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ABSTRACT

A difference in logsum terms (also known as inclusive values) is becoming standard practice for 
anticipating the welfare impacts of transport policy when choice alternatives are discrete and 
behavior is (assumed to be) random-utility maximizing.  This paper examines the effect of error 
term correlations in such analyses, recognizing that individual preferences and unobserved 
attributes influencing choice are unlikely to change much, if at all, across scenarios. Such 
measures appear reasonably robust to deviations in assumptions of correlation.  What is most 
striking in these results is the substantial variation that emerges across synthetic populations, 
suggesting that policies that appear welfare-improving (when evaluated with average welfare 
formulations) may well be welfare-reducing (or vice versa) for a wide variety of actual 
populations. Another finding is that the synthetic population samples need to be very large for 
the mean to be realized (in finite populations).
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INTRODUCTION 
 
The concept of welfare maximization is a key criterion guiding transportation policy decisions 
and system enhancements.  And McFadden’s (1978, 1981) logit model for random utility 
maximization (RUM) provides a microeconomically rigorous foundation. 
 
Of course,  the multivariate extreme value model (MEV)1 is now standard practice in analyzing 
mode, destination, vehicle purchase and other travel decisions. In particular, the multinomial 
logit (MNL) is a mainstay of such models. And researchers have recognized the promise of such 
models in quantifying net benefits via logsum differences (see, e.g., Small and Rosen 1981, 
Handy and Niemeier 1997, de Jong et al. 2005, and Gupta et al. 2006).   
 
In recent years, travel demand modelers and transportation planners have moved toward the use 
of logsum differences (such as the user benefit calculation in the FTA’s [2005] Summit model  
and the U.K.’s TUBA model [MacDonald 2006]) in order to more rigorously characterize 
changes in net social benefits for actual project alternatives.  Such measures constitute important 
tools in project evaluation, including NEPA-required environmental justice considerations (see, 
e.g., FHWA, 2000). However, they do rest on at least two core assumptions: a constant marginal 
utility of money and perfectly correlated error terms (between before/after scenarios for each 
choice alternative).  Karlstrom (1998, 2001), Franklin (2006), Cherchi et al. (2005), and Small et 
al. (2006) have examined the implications of using logsum differences under this first 
assumption in depth.  Using Karlstrom’s (1998, 2001)  exact methods, Franklin (2006) found 
that income effects can be sizable when evaluating road pricing projects, especially for those 
where travel costs loom large (relative to income). Franklin also examined distributional effects 
closely (via Gini coefficients and Theil’s entropy measure).  As a complement to such work, this 
paper examines the impacts of the second assumption, relating to independence of error terms.  
 
Given the limitations of identically and independently distributed GEV Type 1 (Gumbel) error 
terms, much research has focused on relaxing such assumptions (see, e.g., Swait’s [2003] 
mixture model discussion), in addition to allowing random parameters (see, e.g., Hensher and 
Greene’s [2003] review of such models). While such flexibility can introduce correlation across 
alternatives and enhance a model’s behavioral realism, it tends to complicate the estimation 
process, as well as any associated welfare analyses.  Only recently, have researchers (Cherchi 
and Polak 2005) examined the welfare implications of random-parameter kernel-logit models 
and suggested that the GEV error terms may not adequately represent underlying heterogeneity, 
negatively impacting benefits estimates.  And the implications of correlation in alternatives’ 
random error terms, pre- and post-policy implementation, remain unstudied.  
 

                                                 
1 MEV models are generally known as Generalized Extreme Value (GEV) models in transportation science. 
However, the term MEV is more accurate, since GEV is used to describe a class of marginal extreme value 
distributions, as described later in this paper. 



It seems quite natural to expect a high degree of correlation in (existing) choice alternatives 
(such as route, mode and destination) before and after an increase in toll charges, reductions in 
transit fares, an increase in schedule frequency, the addition of roadway capacity, the addition of 
a new alternative, and so on.  Whatever it is that attracts one individual to a mode, but not others 
that share his/her attributes, is reflected in these error terms and likely to remain with these 
individuals after the context shifts. As McFadden observed (1978), a simple difference in 
logsums follows if all error terms are maintained, in the before/after choice environments (as 
developed in Karlstrom [1998, 2001]).   What are the implications of such an assumption?  This 
paper first discusses the basis for use of a difference in logsums and then examines a variety of 
policy scenarios for many travelers in a streamlined network in order to get a sense of the bias 
and mis-prediction, and potential for misplaced evaluations, under a series of error-term 
correlation assumptions and inclusion of a new route alternative.  
 
BACKGROUND 
 
Welfare evaluations calculate the changes in net social benefits, or consumer surplus, for 
situations before and after a policy’s implementation (e.g., road pricing) or a project’s 
development (e.g., expanded highway). Typically, use of additive, random-utility error terms (εiq) 
reflects heterogeneity across travelers (q) and choice alternatives (i) that are unobserved by the 
analyst, and thus uncontrolled for in the model specification.  
 

isxVVU iqqiqiqiqiq ∀+=+= εε ),(      (1) 

where s q  denotes all traveler-related attributes (such as income and gender, which can be 
interacted with alternative-specific constants and/or with generic choice attributes).  
 
Assuming that error terms εiq  are iid and follow a Generalized Extreme Value (GEV) Type 1 
distribution with zero mode (location parameter) and scale parameter β of 1 (which imply a 

mean of 5772.05772.00 =+= βμ , and a standard deviation of 283.16 == πβσ ), the 
expected maximum utility can be expressed by the following logsum formula: 
 

∑=∀
i

V
iq

iqeiUMaxE ln)),((       (2) 

More generally, interests focus on the difference between the before and after conditions of a 
particular policy, and a difference in logsums is applied:  
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Note that equation (3) holds when 1
iqε = 0

iqε  and the marginal utility of money is constant (as 

alluded to in McFadden [1978] and examined at length in Karlstrom [1998, 2001]).  
 
If cost and wealth terms enter the systematic conditional-utility specification in a simple, linear 
way (producing constant marginal effects), one can normalize this difference in logsums by the 
marginal utility of money, rendering the amount of money that, in theory, would be needed to 



compensate individuals for enduring the policy change (Small and Rosen 1981).  This 
“compensating variation” (CV) maintains original levels of utility (see, e.g., Varian 1992) and 
thus serves as a Hicksian (or compensated) version of consumer surplus.  Thanks to the (assumed) 
lack of income effects, the Marshallian (uncompensated, but observable) and Hicksian demand 
curves overlap, and changes in consumer surplus (CS) are reflected by the CV term (see, e.g., 
Karlstrom 1998, 2001, and  Karlstrom and Dagsvik 2005). 
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where 
dc

dV
−=α  is the marginal utility of money and assumed to be constant.  

 
Of course, if individuals’ unique affinity or distaste for the alternatives exists, due to unobserved, 
case-specific attributes (like certain routes offering fewer stoplights than another) or unobserved, 
person-specific preference variations (for example, an added attraction to alternative i by person 
q), correlations will emerge in the before and after conditions. These correlations may be perfect 
in fact (assuming, for example, the before/after periods are not too far apart, and contain the 
same population, as is standard for such evaluations). As Karlstrom (2001) suggests, the same 
error terms generally should be used in such welfare calculations, in order to ensure consistency 
of and comparability across cases. But, of course what if there are arguments to the contrary 
and/or new alternatives are added to the choice set, as part of the policy being examined?  How 
will logsum differences fare in such cases?  Given the size of errors emerging from the use of 
logsum differences when estimating welfare changes in the presence of income effects (Cherchi 
et al. 2005 and Franklin 2006), it is worth considering the effects of imperfect error-term 
correlation in before/after instances.  
 
Unfortunately, an intractable integral is needed to compute the welfare effect of policies and 
projects in the presence of less-than-perfectly correlated error terms.  Here, numerical 
simulations are used to ascertain the size of such effects under a variety of settings, with perfect 
and lesser levels of correlation. These scenarios and their results are described in the following 
sections. 
 
NUMERICAL EXAMPLES 
 
The impacts of assuming no error-term correlation in computing measures of welfare are 
illustrated here, for a streamlined example of route choice. This 6-node, 11-link network (Figure 
1) offers meaningful realism without great complication, across a variety of zone pairs. This 
skeleton network is a simplified version of a proposed rural toll road network in south Texas.   In 
both cases, trip-making is assumed inelastic between all zone pairs, and travel times and costs 
are independent of link flows. Of course, in reality, destination choices are impacted by changes 
in system conditions, and (total) trip generation rates may be as well.  
 
Motorists are facing the travel choices between free roads and toll roads. The random utility 
functions are specified as follows:  
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where qfreeT , and qtollT , are interzonal travel times (in minutes, as shown in Table 1) via the non-

tolled and tolled routings for each O-D pair, and qtollC ,  is the toll charge on the tolled route (in 

dollars, as shown in Table 2).  

 
  Figure 1.  6-node, 11-link test network (approximately 30 miles across) 
 
Model parameters are based on results of a year-2006 stated preference survey in the Dallas-Fort 
Worth area (RSG 2006), and equation (5) implies a value of time of $11.50 per hour. The toll 
charges are based on a toll rate of $0.15/mile2.  For roughly half of the OD pairs, travelers enjoy 
two alternatives, and each traveler is assumed to select the one which maximizes his/her (latent) 
utility.  
 

 
 
 
 

                                                 
2  15¢/mile is very similar to what State Highway 121 (in the DFW region) and other new and forthcoming Texas 
toll roads are/will be charging. 



Table 1. Travel times via non-tolled and tolled roads (for all OD pairs) 
Time 
(min) 

1 2 3 4 5 6 
Free Toll Free Toll Free Toll Free Toll Free Toll Free Toll 

1 - - 38.91 22.52 24.27 15.69 40.83 20.86 52.59 29.17 33.87 - 
2 38.91 22.52 - - 14.65 - 31.21 - 42.97 - 24.25 - 
3 24.27 15.69 14.65 - - - 16.56 - 28.32 - 9.60 7.00 
4 40.83 20.86 31.21 - 16.56 - - - 11.76 8.31 26.16 - 
5 52.59 29.17 42.97 - 28.32 - 11.76 8.31 - - 37.92 - 
6 33.87 - 24.25 - 9.60 7.00 26.16 - 37.92 - - - 

Note: Travel times for unreasonable toll paths are not evaluated here. “Free” implies non-tolled routing. 
 
 

Table 2. Toll charges on all tolled routes (by OD pair) 
Toll Charges 1 2 3 4 5 6 

1   $3.70  $2.60  $3.40  $4.70    
2 $3.70            
3 $2.60          $1.00  
4 $3.40        $1.30    
5 $4.70      $1.30      

6     $1.00        

 
The two policy scenarios to be evaluated are as follows: (1) 15% toll rate increases on all tolled 
routes (without any travel times changes), (2) a $0.05-per-mile congestion pricing scenario 
(which assumes a $0.05-per-mile toll and 15% travel time reductions on all previously “free” 
roads). Of course, the network is not being loaded, so these shocks are exogenously presumed 
here (rather than based on an interplay of roadspace supply and demand).  These two scenarios 
are evaluated for Figure 1’s 6-zone network, first at the level of a single OD pair (from zone 4 to 
5, which has 767 one-way travelers) and then for the entire system of users (of 230,892 one-way 
travelers). Simulated differences in maximum random utilities were compared to the standard 
CV estimates (based on logsum differences), and these results are provided in the following 
section. 
 
EMPIRICAL RESULTS 
Consider a scenario where toll charges increase 15%.  Under assumptions of perfect 
correlation in error terms in the before and after scenarios, CV measures can be estimated using 
equation (4).  Since our interest lies in other, imperfectly correlated cases, large-sample Monte 
Carlo simulation of correlated Gumbel error terms (using @Risk software [Palisade, 2002]) 
provides rather precise estimates of the distribution of differences one can expect (over the 
traveler population space), including an average welfare impact per traveler.  Such results were 
sought here, using R = 1,000,000 draws for each of the travelers using a variety of error-term 
correlation levels.  
 
Welfare calculations are examined in two fashions: at the level of a single O-D pair (4, 5), and 
across the entire system of O-D pairings. Based on equation (5), the percentage of toll road users 
between zones 4 and 5 before and after the toll rate increase will be 35.0% and 31.5%, 
respectively.   
 



The 1,000,000-draw simulation for this origin-destination pair can be interpreted as though there 
are 1 million cases of each individual facing the same choice situation, and thus sharing the same 
observed characteristics. In each simulation, a single, (pseudo-)randomly drawn error term 
represents each individual’s additive random utility, or unobserved preference for one of the two 
routing alternatives. To ensure proper correlation, the before and after error terms are drawn 
from a joint multivariate distribution where marginal distributions of each error term are standard 
GEV Type 1 (0 mode and scale 1), and the correlation matrix between before and after error 
terms ranges from zero to one, according to the prescribed scenarios.  
 
Table 3 summarizes the average total welfare impact (or average sum of CV estimates) across 
these 1 million synthetic populations. The average CV value represents the average welfare 
impact of the new tolling policy, per traveler, and is simply the total CV estimate divided by the 
number of travelers (767 for this zone pair). Examination of the 1 million CV totals produces 
precise estimates of the standard deviation and a 90% (5% to 95% data points) confidence 
interval for individual welfare changes, giving one an idea of how variable populations may be, 
in terms of policy impacts. 
 
Table 3. Estimates of welfare changes for travel between zones 4 and 5, following an 
increase in toll rates 

Error Term 
Correlation 

(Before/After) 

Total CV 
($) 

Index SD ($) 
5% Lower Bound 

($) 
95% Upper Bound 

($) 

0.00 -37.91 100.00 1391.2 -2295.5 2221.2 
0.25 -38.03 100.32 1251.5 -2069.8 1987.2 
0.50 -38.02 100.29 1063.7 -1756.9 1681.4 
0.75 -38.63 101.88 783.2 -1308.4 1223.6 
1.00 -38.94 102.70 54.5 -117.0 0.0 

Notes: Index is the ratio of total welfare change to the zero-correlation case result. 
 
Somewhat surprisingly, as evident in Table 3, 1 million draws are not enough to bridge the gap 
between zero correlation and perfect correlation.  Perfect correlation yields a 2.7% lower 
estimate of total CV (across all zone pair 4, 5 travelers), as compared to the zero-correlation 
case.  The case of 0.5 correlation produces a 0.29% lower estimate. A key finding of these 
simulation results is the large variation inherent in CV estimates across synthetic populations. 
Additionally, as error term correlation increases, the variation falls dramatically; in this case, it 
remains larger than the average policy impact ($54.5 > $38.94). The decrease in such CV 
variations also can be seen from the confidence intervals (i.e., the range of 5% and 95% values).  
 
It also should be noted that a total welfare loss of $38.94 per period (case of perfect correlation) 
across these 767 travelers is equivalent to a cost of 5.0765¢/traveler, per trip.  And this result is 
essentially the same as the difference-in-logsums formula, which yields a cost of 
5.0776¢/traveler. Given the accuracy of the simulation for this particular case (i.e., the precision 
at which preference parameters can be obtained), 1 million draws seem appropriate here, from an 
applied point of view. In fact, this number of draws is much higher than most simulations and 
maxes out memory stores rather quickly on standard computers. Higher precision seems 
unlikely, at this evolutionary stage of world computing. 
 



For the congestion pricing case, the previously non-tolled route between zones 4 and 5 now 
carry a toll of $0.50 and Table 1’s “free” travel times are reduced by 15% of their original levels, 
as seen in Table 4.  
 
Table 4. Congestion pricing on all previously non-tolled routes (by OD pair) 

Congestion Tolls 1 2 3 4 5 6 
1   $1.47 $0.91 $1.60 $2.09 $1.39 
2 $1.47   $0.78 $1.47 $1.96 $1.26 

3 $0.91 $0.78   $0.69 $1.18 $0.48 
4 $1.60 $1.47 $0.69   $0.50 $1.17 

5 $2.09 $1.96 $1.18 $0.50   $1.66 
6 $1.39 $1.26 $0.48 $1.17 $1.66   

 
35.0 and 37.9 percent of travelers are expected to use the tolled routes (between zones 4 and 5) 
before and after the congestion pricing scheme is implemented, respectively. This is not a 
significant change, and welfare impacts tend to be low, as summarized in Table 5, using sums of 
simulated CV values across the 767 travelers. As before, welfare impacts escalate (becoming 
more negative) as correlation grows, while variations in these estimates (across the 1 million 
simulated populations) fall off dramatically. Moreover, a simple difference in logsums yields a 
total impact of $61.74, very close to the perfect correlation simulation average shown in Table 5 
– but 1.57% larger than a zero-correlation case. This also suggests that 1 million draws are not 
enough to bring the gap down to 1% – at least not in this case context. 
 
Table 5. Estimates of welfare changes for travel between zones 4 and 5, following the 
introduction of congestion pricing 

Error Term 
Correlation 

(Before/After) 

Total CV 
($) 

Index SD ($) 
5% Lower Bound 

($) 
95% Upper Bound 

($) 

0.00 -60.80 100.00 1391.3 -2317.2 2198.2 
0.25 -60.70 99.83 1252.8 -2093.6 1965.9 
0.50 -60.83 100.05 1065.6 -1780.9 1662.6 
0.75 -61.39 100.96 784.9 -1329.5 1208.4 
1.00 -61.76 101.57 46.3 -97.1 0.001 

 
Note: Congestion charge is 5¢/mile on previously non-roads roads that were found to be congested in the base case. 
 
Similar to Table 3’s tolling results, Table 5’s values suggest that different beliefs and 
assumptions regarding error term correlations result in somewhat similar conclusions.  
 
An interesting extension of this scenario is to consider the case of an added alternative.  One 
may choose to keep the existing alternatives while adding a third path that is priced at a rate of 
5¢/mile.  To reflect growing congestion on the roadways, a future scenario where travel times on 
the non-tolled route are presumed to have grown by 18 percent makes this case study more 
meaningful, with travel times on the tolled alternative remaining as before and those on the 
newly added, priced alternative equaling those that existed previously (on the non-tolled 
alternative). Though travel times are assumed to rise on the non-tolled existing-road option, and 
the new route carries a toll, all routes remain competitive, with estimated average shares of 



38.4% (non-tolled route), 33.3% (new route), 28.4% (existing tolled route) – of the 767 corridor 
travelers.  In fact, the addition of the alternative has increased estimates of CV (Table 6) – so 
much so that they are now very positive, though they are associated with high variability. (The 
SD is now several times higher than the average total CV, at all error levels.)  Evidently, the 
value of new travel alternatives should not be neglected, even if they carry tolls and travel 
times/costs rise on other routes.  Also interesting is the fact that a simple difference in logsums, 
using 2 alternatives in the base case versus 3 in the new case, is nearly the same ($161.23 and 
$161.47) as the estimate from 1,000,000 simulations in the perfect-error- correlation case, 
suggesting that standard logsum differences are likely to be robust to situations of new 
alternatives.  This is reassuring. The difference in CVs between the zero correlation case and the 
perfect correlation case is only $1, or 0.61% again with 1 million draws. Please note that the 
error term of the new alternative is assumed to be independent from these error terms of existing 
alternatives before the new one is introduced.  
 
Table 6. Estimates of welfare changes for travel between zones 4 and 5, following the 
introduction of new, priced alternative 

Error Term 
Correlation 

(Before/After) 

Total CV 
($) 

Index SD ($) 
5% Lower Bound 

($) 
95% Upper Bound 

($) 

0.00 162.46 100.00 1391.8 -2097.4 2422.1 
0.25 162.10 99.78 1289.3 -1925.5 2256.5 
0.50 162.04 99.74 1154.3 -1675.1 2061.5 
0.75 161.63 99.49 963.2 -1296.1 1796.2 
1.00 161.47 99.39 663.5 -243.5 1577.0 

 
Of course, a focus on a single zone pair is a bit limiting. Common practice in welfare evaluation 
is to present data aggregated over the system’s travelers. Assuming the travel demand 
distribution shown in Table 7 for the 6-zone system, total welfare effects for the proposed two 
scenarios can be estimated, as presented in Tables 8 and 9. The welfare estimation used here is 
based on 1,000,000 simulated draws (per context, individual and alternative).  
 
Table 7. Daily travel demand for the 6-zone system 

Daily Trips 1 2 3 4 5 6 
1 - 17000 4803 4599 3173 7355 
2 17000 - 16904 9503 5708 15263 

3 4803 16904 - 4213 2219 12826 
4 4599 9503 4213 - 767 7046 
5 3173 5708 2219 767 - 4067 

6 7355 15263 12826 7046 4067 - 

 
 
 
 
 
 
 



Table 8. Estimates of welfare changes for travel between all zones, following an increase in 
toll rates 

Error Term 
Correlation 

(Before/After) 

Total CV 
($) 

Index SD ($) 
5% Lower Bound 

($) 
95% Upper Bound 

($) 

0.00 -12313.61 100.00 117903.2 -210373.4 181088.1 
0.25 -12440.76 101.03 104215.5 -183630.8 158600.5 
0.50 -12533.64 101.79 86838.8 -155748.0 129827.1 
0.75 -12432.52 100.97 62759.8 -115781.9 90506.3 
1.00 -12451.37 101.12 6609.6 -24914.9 -3042.7 

 
Table 9. Estimates of welfare changes for travel between all zones, following the 
introduction of congestion pricing 

Error Term 
Correlation 

(Before/After) 

Total CV 
($) 

Index SD ($) 
5% Lower Bound 

($) 
95% Upper Bound 

($) 

0.00 -83,514 100.00 117,682 -276353.5 110188.0 
0.25 -83,264 99.70 102,314 -241223.5 96504.8 
0.50 -83,180 99.60 88,723 -204595.8 78996.8 
0.75 -83,356 99.81 47,736 -152095.0 55071.1 
1.00 -83,476 99.95 4,827 -91074.5 -75047.8 

 
Tables 8 and 9 suggest that at the aggregate level, the effects of these policies are somewhat 
diluted, given the lesser variation in net welfare (Total CV) estimates from zero to perfect 
correlation cases and the increasing trend is less obvious.  This is to be expected, given that 63% 
of the network’s travelers (or 60% of its O-D pairs) do not enjoy an alternative (i.e., have only 
one route to choose from), in this real-network case examination; so welfare shifts are less likely 
for those travelers.   
 
Related to this, the variation in net welfare estimates (over the 1,000,000 simulations of all 
230,892 travelers) is less, in a relative sense, than for the zone pair 4,5 examination.  Effectively, 
the ratios of SD to Total CV (or coefficient of variation in welfare estimates across synthetic 
populations) have fallen by factors ranging from 0.05 (case of perfect correlation for congestion 
pricing scenario) to 9.57 (zero correlation case in toll rate increase scenario).  The presence of 
less variation in network attributes across the larger pool of travelers plays a key role in this 
result.  Nevertheless, the variations in welfare results remain substantial, particularly when 
correlations are less than perfect.  Such indicators of variation suggest that confidence intervals 
should be given on welfare measures (as presented in the above tables), to indicate the potential 
for real losses or benefits when the average result or simple estimates suggest otherwise. 
 
Finally, it is useful to consider the estimate of revenues generated in the “congestion pricing” 
scenario.  Across the system’s 230,892 users (many of whom rely on the base-case toll roads), 
the addition of congestion tolls generates $169,891 in revenues (on average). This, of course, 
fully offsets the estimated welfare loss of roughly $83,500 (in all of the correlation cases, as 
evident in Table 9).  If these revenues could be returned to all travelers in some form (e.g., 
uniformly distributed travel budgets, as suggested in Kockelman and Kalmanje’s (2005) 
proposed policy of credit-based congestion pricing), net benefits enjoyed directly by travelers 



would be positive (on average and in general, across nearly all simulated populations in all 
correlation cases).  This presumes that travel times will fall by 15%, demand between all O-D 
pairs is inelastic, implementation costs are negligible, and so forth. In reality, the net benefits of 
such policy may be larger or smaller. 
 
Differences in logsums are small with this large number (1 million) of simulation draws.  What 
is striking is the substantial variation that emerges across synthetic populations, suggesting that 
policies that may appear welfare-improving (when evaluated with average welfare formulations) 
are in reality welfare-reducing (or vice versa). The variation (or standard deviation, provided in 
above tables) depends on the nature of error term correlations. As noted earlier, the error terms 
reflect heterogeneity across travelers and choice alternatives. For nearly all cases, CV variations 
cover a wide range, suggesting that actual welfare effects (similar to one simulation) may be very 
different from theoretical expectations (based on the logsum formula).   
 
CONCLUSIONS 
 
As the use of logsum differences to estimate welfare impacts of transport policies grows more 
popular, it is importation to recognize the assumptions inherent in such estimates, and the 
potential for variations across populations. The paper explores these issues via a Monte Carlo 
simulation for a numerical example involving 30 zone pairs and tolled and non-tolled route 
alternatives. In the cases considered here, and with the large number of simulation draws used, 
we find that logsum differences appear rather robust to deviations in assumptions of correlation, 
and to addition of a new choice alternative. However, 1 million simulations is generally not 
enough to estimate the mean CV within 1% of its true value.  
 
What is most striking in these results is the substantial variation that emerges across synthetic 
populations, suggesting that policies that may appear welfare-improving (when evaluated with 
average welfare formulations) to be welfare-reducing (or vice versa).  Like any point estimate, 
welfare measures deserve confidence intervals when presented before policymakers, researchers, 
and the public.  There is enough unobserved heterogeneity in existing populations that we may 
have little sense of which way a particular policy will move a specific group of individuals, even 
if the average appears to point in one direction.  Basic applications of commercially available 
software programs like those used here can prove invaluable in illuminating the potential for 
variation in our estimates. 
 
Finally, in terms of future studies, the relatively simple model specification used here can be 
extended, to accommodate more complex and realistic functional forms, with more variables, 
more alternatives, and nonlinear-income effects. It also should prove interesting to determine 
how large a population and set of simulations must be, in order to provide highly accurate 
estimates or stable values of welfare changes. And mathematically derived solutions to such 
problems are always desirable. 
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