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APPLICATION OF THE DYNAMIC SPATIAL ORDERED PROBIT MODEL: 
PATTERNS OF LAND DEVELOPMENT CHANGE IN AUSTIN, TEXAS 

 

ABSTRACT 

The evolution of land development in urban area has been of great interest to policy makers and 
planners. Due to the complexity of the land development process, no existing studies is 
considered sophisticated enough. This research uses Dynamic Spatial Ordered Probit (DSOP) 
model to analyze Austin’s land use intensity patterns over a 4-point panel. The observational 
units are 300m×300m grid cells derived from satellite images. The sample contains 2,771 such 
grid cells, spread among 57 zip code regions. The estimation suggests that increases in travel 
times to CBD substantially reduce land development intensity. More important, temporal and 
spatial autocorrelation effects are significantly positive, showing the superiority of the DSOP 
model. 

KEY WORDS: spatial autocorrelation, temporal dependency, ordered discrete response data, 
land development  

1. BACKGROUND 

In studies of social behaviors and human activities, many choices or attributes (e.g., religious 
beliefs, presidential election outcomes, and levels of crime) involve discrete responses in a 
temporal and spatial context. It is especially true for analysis of dynamics in land development 
intensity levels under the influence of geology, demographics, transportation conditions and 
other, socio-economic factors: land owners make development decisions based on their 
knowledge and prediction of neighboring land development (See, e.g., Waddell, 2002, and 
Candau et al., 2000). As a result, land development is often clustered. For example, one can 
expect that a parcel of land is more likely to be intensely developed if its neighborhood offers 
intensely developed land. Wang and Kockelman (2008) have developed a dynamic spatial 
ordered probit (DSOP) model aiming to analyzing the temporal and spatial relationships in 
ordered categorical data. This paper demonstrates how this model can be applied to the analysis 
of land development change. 

The analysis relies on Austin, Texas data sets. Thanks to rapid population growth and economic 
expansion, the area has experienced some dramatic changes during the last two decades. As will 
be shown in more detail in the following sections, during this time period, the region’s land 
development has both sprawled over space and escalated in intensity. One direct result of this 
development is congestion. The Texas Transportation Institute’s urban mobility report (Schrank 
and Lomax, 2005) indicates that Austin ranks number 1 among all 30 medium-sized U.S. cities, 
in travel delay and wasted fuel per capita.  

In this study, land development intensity is defined based on how much land is covered by 
manmade materials, which are characterized by higher reflectance levels and other visual clues 
provided via satellite images. These “intensity levels” are indexed as integers, and their order is 
key. This application, in addition to disclosing the spatial and temporal patterns of urban land 
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development change, illustrates the potential broad application of the dynamic spatial ordered 
probit model.  

For urban areas, the evolution of land development intensity is a topic of interest to traffic 
demand modelers, policy makers, and land developers. Such changes influence regional 
economies and environmental conditions. For non-urban areas, analyzing the dynamics of land 
development intensity is also important: For example, undeveloped land around the world, 
including some precious lands like the Amazon rainforest, are being converted for agriculture 
and other human uses. Such changes can significantly contribute to climate change, 
desertification, resource depletion and loss of habitats and species. 

Many studies have been conducted on the land change patterns. However, none of these models 
recognizes spatial or temporal autocorrelation in a statistically rigorous manner. In fact, many 
studies that recognize spatial effects have tried to either construct and control for a variety of 
neighborhood attributes or remove all spatial correlation through strategic sampling (to provide a 
dispersed sample, with minimal interactions). Some also attempt to recognize temporal 
dependencies by controlling for variables from previous periods. For example, Nelson and 
Hellerstein (1997) sampled selectively and created exogenous variables based on neighboring 
units’ land cover data in order to study the deforestation effects of roadways via a multinomial 
logit model. Wear and Bolstad (1998) controlled for prior land uses in the neighborhood of each 
data cell in their study of southern Appalachian landscapes, which involved binary response data. 
Munroe et al. (2001) attempted to filter out spatial correlations through sampling and then 
removed the residual spatial dependence through a “trend surface” approach (Cliff and Ord, 
1981). As with all other existing models dealing with discrete response data in a temporal and/or 
spatial context, the applicability of these methods is still limited because of the neglect of spatial 
effects (even intentionally) and data dynamics.  

The following sections first introduce the specification and estimation of the DSOP model, then 
describes the datasets used in this study. The effects of different factors on land development 
intensity are discussed based on the estimation results. The estimates also are applied to predict 
land development intensity levels in the study area.  

2. MODEL SPECIFICATION AND ESTIMATION 

Wang (2007) and Wang and Kockelman (2008) discuss the DSOP’s model specification and 
estimation in detail. This following discussion summarizes DSOP methodology and highlights 
key findings. In short, a dynamic ordered probit model with spatial and temporal autocorrelation 
can be described by extending existing specifications of spatial probit models, static and dynamic, 
ordered and categorical. The most closely related works are those by Wang (2007), Wang and 
Kockelman (2008), Smith and LeSage (2004) and Girard and Parent (2001).  

The model specification is as follows: 

1ikt ikt ikt it iktU Uλ θ ε−
′= + + +X β , 1,...,t T=       (1) 
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where i  indexes regions ( 1,...,i M= ), k  indexes individuals inside each region, or 
neighborhood (i.e., 1,..., ik n= ), and t indexes time periods. In other words, there are M  
regions/neighborhoods, each containing in  observations; so that the total number of observations 

is 
1

M

i
i

n N
=

=∑ . In addition, λ  is the temporal autocorrelation coefficient to be estimated. Each 

individual is observed T  times, so the total number of observations is NT. Uikt is a latent 
(unobserved) response variable for individual k from region i at period t. Xikt is a 1Q×  vector of 
explanatory variables, and β is the set of corresponding parameters. θit captures all common yet 
random components for observations within region i in period t, while remaining random 
information is captured by individual effect εikt which is heteroscedastic with variance υi . 

This specification allows the model to reflect spatial autocorrelation across regions while 
recognizing intra-regional clustering.  A spatial autoregressive process can be formulated here, as 
follows: 

 1

M

i ij j i
j

w uθ ρ θ
=

= +∑ , 1,...,i M=        (2) 

where weight ijw reflects proximity, and can be derived based on contiguity and/or distance 
between regions. The magnitude of overall neighborhood influence is reflected by ρt, also called 
the spatial coefficient. ui aims to capture any regional effects that are not spatially distributed, 
and is assumed to be iid normally distributed, with zero mean and common variance σ2. The 
vector of regional effects will be a function of the weight matrix W , which is composed of 
purely exogenous elements wij . 

The use of such regional effects to capture certain spatial dependencies also enhances 
computational efficiency: normally, the number of regions is much lower than the total number 
of observations, allowing use of a weight matrix W of relatively low rank. Thanks to a lower 
dimension, the inversion of W and calculation of its eigenvalues are much less memory-intensive. 
Of course, both of these computations are necessary for parameter estimation. Furthermore, the 
specifications shown here allow the special case of every individual serving as a separate region, 
where 1in = , i M∀ ∈  (and M N= ). In this context, all individuals can be spatially auto-
correlated without imposing regional boundaries. While computational burdens will increase, 
this approach certainly is feasible, assuming a reasonable sample size. 

Equation (1)’s recursive time-space form implies that current response values depend on 
previous period values, along with various contemporaneous factors (Anselin, 1999). 
Furthermore, after controlling for all such temporally lagged and contemporaneous variables, the 
residuals remain spatially autocorrelated. The context of land development intensity levels fits 
this specification: land development depends on past and present conditions, including 
owner/developer experiences of local and regional congestion and population, as well as nearby 
development and variables like school access.   

For the case of an ordered probit specification, the observed response variable, yikt, is as follows: 
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,S, s Usy siktsikt …=<<= − 1for    if   1 γγ       (3) 

That is, the observed variable is a censored form of the latent variable, and its possible outcomes 
are integers ranging from 1 to S . The latent variable Uikt is allowed to vary between unknown 
boundaries 0 1 1S Sγ γ γ γ−< < < < , where 0γ  is −∞  and Sγ  is +∞ . If constants are to be 
included in the explanatory variables, 1γ  also is normalized to equal zero. The probabilities for 
these S outcomes are as follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 0

2 1

1
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i i i i

i i i i

i i S i S i
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γ γ

γ γ −

′ ′= = Φ − −Φ −

′ ′= = Φ − −Φ −

′ ′= = Φ − −Φ −

X X X

X X X

X X X

β β

β β

β β

     (4) 

where ( )Φ •  is the Cumulative Distribution Function (CDF) for standard normal distribution. 

The resulting likelihood function is as follows: 

 
( ) ( ) ( )1

11 1 1

Pr ,
inT M S

ikt s ikt s
st i k

y s Uδ δ γ γ−
== = =

= = ⋅ < <∑∏∏∏y U γ     (5) 

where y, U and γ are the vector forms of yikt, Uikt and γs. ( )Aδ  is an indicator function equaling 1 
when event A  is true (and 0 otherwise).  

It should be noted that this model specification pivots off of existing functional forms, but is not 
a simple extension of current models. The simultaneous consideration of multiple discrete 
responses, temporal dependencies and spatial autocorrelation in the dataset present a significant 
innovation.  

Allowance of all these features should make the model more statistically reliable in mimicking 
and forecasting the temporal and spatial evolution of ordered response variables, like land use 
intensity, tree cover, and home safety ratings. In addition, modifications of this model to allow 
for irregularly spaced panel data sets may be very helpful for practice, along with new methods 
for allowing non-sparse weight matrices and large sample sizes. Another important opportunity 
for exploration is prediction out of sample, which is rarely pursued in academic work but often 
critical in practice. 

Estimation of the dynamic spatial ordered probit model is achieved in a Bayesian framework 
where each parameter has prior and posterior distributions. The posterior distributions are 
consistently derived using MCMC methods (Gelfand and Smith 1990), by sampling sequentially 
from the complete set of conditional distributions.  

As Wang and Kockelman (2008) describe, most of the parameters follow standard distributions 
and can be conveniently generated using routines built in commercial mathematical packages 
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(such as Matlab and Gauss). The spatial coefficient ρ , however, follows a non-standard 
posterior distribution and has to be generated using numerical methods. The threshold parameter 
γ  follows a multidimensional truncated normal distribution and the truncations co-vary. 
Therefore, the marginal distribution of each element in γ  also is expected to be non-standard.  

3. DATA DESCRIPTION 
The data used for land development dynamics comes from multiple data sources, including 
satellite images, the Census of Population, City of Austin school district and employment data, 
as well as transportation and geographic data from the Capital Area Council of Governments 
(CAPCOG). The land cover information serves as the dependent variable, and all others serve as 
explanatory variables. These include total neighborhood population, number of workers living in 
the neighborhood, average household income and number of schools in the neighborhood, travel 
time to the nearest major highway (including U.S. Highway 290, U.S. Highway 79, U.S. 
Highway 183, State Highway 71, Interstate 35, Loop 1, and Loop 360, which did not change 
from 1983 to 2000), travel time to the region’s CBD, travel time to major (Austin’s 15 biggest) 
employers, travel time to the nearest airfield, average ground slope, and average elevation (of 
each 300m×300m grid cell). A set of rather standard routines were followed to integrate the 
various databases, as described in Wang (2007).  

An interesting and important part of the data processing involves definition of “regions” and 
selection of cell samples.  As discussed above, observations in the same region should share 
common latent features. In ecological and environmental studies, regional boundaries may 
derive from natural spatial partitions, such as rivers and mountain ranges, with observations in 
the same region sharing vegetation and micro climate. For human activities, boundaries are more 
likely to be administrative units, across which policies and practices can change, such as zoning 
and school administration.  

In Austin’s urban area, zoning is based on neighborhood planning areas (NPAs). Changes in 
zoning constraints often occur across these boundaries. However, information for many 
interesting variables is often organized based on zip codes. In order to be consistent with existing 
spatial units, study regions were based on 57 zip codes. These zip codes tend to align nicely with 
a single NPA, or the union of 2 to 4 NPAs. There are 57 of these, offering interesting regional 
variation while keeping computational burdens reasonable.  

After defining these regions, the next step was to select observations (grid cells) in each region. 
Of course, one can use all 29,946 300m grid cells as observations. However, there are good 
reasons for selecting only a subset of these. First, the “boundary” of a region may be somewhat 
ambiguous and the differences between regions may be slight. If all grid cells are used, cells that 
are located in two different regions yet lie in close proximity may be more similar than grid cells 
that are far away from each other yet belong to the same region. The second reason is 
computational: 29,946 grid cells create a very large pool of observations with difficulty in 
parameter estimation due to large-matrix inversion for spatial covariance components. A 10% 
sampling rate (∑ni = 2,995) is likely to return satisfactory estimation results with significantly 
reduced computation time and so was used here.  

In order to ensure that observations in the same region are more alike than those in other regions, 
samples were selected around regional (zip code area) centroids. In this way, observations in the 
same region are spatially clustered (all contiguous), and thus expected to be more similar to each 
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other than to observations in other regions. Second, in order represent the entire study area, 
samples should be distributed as evenly as possible across space. If an equal number of 300m 
cell observations is selected in each region, smaller regions will get more weight (than they 
“deserve”) in the sample. In order to spatially balance the selection, the number of observations 
in each region was set proportional to region area. Finally, 224 sampled cells were removed, 
because, in the case of very narrow zip codes, they extended into neighboring regions or fell 
along edges of the study area (so neighborhood information could not be obtained), while others 
exhibited unrealistic elevation and slope values (Caused by missing value in the CAPCOG 
dataset). A total of 2,771 observations (per year) resulted from this processing. These 
observations are distributed across the 57 regions (zip code areas), with the number of grid-cell 
observations per region ranging from 2 to 333.  

Table 1 summarizes definitions of all these variables, and Table 2 summarizes their statistics. 
Table 2’s statistics show trends that are expected:  development intensity levels, population, 
number of workers, and average household income have all increased over time. Average 
(uncongested) travel times to major facilities and employers have fallen, thanks to road system 
expansions in peripheral zones.  

Table 1 Data Description for Land Development Intensity Level Analysis 
Variable Description 
INTLV Development intensity level 

ELEVTN Average elevation of the 300m grid cell (km) 
SLOPE Average slope of the 300m grid cell (%) 

NSCHOOL Number of K-12 schools in the neighborhood  
POP Population (thousand) in the neighborhood  

WORKER Number of workers (thousand) living in the neighborhood  
INC Average household income (thousand dollars) in the neighborhood 

EMPTT Travel time to nearest major (top 15) employer (hours) 
CBDTT Travel time to CBD (hours) 
AIRTT Travel time to nearest airfield (hours) 
RDTT Travel time to nearest highway (hours) 
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Table 2 Summary Statistics for Land Development Intensity Analysis 
 Variable Minimum Maximum Mean Std. Deviation 

ELEVTN 0.136 0.390 0.251 0.061 
SLOPE 0.034 17.328 2.699 2.196 

Constant 
through 
Years NSCHOOL 0.000 7.000 1.208 1.377 

INTLV 0.000 3.000 0.826 0.774 
POP 0.225 37.531 4.632 7.298 

WORKER 0.121 19.997 2.408 3.918 
INC 17.330 88.941 45.368 15.109 

EMPTT 0.004 1.115 0.453 0.223 
CBDTT 0.000 0.358 0.154 0.070 
AIRTT 0.005 0.784 0.345 0.157 

1983 

RDTT 0.002 0.498 0.111 0.093 
INTLV 0.000 3.000 0.948 0.874 

POP 0.203 51.310 6.860 10.424 
WORKER 0.121 27.633 3.624 5.652 

INC 20.540 105.412 53.844 17.766 
EMPTT 0.004 0.733 0.298 0.149 
CBDTT 0.000 0.339 0.148 0.068 
AIRTT 0.004 0.630 0.259 0.120 

1991 

RDTT 0.002 0.430 0.092 0.082 
INTLV 0.000 3.000 1.300 0.827 

POP 0.389 64.873 8.007 12.615 
WORKER 0.211 35.220 4.240 6.900 

INC 23.332 119.738 61.077 20.341 
EMPTT 0.001 0.313 0.112 0.060 
CBDTT 0.000 0.308 0.142 0.065 
AIRTT 0.004 0.628 0.227 0.116 

1997 

RDTT 0.002 0.385 0.086 0.074 
INTLV 0.000 3.000 1.359 0.929 

POP 0.478 64.629 9.131 13.153 
WORKER 0.238 36.238 4.836 7.278 

INC 15.869 125.094 65.024 22.635 
EMPTT 0.001 0.182 0.070 0.037 
CBDTT 0.000 0.266 0.126 0.057 
AIRTT 0.005 0.437 0.154 0.070 

2000 

RDTT 0.002 0.251 0.054 0.044 
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4. MODEL ESTIMATION  

This section applies the DSOP model (see Wang and Kockelman [2008] for more discussion on 
the model specification and estimation techniques) to the land development intensity levels 
analysis. As noted in the section of “Model Specification and Estimation”, explanatory variables 
for both analyses include temporally lagged latent variables and various contemporaneous 
variables. The following sections discuss the model estimation and results. First, the number of 
burn-in samples is determined. Estimate means, standard deviations, posterior distributions, and 
their marginal effects are then calculated and discussed. The performance of DSOP model with 
this dataset is also compared to those with simpler models. Finally, model estimates are used to 
predict response variables’ values under hypothetical scenarios. The predictions can be 
visualized via a “most likely” result and an “uncertainty index.”  

Figure 1 shows several typical estimation traces (convergence patterns) for parameters in the 
development intensity model. These patterns are representative, and the traces of other parameter 
estimations are all similar to them. Rigorous proof of convergence is a complicated topic, so here 
“convergence” is based on the trace of variable estimates. If, after a certain number of iterations, 
parameter estimates stabilize, the estimation is assumed to have converged. Results of iterations 
before this turning point are omitted and all inferences are drawn based on the converged 
iterations.  

The model begins with diffuse priors and iterates 10,000 times. As observed in Figure 1, 
different parameters start “converging” after different numbers of runs. However, after 6000 
runs, all traces appear stable, indicating an overall model convergence. Hence, the first 6000 
runs were omitted (as a “burn-in” sample), and the model uses the next 4000 draws to estimate 
parameter means and standard deviations, as shown in Table 3.   
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(a) Trace of AIRTTβ AIRTT (b) Trace of λ  

(c) Trace of ρ  (d) Trace of 1γ  
Figure 1 Convergence Patterns of Development Intensity Level Estimation 

According to the results, neighborhood population and worker counts do not have statistically 
significant impacts on land development intensity levels. Average household income, by contrast, 
appears to generally boost such levels. Distances to major employers, Austin’s CBD, and the 
nearest airfield all have statistically and practically significant effects on land development: the 
farther the cells lie from these attractions, the less likely they are to develop intensely. 
Interestingly, Euclidean distance to nearest highway is estimated to have a negative marginal 
effect on intensity, implying that (in the study area) development is more likely to occur at 
locations far from major roads. Considering that distances to the CBD and major employers 
already have been controlled for, this result can be interpreted as such: after access to work and 
the region’s core are determined, developers tend to choose locations some distance away from 
the highway (and its noise, pollutants and safety issues). The result also suggests that locations 
with more neighborhood schools are more likely to be intensely developed while elevation is not 
a statistically influential factor, locations with steeper slopes are less attractive to land 
development.  
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Table 3 Estimation Results for Model of Land Development Intensity Levels 
Variable Mean Std. Dev. t-stat. 

POP -0.024 0.036 -0.668 
WORKER 0.089 0.067 1.327 

INC 0.019 0.002 9.143 
EMPTT -0.232 0.130 -1.778 
CBDTT -4.365 0.851 -5.126 
AIRTT -2.867 0.248 -11.550 
RDTT 2.309 0.385 6.001 

NSCHOOL 0.039 0.017 2.305 
ELEV -0.239 0.696 -0.343 
SLOPE -0.034 0.010 -3.394 

λ  0.561 0.019 30.005 
ρ  0.857 0.074 11.612 

2σ  0.871 0.222 3.931 
1γ  -0.834 0.011 -77.231 
2γ  2.235 0.031 71.393 
3γ  4.361 0.034 130.167 

 

Unlike slope coefficients in a standard linear model, beta values in a model involving latent 
response cannot be interpreted so directly.   Moreover, as Greene (2005) explains, parameter 
signs in a model of ordered categorical response only indicate changes in likelihood of the two 
extreme outcomes (y = 1 and 4), rather than shifts in all outcomes. Section 5.1 of this paper 
quantifies the marginal effects of all control variables. 

Another important estimation result is the practical and statistical significance of both the 
temporal autocorrelation coefficient (λ ) and the spatial autocorrelation coefficient ( ρ ). These 
suggest that prior-period information has a very important influence on the (current) latent 
variable’s value (mean λ =0.561) and that, even after controlling for various neighborhood 
characteristics, residuals remain strongly and positively correlated across space (mean ρ=0.857). 
These results support the notion that land development decisions depend heavily on neighboring 
conditions, and that spatial relationships should be reflected in model specification.  

As a further confirmation, the mean values of regional specific error ( iθ ) estimates (and their 
statistical significance) are shown in Figure 2. A clustering pattern (where similar values tend to 
co-locate, rather than lie randomly distributed across space) is clearly visible in this figure, so the 
spatial autocorrelation of these regional-specific error terms was tested using Moran’s I (Moran, 
1950), in ArcMap. It should be noted that the weight matrix used in ArcMap is based on the 
inverse of distance, not the contiguity approach used in this study. And, or course, 
methodologically, Moran’s I is quite different from a Bayesian approach. Therefore, any 
similarity with ρ  may be limited to signs and general statistical significance.  
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Statistically  
Significant  
(at a 0.05  
significance level) 

 

Mean of θ  

 
Figure 2 Distribution of Region-Specific Error Term Estimates (θ ) for Land Development 

Intensity Levels 

As expected, the Moran’s I test results in ArcMap indicate clustering (i.e., positive spatial 
autocorrelation) of the θ  values, across space. (Moran’s I value is very high: 0.56 with a Z score 
of 6.7.) 

Figure 3 shows the estimation results for variances of these individual specific errors ( iυ ).  
Except for downtown regions, where only a few grid cell observations exist per region, all 
variance estimates are statistically significant. “City edges” (i.e., areas between Austin’s central, 
highly developed area and the outer, less developed areas) tend to have larger variances because 
these are where new developments are most likely to occur.  
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Statistically  
Significant  
(at a 0.05  
significance level) 

 

 

Mean of iυ  

 
Figure 3 Distribution of the Variances of Individual Specific Error Term Estimates (υ ) for 

Land Development Intensity Levels 
Figure 4 shows the posterior distributions of all parameters, based on the final 4000 draws. As 
discussed previously, all exogenous control variables are specified to follow normal posterior 
distributions. λ  has a truncated normal distribution, ρ  has a non-standard distribution, and 2σ  
follows a Chi-square distribution. The posterior distributions of threshold parameters γ  are very 
interesting. As described in Wang and Kockelman (2008), they are shown to follow a normal 
distribution mixed with a multivariate uniform distribution. According to Figure 4’s graphs (n) 
through (p), the resulting distributions are multimodal. Additionally, the shapes of γ s present 
some similarity, suggesting that their values are co-dependent. This is to be expected: based on 
theγ  posterior distribution, it is clear that sγ ’s left threshold depends on 1sγ −  and its right 
threshold depends on 1sγ + . This dependency can also be explained intuitively: the gap between 

sγ  and 1sγ +  determines the probability of y s= . In order to maintain a generally constant gap, 
the values of sγ  and 1sγ +  must move together.  
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(a) Posterior Distribution of POPβ  (b) Posterior Distribution of WORKERβ  

(c) Posterior Distribution of INCβ  (d) Posterior Distribution of EMPTTβ  

(e) Posterior Distribution of CBDTTβ  (f) Posterior Distribution of AIRTTβ  
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(g) Posterior Distribution of RDTTβ  (h) Posterior Distribution of NSCHOOLβ  

(i) Posterior Distribution of ELEVXNβ  (j) Posterior Distribution of SLOPEβ  

(k) Posterior Distribution of λ  (l) Posterior Distribution of ρ  
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(m) Posterior Distribution of 2σ  (n) Posterior Distribution of 1γ  

(o) Posterior Distribution of 2γ  (p) Posterior Distribution of 3γ  
Figure 4 Posterior Distributions of Land Development Intensity Level Model Parameters 

 

Table 4 shows the correlation between parameters, underscoring the high dependency among γ 
values. One also finds that the population and worker variables are highly correlated, indicating a 
potential multi-collinearity problem. 
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Table 4 Correlation between Parameters 
 

POP 
WOR-
KER INC EMPTT CBDTT AIRTT RDTT 

NSCH- 
OOL ELEV SLOPE λ  ρ  2σ  1γ  2γ  3γ  

POP 1.000 -0.993 0.193 0.028 0.070 0.112 -0.130 -0.096 -0.061 -0.015 -0.084 -0.055 0.028 -0.008 -0.029 -0.020 
WORKER -0.993 1.000 -0.174 -0.009 -0.057 -0.114 0.126 0.091 0.043 0.017 0.043 0.039 -0.030 0.024 0.035 0.034 

INC 0.193 -0.174 1.000 0.146 -0.077 0.325 -0.078 0.034 -0.330 -0.114 -0.320 -0.040 0.115 0.014 -0.075 0.031 
EMPTT 0.028 -0.009 0.146 1.000 -0.068 -0.365 -0.137 -0.002 0.042 0.002 -0.050 -0.011 0.019 0.205 0.116 0.174 
CBDTT 0.070 -0.057 -0.077 -0.068 1.000 -0.155 -0.434 -0.040 -0.256 -0.026 0.191 -0.017 0.004 0.108 0.111 0.144 
AIRTT 0.112 -0.114 0.325 -0.365 -0.155 1.000 -0.288 0.032 -0.054 -0.117 0.070 -0.059 0.017 0.069 0.030 0.044 
RDTT -0.130 0.126 -0.078 -0.137 -0.434 -0.288 1.000 0.019 -0.019 0.066 -0.095 0.052 0.011 -0.173 -0.132 -0.168 

NSCHOOL -0.096 0.091 0.034 -0.002 -0.040 0.032 0.019 1.000 -0.059 -0.036 -0.059 -0.006 -0.016 -0.016 0.007 -0.030 
ELEV -0.061 0.043 -0.330 0.042 -0.256 -0.054 -0.019 -0.059 1.000 0.022 0.046 -0.107 -0.034 0.141 0.133 0.068 
SLOPE -0.015 0.017 -0.114 0.002 -0.026 -0.117 0.066 -0.036 0.022 1.000 0.092 -0.007 -0.008 -0.051 -0.028 -0.058 
λ  -0.084 0.043 -0.320 -0.050 0.191 0.070 -0.095 -0.059 0.046 0.092 1.000 0.000 -0.066 -0.031 0.026 -0.016 
ρ  -0.055 0.039 -0.040 -0.011 -0.017 -0.059 0.052 -0.006 -0.107 -0.007 0.000 1.000 -0.261 -0.037 -0.044 0.010 

2σ  0.028 -0.030 0.115 0.019 0.004 0.017 0.011 -0.016 -0.034 -0.008 -0.066 -0.261 1.000 0.025 -0.029 0.056 

1γ  -0.008 0.024 0.014 0.205 0.108 0.069 -0.173 -0.016 0.141 -0.051 -0.031 -0.037 0.025 1.000 0.789 0.823 

2γ  -0.029 0.035 -0.075 0.116 0.111 0.030 -0.132 0.007 0.133 -0.028 0.026 -0.044 -0.029 0.789 1.000 0.544 

3γ  -0.020 0.034 0.031 0.174 0.144 0.044 -0.168 -0.030 0.068 -0.058 -0.016 0.010 0.056 0.823 0.544 1.000 
Note: Values above 0.5 have been shaded. 



18 

5. Model Comparisons 
The performance of the DSOP model can be compared to a standard ordered probit (OP) model, 
a dynamic ordered probit (DOP) model, and a spatial ordered probit (SOP) model. 10,000 draws 
were used in all these models, with the first 6,000 draws omitted (as the burn-in sample).  

Table 5 Goodness of Fit and Prediction Rates using Different OP Model Specifications 
Actual y Value 

Models DIC Predicted 
y Value 1 2 3 4 

% Cases 
Correctly 
Predicted 

(%) 
1 1106 1417 179 47 
2 1354 3281 767 238 
3 165 780 435 237 DSOP 22587.9 

4 41 188 258 591 

48.8 

1 1120 1379 171 40 
2 1310 3237 750 236 
3 208 841 479 279 DOP 23080.3 

4 28 209 239 558 

48.7 

1 1080 1379 187 49 
2 1294 3261 778 252 
3 235 783 417 268 SOP 23091.3 

4 57 243 257 544 

47.8 

1 992 1606 258 57 
2 1307 2913 770 324 
3 273 822 371 299 OP 22800.0 

4 94 325 240 433 

42.5 

Table 5 provides the DIC1 values and predictive accuracy with the four methods. While no 
model is clearly superior, the DSOP model outperforms the other models, even after being 
penalized for using more parameters. Interestingly, the DIC values suggest that the OP model 
may be preferred to the SOP and DOP models, due in part to its simpler model specification. Yet 
the predictive accuracy values tell a different story: the standard OP model only correctly 
predicts dependent values for 42.5% of the observations. The SOP model increases this 
percentage to 47.8%. The DOP and DSOP models have quite close prediction rates: 48.7 and 
48.8%. These results imply that, recognition of dynamic effects may well be worth the added 
estimation complexity for these types of land use data sets. 

5.1 Marginal Effects 
Based on the model specification, the marginal effects of explanatory variables (X) on the 
probabilities of each outcome level can be defined as follows: 

                                                 
1  The deviance information criterion (DIC) is a generalization of the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). In addition, In order to accommodate the bimodal posterior distributions in the 
DSOP model, this study uses the modified DIC calculation method for mixture models proposed by Celeux et al. 
(2006). 
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This marginal effect indicates the effect that a one-unit change in explanatory variable xiktq has 
on the probability of different discrete outcomes, s. As noted earlier, the marginal effects on 
intermediate probabilities are not obvious at first glance, since a shift in the distribution can 
cause the probability of intermediate response types to fall or rise, depending on the positioning 
of the average response (see, e.g., Wang and Kockelman, 2005). 

As Equation (6) suggests, one variable’s marginal effect is related not only to its own coefficient, 
but also to the values of all other coefficients. Moreover, each observation and each period carry 
a distinct set of marginal effect values. In practice, marginal effects are generally calculated 
using the parameters’ final point estimates and average variable values. In this study, the 
marginal effects are calculated separately for every observation, in each period and every 
iteration. The results are then averaged in order to provide a single, average response estimate, 
for every variable, recognizing cumulative effects across the region. Results obtained in this way 
anticipate more global changes for the population of points and respect the multivariate 
distribution of parameter values. This latter benefit is an advantage of using a Bayesian 
approach: derived statistics can be calculated on the heels of estimation, within the iterative 
Gibbs sampling process. 

Table 6 shows the estimates of these final marginal effects – and explains the magnitude of “one 
unit” changes in different X variables – relative to their standard deviations. As one example, 
when each neighborhood’s average household income increases by $1,000, the sample 
population’s average probability of intense development is estimated to rise by just 0.26% and 
the estimated probability of remaining undeveloped falls by 0.523%. In other words, incomes 
(which are rising in Austin at about $1,300 per household per year) are estimated to have a 
practically negligible effect on land use intensities.  

Travel time to the nearest top employer also appears to have a practically negligible effect, 
ceteris paribus: a 10 minute (0.17 hour) increase in this variable across all zones causes the 
region’s average probability of remaining undeveloped to rise by 1.1%, and Level 2 through 
Level 4 probabilities to fall by 0.1%, 0.4%, and 0.6%, respectively.  In contrast, travel time to the 
region’s CBD is estimated to have an impressive effect: A 10 minute increase is linked to a 10% 
decrease in the probability of Level 4 development across the sample.  (The probabilities of 
Levels 2 and 3 also fall, while the probability of finding undeveloped land is estimated to rise by 
20%.)  As supported by other land use research (e.g., Kalmanje and Kockelman, 2004, and Zhou 
and Kockelman, 2007), this distance-to-CBD variable regularly offers more predictive power 
than any other measures of access. 

Travel time to an airfield appears to have a moderate impact on land development: A 10 minute 
increase is associated with a decrease in development levels 2, 3, and 4 by 1.4%, 5.1%, and 
6.4%, respectively.  Travel time to highways is predicted to have the reverse impact, ceteris 
paribus: after controlling for travel times to major employers, the region’s CBD and all airfields, 
a 10 minute increase in travel time to the closest highway is associated with 4.1% more Level 2 
development (which is very likely to be residential, commercial, or industrial uses, dotted with 
vegetation) and 5.2% more Level 3 development (which tends to be densely developed 
residential, commercial, and/or industrial land).  
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The number of schools also is a practically insignificant covariate, while a 10-degree increase in 
ground slope is associated with 1.0%, 3.6%, and 4.5% decreases in the estimated probability of 
Level 2 through Level 4 development, respectively. (However, when one considers that the 
average slope in the grid-cell sample is only 2.7 degrees, the impact of slope appears 
insignificant in practice.) 

Table 6 Marginal Effects of Changes in Covariate Values, as Computed over All 
Observations 

Marginal Effect (%)  Variable Ratio to Std. 
Dev. Level 1 Level 2 Level 3 Level 4 

POP 0.092 0.652 -0.070 -0.257 -0.324 
WORKER 0.168 -2.417 0.261 0.955 1.201 

INC* 0.053 -0.523 0.057 0.207 0.259 
EMPTT* 8.529 6.309 -0.682 -2.492 -3.135 
CBDTT* 15.39 118.6 -12.87 -46.92 -58.80 
AIRTT* 8.634 77.86 -8.467 -30.84 -38.55 
RDTT* 13.65 -62.77 6.804 24.83 31.13 

NSCHOOL* 0.726 -1.048 0.114 0.415 0.519 
ELEVTN 16.39 6.429 -0.713 -2.515 -3.202 
SLOPE* 0.455 0.912 -0.099 -0.362 -0.451 

Notes: * indicates statistically significance at the 0.05 level. Change in each variable is one 
unit (e.g., 1 hour in case of travel times (TT)). “Ratio to Std. Dev.” is the ratio of one unit 
(e.g., 1 hour) to the standard deviation observed in the data set, for each variable. 

In summary, most of the contemporaneous variables are practically insignificant. This suggests 
that when developers make decisions, past land conditions (represented by the lagged, latent 
dependent variables) are a more important consideration than current conditions. However, 
transportation conditions (especially travel time to the CBD) appear highly influential, consistent 
with expectations regarding the location preferences of households and businesses, and the 
profit-maximizing nature of developer objectives. 

5.2 Model Prediction 
One important model application is scenario-based prediction of development intensities across 
the region. For the 2,771 grid cells in the selected sample areas, one potential scenario is a (one-
step) doubling in population from the year 2000 and a 30% increase in all travel times – to major 
employers, the CBD, nearest highway and nearest airfield (in order to reflect added congestion).  

Similar to the calculation of marginal effects, predictions can be computed alongside during 
model estimation, recognizing the sampling distribution of parameter values. Over the final 4000 
MCMC draws, estimates of latent dependent variable values for the next time step 
(approximately 7 years forward) are based on draws of latent dependent variable values for the 
year 2000, estimated parameter and error term values, and scenario control-variables. These 
latent variables then are compared to the threshold parameter values in each run, and 
development intensity levels for each location are calculated. Thus, for each of the 4000 draws 
and for each cell, there is a predicted development intensity level. The most common (frequently 
appearing) land development intensity levels in these 4000 runs for each sampled cell are shown 
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in Figure 5 (a). As expected, more intensely developed land is predicted to appear around 
Austin’s downtown. 

Of course, this single “most likely” pattern may not occur with a high likelihood. There is great 
flexibility and uncertainty in the future of these 2,771 grid cells. To help planners appreciate (and 
visualize) such uncertainty, an entropy statistic is used (see, e.g., Wang and Kockelman 2006, 
McKay 1995 and Kotz and Johnston 1982). The uncertainty associated with the set of 4 potential 
land covers in cell i  is specified as follows: 
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This formulation generates a value between 0 and 1 for each cell. The higher the value, the more 
uncertain the prediction for that cell. When all four future land development intensity levels have 
equal probabilities (Pis = 0.25 ∀ s), uncertainty entropy equals 1, indicating maximum 
uncertainty. When the same land intensity level emerges in all 4000 simulations, this uncertainty 
value is 0. As illustrated in Figure 5 (b), higher uncertainty appears around the intermediate areas 
of the study area, or the central-city’s edge. At these locations, the potential for variation in 
future development patterns is relatively large, resulting in a higher degree of uncertainty.  

 

 

 
(a) Predicted Level  

(b) Prediction Uncertainty 

Figure 5 Most Likely Development Intensity Levels Prediction and Uncertainty (following 
an assumed doubling of population) 
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2 
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Table 7 compares these predictions to the year 2000 situation.  While strong similarity is evident, 
one finds some “backward” changes – from higher intensity to lower intensity levels. This is to 
be expected, since some locations presently are more developed than trend behaviors would 
suggest. Moreover, some locations may lose their attraction due to increases in travel time.  

Table 7 Comparison of Base Year and Predicted Land Development Intensity Levels 
Most Likely Intensity Levels 

in Future Scenario  
1 2 3 4 

Total 

1 374 103 0 0 477 
2 11 1280 22 5 1318 
3 0 166 344 27 537 

Base Year Intensity 
Levels 

(Year 2000) 
4 0 2 71 366 439 

Total 385 1551 437 398 2771 
 

Conclusions 
This study uses a dynamic spatial ordered probit model to analyze land development intensity 
levels in Austin, Texas. The estimation indicates that the temporal autocorrelation coefficient is 
highly practically and statistically significant. This implies that existing land conditions 
(represented by temporally lagged latent dependent values) offer high predictive power, as one 
might expect: land development is a costly and involved process, and existing development 
cannot be easily demolished or intensified.  

Other control variables exhibit much smaller marginal effects, suggesting that an AR(1)-type 
approach with spatial lags can be key to land development prediction. Estimates of 
transportation condition effects, especially the influence of travel time to Austin’s CBD, 
highlight the important role of access.  

Even after controlling for various neighborhood and access characteristics, along with lagged 
latent response levels, estimation residuals are high in this model, and positively correlated 
across space. This statistical result confirms the common intuition that land development tends 
to cluster rather than randomly distribute itself over space, and that a variety of unobserved 
variables (such as soil conditions and local aesthetics) play a role in development decisions.   

One of the potential extensions of this study relates to variable time gaps in the panel data. The 
four data years are 1983, 1991, 1997, and 2000, with gaps of 8, 6, and 3 years, respectively. 
Intuitively, when the gap is longer, the temporal dependencies should be weaker. A more 
appropriate model specification would control for gaps variations in some way, by exploiting 
time series analysis tools for variable gap lengths. For example, one approach may be to express 
the temporal coefficient as an exponential function of the time gap. Another extension is to 
develop dynamic spatial models for multinomial (unordered) discrete response data, which will 
be more useful for land use type analysis. Improving data quality, including further screening 
problematic data and enlarging sample size are also important. However, in order to enlarge the 
sample size, the matrix inversion issue first needs to be solved. Finally, how to reasonably apply 
the calibrated model and spatially interpolate land development intensity level for out-of-sample 
area will be an interesting extension of this study. 
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While the data sets used here are imperfect and sample size issues remain a challenge, the 
application of such a statistically rigorous model in land development change analysis is new 
and useful for a variety of data contexts. Application of Wang and Kockelman’s (2008) DSOP 
model to the Austin, Texas context also discloses some interesting patterns in the evolution of 
urban land development intensity. Moreover, this study demonstrates how one can capitalize on 
the existence of satellite dat. As more frequent and accurate satellite images become available, 
this evolving data source will be used for more extensive topics, such as global climate change, 
loss of Amazon rainforest, Africa’s desertification, human migration, and even real-time traffic 
condition forecasting. It is important that regional scientists, spatial econometricians and others 
unleash their potential, by recognizing the spatial relationships that exist and by exploiting their 
presence.  The DSOP model is one such tool. 
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