= −  (which has rank  1T − ); then, Σ  can be 

expressed as 
( ) 1 2T T TA l l B I B TA M B M′Σ = ⊗ + ⊗ = + ⊗ + ⊗       (18) 

According to Magnus (1982),  
1TB TA B −Σ = +  and         (19) 

( ) 11 1
1 2B TA M B M−− −Σ = + ⊗ + ⊗        (20) 

Thus, the log-likelihood function (Equation 17) can be expressed as 
( )

( ) ( )( )( )

( ) ( )( )

1
1

1
2

1
ln ln ln

2 2
1
2
1
2

g
g

N

N

N TNL B TA B T H

HY HX B TA M I HY HX

HY HX B M I HY HX

β β

β β

−

−

−
= − + − +

′− − + ⊗ ⊗ −

′− − ⊗ ⊗ −

∑

    (21) 

Using the above decomposition of the determinant and inverse of Σ , a data transformation 
trick (as inspired by Elhorst et al.’s (2003) work) can be applied as follows: 

Step 1. Estimate β  conditional on A, B and λ  (Maximizing ( ), ,L A Bβ λ ) 

Since 1 NM I⊗  denotes an average of the ( )HY HX β−  values over time for each equation, 
and 2 nM I⊗  denotes each observation’s deviation from this average (over time), if one lets 

( ) 1P P B TA −′ = +  and 1Q Q B−′ = , one can transform the data by making 

( ) ( ) ( ) ( ) ( )( )*
NT NT NT NT NTY P I HY Q I HY Q I HY Q I HY P Q I HY= ⊗ + ⊗ − ⊗ = ⊗ + − ⊗   (22) 

( ) ( ) ( ) ( ) ( )( )*
NT NT NT NT NTX P I HX Q I HY Q I HX Q I HX P Q I HX= ⊗ + ⊗ − ⊗ = ⊗ + − ⊗   (23) 

(where bars indicate averages over time). In this way, the regression resembles a standard linear 
regression, with transformed data: 

( ) ( )1
* * * *ˆ X X X Yβ

−
′ ′=          (24) 

Step 2. Estimate A and B conditional on β  and λ  (Maximizing ( ), ,L A B λ β ) 

To simplify the following expressions, we denote ( )ˆe H Y X β= − , which can be interpreted 

as the transformed residuals, or more strictly, the spatial-autocorrelated transformed residuals. 
Then the last part in Equation (21) (conditional on both β  and λ ) is simply 

( )1
2

1
2 Ne B M I e−′− ⊗ ⊗  . This term is actually a scalar that equals its trace, so: 

( ) ( )( )1 1
2 2N Ne B M I e tr e B M I e− −′ ′⊗ ⊗ = ⊗ ⊗       (25) 
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Based on properties of direct product, the above expression can be further manipulated to 

( ) ( ) ( )( )1
2 2G N NT G Ntr e I M I B I I M I e−′′ ⊗ ⊗ ⋅ ⊗ ⋅ ⊗ ⊗      (26) 

This ( )2G NI M I e⊗ ⊗  can be denoted as e . As previously discussed, 2 NM I⊗  denotes an 

observation’s deviation from its average value over time for each equation. Thus, this e  is 
simply the transformed residual’s individual deviation from its time mean. Thus, Equation (25) 
can be further simplified as  

( ) ( )( ) ( )( )1 1 1
2 n NT NTe B M I e tr e B I e tr B I e e− − −′ ′ ′⊗ ⊗ = ⋅ ⊗ ⋅ = ⊗ ⋅    (27) 

Using Π  (of dimension GNT GNT× ) to denote the matrix e e′ , or the variance-covariance 
matrix of the demeaned transformed error terms, Equation (25) can be further simplified as 

( ) ( )( ) ( )1 1 1
2 n NTe B M I e tr B I tr B− − −′ ⊗ ⊗ = ⊗ ⋅Π = ⋅Θ      (28) 

where Θ is a G G×  matrix. Each element of Θ  is the trace of a NT NT× sub-block matrix in 
Π ’s corresponding position: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1, 1 1 1 1, 1 2 1 1,

1 2, 1 1 1 2, 1 2 1 2, 1 2

,, 1 1 2, 1 2

g NT h NT g NT h NT g NT hNT

g NT h NT g NT h NT g NT h NT
gh

gNT hNTgNT h NT gNT h NT

tr

− + − + − + − + − +

− + − + − + − + − + − +

− + + − +

⎛ ⎞⎡ ⎤Π Π Π
⎜ ⎟⎢ ⎥
⎜ ⎟Π Π Π⎢ ⎥

Θ = ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟Π Π Π⎣ ⎦⎝ ⎠

, for all ,g h  (29) 

Similarly, ( )( )1
1 ne B TA M I e−′ + ⊗ ⊗  can be simplified as ( )( )1tr B TA −+ ⋅Θ  

where Θ also is a G G×  matrix with each element being the trace of the corresponding sub-
block matrix of Π , which comes from the transformed residuals’ individual mean (over time). 
Thus Equation (21) can be finally expressed as 

( ) ( )( ) ( )1 11 1 1ln ln ln
2 2 2 2g

g

N TNL B TA B T H tr B TA tr B− −−
= − + − + − + ⋅Θ − ⋅Θ∑

 
(30) 

which gives one immediate optimal solutions for A and B: 

( ) ( ) ( )1 1 1

2 2
L NT TB TA B TA B TA
A

− − −∂
= − + + + Θ +

∂
     (31) 

( ) ( ) ( ) ( )1 1 11 1 11 1 1
2 2 2 2

N TL N B TA B B TA B TA B B
B

− − −− − −−∂
= − + − + + Θ + + Θ

∂
  (32) 

resulting in the optimal set: 
1

( 1)
B

N T
= Θ

−
          (33) 

1 1
( 1)

A
NT NT T

= Θ− Θ
−

         (34) 

By iterating steps 1 and 2, the optimal values for A, B and β  can be obtained conditional on 
H. 

Step 3. Estimate λ  conditional on A, B and β  (Maximizing ( ), ,L A Bλ β ) 
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The optimized , ,A B β  from the first two steps then are substituted into the log-likelihood 
function, and the only parameters left to be obtained are , 1,2,...,g g Gλ = . The optimal gλ  cannot 
be derived analytically and can be found only by using a nonlinear optimization tool (such as 
Matlab and GAUSS). One can iteratively maximize equation (21) via  ( ), ,L A Bλ β  and 

( ), , ,L A Bβ λ  until convergence, in order to obtain the maximum unconditional likelihood. 
 
Covariance of Estimates 

In order to obtain (asymptotic) estimates of the variance-covariance matrix for all parameters 
of interest, one can construct an information matrix. This can be used to conduct various 
hypothesis tests on parameters in addition to estimate uncertainty in estimations. As Anselin 
(1988) notes, the information matrix for the maximum likelihood estimators can be expressed as 

1 11
2ij

i j

tr
θ θ

− −⎡ ⎤⎛ ⎞⎛ ⎞∂Ω ∂Ω
Ψ = Ω⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

        (35) 

where iθ  stands for the thi  parameter in the estimation. In this model, the information matrix is 
block diagonal between the elements of β  and all other parameters. The part for β  is the usual 

1X X−′Ω . The elements of the information matrix for λ , A and B (which are composed of σ ’s) 
need to be derived with some mathematical manipulations. Due to the space limitations, only the 
final results are shown here: 

( ) ( ) ( ) ( ) ( ) ( )2 1 1, 1gg gg gg gg
g g g g gTtr D tr E B TA E B TA T E B E B tr D Dλ λ − −⎡ ⎤ ′Ψ = + + + + − ⋅⎣ ⎦   (36) 

( ) ( ) ( ) ( ) ( )1 1, 1gh gh gh gh
g h g htr E B TA E B TA T E B E B tr D Dλ λ − −⎡ ⎤ ′Ψ = + + + − ⋅⎣ ⎦ , for all g h≠   (37) 

( ) ( ) ( )1, gg mn
g amn gT tr E B TA E tr Dλ σ −⎡ ⎤Ψ = ⋅ + ⋅⎣ ⎦       (38) 

( ) ( ) ( )( ) ( )1 1, 1gg mm
g emm gtr E B TA T B E tr Dλ σ − −⎡ ⎤Ψ = + + − ⋅ ⋅

⎣ ⎦
     (39) 

( ) ( ) ( )
2

1 1,
2

gh mn
agh amn

NT tr B TA E B TA Eσ σ − −⎡ ⎤Ψ = ⋅ + +⎣ ⎦      (40) 

( ) ( ) ( )1 1,
2

gh mm
agh emm

NT tr B TA E B TA Eσ σ − −⎡ ⎤Ψ = ⋅ + +⎣ ⎦      (41) 

( ) ( ) ( ) ( )1 1 1 1, 1
2

mm nn mm nn
emm enn

N tr B TA E B TA E T B E B Eσ σ − − − −⎡ ⎤Ψ = ⋅ + + + −⎣ ⎦   (42) 

where 1
g g gD W H −=  and ghE  is a G G×  matrix with its ( ),g h  and ( ),h g  elements equal to one 

and zeros elsewhere, and  g, h, m and n index equations 1 through G. 
 
DATA DESCRIPTION 

The data used for this study come from a transportation survey conducted in China, over a 
four-year period (1999 - 2002) for 491 cities. However, only 169 cities have valid data for all 
four years. Therefore, this study uses only these 169 cities as its sample data. Among these 169 
observations, there are 9 provincial capitals, 62 big cities, 75 medium cities and 23 small cities. It 
should be noted that here the “big” or “small” are not indicators of city sizes cities, but simply 
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translations of their administrative status.2  These administrative levels exhibit a strong 
correlation with each city’s degree of urbanization, total GDP and industrial composition. In 
other words, small cities may have a population and area larger than those of provincial capitals; 
however, they normally contain more rural and suburban lands. Controlling for these 
administrative levels may compensate for the lack of several socio-economic factors. Other 
factors controlled in the model include average income, population and roadway densities, yearly 
investment in transportation per capita, average vehicle ownership and vehicle type proportions 
(such as car versus light duty truck fractions).  

Summary statistics for all four years’ data are shown in Table 1. As can be seen, the data 
exhibit great variability. In addition, Figure 1 shows the locations of the cities, together with their 
total populations.  

To ensure that a random-effects spatial SUR model is suitable and necessary for this sample 
data, a preliminary data check was carried out: For each year and each severity level, an OLS 
model was estimated and the regression errors analyzed. The error correlations existing between 
equations and across space are shown in Figure 2. The values for Moran’s I (Cliff and Ord, 1972) 
are calculated based on the weight matrix described in the next section. These statistics suggest 
that there are potential correlations across equations and that the error terms of non-severe crash 
rates spatially cluster. Moreover, Figure 2 shows strong temporal correlations of the regression 
errors. All these features indicate that a spatial SUR model for these panel data is quite 
meaningful. 

It should be mentioned that crash data everywhere suffer from underreporting issues, 
particularly for non-severe crashes (see, e.g., Blincoe et al. 2002). This may be especially severe 
in China, and rates of reporting may differ across police departments and thus cities. According 
to China’s national standards (MPS, 1991), severe crashes are those in which there is at least one 
fatality, or three incapacitating injuries, or property damage of at least (approx.) $4,000 U.S. 
dollars. However, the number of severe crashes and the number of fatalities in the data set are 
almost equal, though crashes with two or more deaths are far less likely than those with one 
death (so one would expect far fewer deaths than severe crashes). Apparently, the “severe” 
crashes in the dataset are very severe. Vehicle insurance was not mandatory during the survey 
period (though it is now); so reporting may have been less common for that reason. 
Unfortunately, there is no reliable data source for estimating a precise underreporting rate in this 
dataset. (Blincoe et al. (2002) suggest that underreporting rates range from 48% for property-
damage-only crashes to 0% for fatal crashes in the U.S.) 

In addition to underreporting issues, variable definitions can differ from those in use 
elsewhere. For example, vans are classified as mini-buses or buses in China, rather than as light-
duty vehicles, or LDTs (as in the United States). In this dataset, LDTs are almost exclusively 
pickup trucks. The definition of motorcycles includes mopeds, and in some sampled cities, 
almost all “motorcycles” are actually mopeds. Additionally, the definition of “investment on 
transportation infrastructure construction” is not standardized across cases. Some cities include 
investment on traffic signals while others do not. This also obscures the definition of “investment 
on traffic management” because any non-construction investment in transportation is defined as 
an investment in transportation management. The standard definition of “arterial roads” is almost 
the same as the American definition, but a preliminary data check shows that most sampled cities 

                                                 
2 A more formal translation is as follows:  1) Provincial capitals are capitals of autonomous regions and 
municipalities directly under the Central Government; 2) Big cities are those specifically designated in the State 
Plan, 3) Medium cities: are important at the regional level, and 4) Small cities are important at the county-level. 
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also count expressways and highways as arterial roads. Finally, average vehicle ownership is not 
collected from household census data, but from registered vehicle lists, which include all 
commercial and public transit vehicles. To the extent that some vehicles are not registered, 
average vehicle ownership values may be biased low. 

 
RESULTS  

In spatial econometrics, weight matrix elements gW  generally are monotonically decreasing 
functions of distance. To obtain the weight matrix that best fits the model, the first step of model 
estimation sought a proper function. Twelve functions, 4J

ijd −  (J=1, 2, …, 12), were tested, where 

ijd  is the Euclidean distance. The resulting weight matrices were standardized (so that each 
row’s values sum to one). Figure 3 shows log-likelihood values (i.e., Equation [16] plus constant 
terms) of the random-effects spatial SUR model resulting from these different weight-matrix 
functions. The function 3 4

ijd −  offers the maximum log-likelihood value and thus was selected.  
Then, four models, ranging from a simple, but restrictive case to the most general case, were 

estimated and compared. The first model is an OLS model, implying that no correlations exist 
temporally or spatially, or across equations. The second model only considers temporal 
correlations by using a standard random-effects model (Greene, 2002). The third recognizes both 
temporal and cross-equation correlations but ignores spatial autocorrelation. The fourth allows 
both temporal and spatial correlations, as well as cross-equation correlation (across the two 
severity rates). 

All four models were estimated using code programmed in Matlab. Their results are shown 
in Table 2. In this example, recognizing temporal correlations (model 2, for panel effects) most 
improves the model likelihood. This is followed by model 3’s permission of correlations across 
equations. The recognition of spatial autocorrelation (model 4) also brings statistically significant 
improvement: the associated likelihood ratio (LR) test statistic is -2(-277.461+268.171) =18.58, 
which exceeds the 95% critical value (of 5.99).  

The absolute value of the log-likelihood ratio index (LRI) is not always meaningful for 
continuous models because there is a chance that the log-likelihood value is positive. However, 
because it provides a relation to a constants-only model, it is used here to compare the four 
models’ performance. (Alternatively, readers can derive AIC based on the reported log-
likelihood values.) Based on these LRI values, an OLS model is no better than a constants-only 
model, and the specification improves as more correlation patterns are allowed. Model 4 offers 
the greatest improvement from a constants-only model (and the best goodness of fit among these 
four models, as expected). In terms of parameter estimates, the OLS results generally fall near 
the other models’ estimates.  However, some OLS parameter estimates do differ quite a lot from 
those in the fourth, preferred model’s results.  The OLS-estimated coefficient for average vehicle 
ownership, for example, is more than double the final model’s value. For several statistically 
insignificant variables, such as income for non-severe crash rates, the OLS model’s estimate 
carries a sign opposed to that in the other three models. While not dramatic, the differences 
between models 2 through 4 are noticeable, especially the changes in t-statistics. Depending on 
the significance level needed for model selection, incorporation of spatial autocorrelation may 
lead to different conclusions regarding the effects of certain variables.  

In considering the preferred model (model 4), the severe crash rate error term does not offer 
evidence of spatial correlation at the 90% level. However, non-severe crash rates exhibit 
statistically and practically positive correlations over space, with a coefficient (lambda) of 0.588. 
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This confirms the preliminary data check undertaken using Moran’s I statistics, as shown in 
Figure 2. 

It also can be observed that most explanatory variables are not statistically significant in the 
final model’s estimates. This may result from the aggregate data, which obscures site-specific 
information, yielding greater uncertainty. Thus, more of a dependent variable’s variation is 
explained by errors, or latent variables. Nevertheless, several factors do appear to have 
significant effects on crash rates:  

Both crash rates are estimated to fall with population density, perhaps as travel distances fall 
(due to congestion and shorter trip lengths). However, this variable’s effects are not estimated to 
be practically significant: ceteris paribus, every 14,000 more persons (approximately one 
standard deviation) per square kilometer (a 96% increase in average current densities) is 
associated with severe and non-severe crash rate reductions of just 0.07 and 0.24 (21% and 14% 
of current values), respectively  

Investment in transportation infrastructure construction has a statistically significant effect on 
severe crash rates, with a negative coefficient of  -6.3E-4. When evaluated at their means, the 
elasticity of investment in transportation infrastructure is only -0.078. This means that every $10 
more in annual spending per capita (about 25% more of the current investment value and 
accounting for 1.6% of the sample’s average per-capital income) is expected to result in 0.0063 
fewer severe crashes each year, for every 1,000 persons, even though more infrastructure may 
mean greater car ownership and VMT. This reduction is about 1.9% of the current (severe) crash 
rates. Its effect on non-severe crash rates is estimated to be positive, but not statistically 
significant. Therefore, if the average cost of a severe crash were to be valued at $1.6 million or 
more, increasing China’s transportation investment may be expected to have net-positive safety 
effects. However, at present, the monetary value of life in China is felt to be much lower than 
$1.6 million (Jin, 1999). Nevertheless, many feel that there exist other, economic benefits of 
transportation investment (e.g., Kim et al., 2004), which could tip the balance in favor of greater 
investment. 

A city’s reported percentage of arterial roads has a strong effect on severe crash rates. If a 
city’s fraction of arterial roadways were to increase by 10%, average severe crash rates also are 
expected to rise by about 10%: from the current 0.336 to 0.367 (per 1,000 persons per year). This 
suggests that, in order to improve safety in this sample of Chinese cities, it may be best to 
construct more local streets and collectors, rather than higher-speed arterial roads. (Of course, the 
effect of this same variable may be quite different in studies of U.S. or other cities.) 

Average vehicle ownership also is predicted to have significant positive effects on crash rates 
of both severity levels, as one would expect (since crash rates are per capita, rather than per 
VMT).  Everything else constant, if average vehicle ownership were to increase by just over 500 
percent, from the current 0.17 to 0.8 (the U.S. average), severe crash rates are predicted to 
increase by 0.154, or 50%. And non-severe crash rates are expected to increase by 1.145 (per 
1,000 persons), or almost 70% of their current average3. These results suggest that motorization 
has a strong, but far from one-to-one impact on the traffic safety situation and residents’ 
exposure to crash risk. Since China is now experiencing a rapid motorization process, through 
vehicle purchase and ownership, traffic safety agencies would do well to anticipate the best ways 
of avoiding serious death tolls. 

 
                                                 
3 Of course, a 500% increase in vehicle ownership is well outside the sample data range of values, so the model may 
not be appropriate for such extrapolation.  This case is simply offered as an example. 
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CONCLUSIONS 
This study specifies a spatial SUR model for analyzing panel data by incorporating random 

effects and spatial patterns in model error terms. A three-step estimation method, a mixture of 
FGLS and MLE methods, was used to estimate crash rates across Chinese cities. This model 
performs significantly better than models that do not recognize correlations across observations 
and across equations.  

The study also reveals the effects of several influential factors. For example, it is estimated 
that population density decreases both types of crash rates and that investment decreases severe 
crash rates, but neither effects is practically significant. A higher fraction of arterial roads is 
associated with higher severe crash rates. Average vehicle ownership has a positive impact on 
crash rates (per capita), as one would expect, suggesting that the motorization of China may 
significantly increase traffic losses per capita in this rapidly developing country. Valuable model 
extensions are likely to include a non-linear specification, incorporation of spatial lag terms, and 
an ability to handle unbalanced panel data.  

The methodology contributes to multivariate modeling when temporal and spatial effects 
exist. It is highly applicable to transportation issues in general, particularly those involving 
regional land use, travel, and demographics. Moreover, the empirical results for crash rates serve 
as a valuable reference for researchers interested in transportation issues in countries 
experiencing a rapid motorization process.  
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Table 1. Summary Statistics 
 

 
 
 
 
 
 
 

Variable Description Min Max Mean SD 
SEV Severe crash rate (per thousand persons per year) 0 6.444 0.3357 0.4961

NSEV Non-severe crash rate (per thousand persons per year) 0 9.504 1.729 1.783
CAP Indicator for provincial capital 0 1 0.0533 0.2247
BIG Indicator for big city 0 1 0.3669 0.4823
MED Indicator for medium city 0 1 0.4438 0.4972

SMALL 
Indicator for small city (used as base condition for 
city type) 0 1 0.1361 0.3431

POPDENS 
Population density (in thousands of persons per 
square kilometer) 2.75E-01 123.0 14.74 14.01

ROADDENS 
Roadway density = total centerline length of roads/ 
developed area (km/km2) 0.0967 16.77 4.956 3.083

ART_FRXN Arterial roads fraction versus total road length 0.0464 0.858 0.3944 0.1796
CAR Fraction of registered vehicles that are cars 4.69E-04 0.557 0.1370 0.1122
BUS Fraction of  registered vehicles that are buses 2.91E-04 0.249 0.0254 0.0273
LDT Fraction of  registered vehicles that are LDTs 0 0.348 0.0672 0.0589
HDT Fraction of  registered vehicles that are HDTs 0 0.380 0.0674 0.0532

MOTOR 
Fraction of  registered vehicles that are motorcycles 
(including mopeds) 1.12E-01 0.976 0.6278 0.1893

OTHER 

Fraction of  other types of registered motor vehicles 
(most likely to be farm vehicles, and used held as base 
vehicle type) 0 0.550 0.0751 0.0861

VEHOWN Average vehicle ownership (veh/capita) 6.45E-03 0.949 0.1729 0.1513

INCOME 
Annual personal income, in thousands of dollars 
($1000) 0.0975 8.197 0.7176 0.5804

INFINV 
Yearly investment in transportation infrastructure 
construction (dollars per capita) 0 539.7 41.50 54.53

MGMINV 
Yearly investment in transportation management 
(dollars per capita) 0 40.34 1.631 3.073
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Table 2. Estimation Results for Different Models
MODEL1 

OLS 
MODEL2 

Panel-NonSUR-Nonspatial 
MODEL3 

Panel-SUR-Nonspatial 
MODEL4 

Panel-SUR-Spatial 
Severe Non-severe Severe Non-severe Severe Non-severe Severe Non-severe  

Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. 
CONS 2.30E-02 0.034 0.346 0.345 0.101 0.410 0.619 0.625 0.126 0.515 0.751 0.759 0.125 0.503 0.813 0.797 
CAP 7.74E-03 0.016 0.651 1.311 4.69E-03 0.024 0.707 1.063 6.80E-03 0.034 0.707 1.059 -9.08E-03 -0.046 0.627 0.948 
BIG 6.99E-02 0.245 0.218 0.729 6.80E-02 0.574 0.207 0.521 7.12E-02 0.602 0.210 0.526 6.43E-02 0.546 0.183 0.462 
MED 0.105 0.384 0.355 1.277 0.105 0.916 0.370 0.977 0.106 0.928 0.372 0.977 9.84E-02 0.866 0.341 0.901 

POPDENS -4.50E-03 -0.645 -9.47E-03 -1.305 -5.00E-03 -1.712 -1.66E-02 -1.703 -4.89E-03 -1.682 -1.70E-02 -1.744 -4.98E-03 -1.720 -1.67E-02 -1.723 
ROADDENS 9.99E-03 0.296 2.49E-02 0.717 1.13E-02 0.798 5.41E-02 1.150 1.07E-02 0.762 5.49E-02 1.163 9.59E-03 0.685 4.79E-02 1.024 
ART_FRXN 0.328 0.609 0.212 0.388 0.329 1.455 0.284 0.379 0.326 1.447 0.281 0.374 0.306 1.363 0.202 0.270 

CAR 0.159 0.188 0.445 0.338 0.130 0.452 0.728 0.579 0.096 0.336 0.646 0.514 0.117 0.406 0.560 0.445 
BUS 0.303 0.186 -1.853 -0.558 0.374 0.704 1.381 0.555 0.279 0.528 1.331 0.536 0.306 0.576 0.920 0.372 
LDT 6.58E-02 0.060 -1.259 -0.689 0.107 0.292 -0.669 -0.409 6.89E-02 0.189 -0.671 -0.412 6.15E-02 0.169 -1.007 -0.625 
HDT 0.349 0.299 2.824 1.330 2.17E-02 0.057 -0.563 -0.319 1.79E-02 0.047 -0.972 -0.552 5.77E-02 0.151 -0.428 -0.247 

MOTOR 7.25E-02 0.123 0.157 0.158 2.25E-02 0.115 0.615 0.692 -1.18E-02 -0.061 0.506 0.571 -4.20E-03 -0.022 0.393 0.449 
VEHOWN 0.284 0.790 4.135 6.423 0.153 1.299 1.662 3.052 0.190 1.612 1.552 2.859 0.245 1.972 1.817 3.026 
INCOME -4.59E-03 -0.067 0.102 0.701 -1.90E-03 -0.087 -6.06E-02 -0.579 2.07E-05 0.001 -5.48E-02 -0.524 1.37E-03 0.063 -5.50E-02 -0.529 
INFINV -5.63E-04 -0.855 7.84E-04 0.504 -6.67E-04 -3.205 -1.82E-04 -0.179 -6.78E-04 -3.264 -3.31E-04 -0.326 -6.31E-04 -3.017 7.60E-05 0.075 

MGMINV 1.44E-03 0.158 2.98E-03 0.118 1.97E-03 0.691 1.27E-02 0.897 1.79E-03 0.627 1.31E-02 0.924 2.35E-03 0.822 1.74E-02 1.246 
Log-likelihood -1007.821 -363.420 -277.461 -268.171 

LRI 0.084 0.670 0.748 0.756 
Lamda 0 --- 0 --- 0 --- 0 --- 0 --- 0 --- 0.239 1.173 0.588 4.697 
Var (a) 0 0 0.216 2.269 0.214 2.288 0.212 2.249 
Cov(a) 0 0 0.318 0.304 
Var(e) 0.230 2.611 0.022 0.563 0.022 0.562 0.022 0.537 
Cov(e) 0 0 0.053 0.052 
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Figure 1. Locations and populations of sampled cities.  
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Figure 2. Regression errors with ordinary least squares (OLS) models. 

Year Severity 
Corr. Severe Crash Rates Non-Severe Crash Rates 

 
Moran’s I Stat. 

Moran: -3.43E-03 
Z-value: 0.315 

 

Moran’s I Stat. 

Moran: 7.47E-03 
Z-value: 1.676 

 

1999 0.398 Legend Legend

Moran’s I Stat. 

Moran: 5.66E-04 
Z-value: 0.814 

 

Moran’s I Stat. 

Moran: 4.34E-03 
Z-value: 1.286 

 

2000 0.346 
Legend Legend

Moran’s I Stat. 

Moran: -4.08E-03 
Z-value: 0.234 

 

Moran’s I Stat. 

Moran: -7.55E-05 
Z-value: 0.734 

 

2001 0.507 
Legend Legend

Moran’s I Stat. 

Moran: -5.76E-03 
Z-value: 0.024 

 

Moran’s I Stat. 

Moran: 5.25E-03 
Z-value: 1.398 

 

2002 0.330 
Legend Legend
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Figure 3. Log-likelihood values with different weight matrix functions. 
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