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ABSTRACT 

The issue of self-selection’s role in shaping travel patterns, by impacting one’s home location 

choice, is a critical question. Developers, planners and policymakers regularly debate to what 

extent the built environment and land use patterns can alleviate roadway congestion, greenhouse 

gas emissions and myriad other urban problems. This study illustrates the use of Heckman’s latent 

index model to ascertain travel impacts of neighborhood type in Austin, Texas. Under this 

approach, self-selection is formulated as sample selection bias in receiving a treatment. Here, 

treatment is defined to be one’s residence in a suburban or rural zone, rather than Austin’s central 

business district (CBD) and nearby urban zones. This treatment/no-treatment approach is a 

meaningful advance in models of self-selection effects, and requires estimation of three 

straightforward models. Depending on model specification used, results suggest that at least half 

(58% to 90%) of differences in vehicle-miles-traveled observed between similar households living 

in CBD/urban versus rural/suburban neighborhoods of Austin is due to the location or treatment 

itself, while self-selection of such treatment (by households that wish to meet special travel needs 

and/or preferences) accounts for the remainder. 
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INTRODUCTION 
The interaction between land use and transportation has been recognized by researchers from 
different disciplines for decades. Facing the negative consequences of personal vehicle 
dominance, such as congestion, air pollution and global warming, New Urbanists propose land 
use patterns to moderate travel demand. They argue for changing the built environment to reduce 
the number of motorized trips, increase the share of non-motorized modes, reduce travel 
distances and increase vehicle occupancy of motorized trips (1). Since the early 1990s, a rich 
literature has investigated the relationship between the physical features of the urban landscape, 
transport policies, and travel behavior. Ewing and Cervero (2001) provide a comprehensive 
review of such studies (2). 

Almost all studies use different data sets and geographic scales and focus on different 
aspects of travel behavior (e.g. household vehicle miles traveled, person miles traveled, number 
of trip chains, and mode split, for work or non-work trip purposes). They also draw different 
conclusions in terms of the statistical and practical significance of the built environment’s impact 
on travel behavior. In general, early work has used more aggregate statistics and later work has 
used more disaggregate data. Several researchers have relied on quasi-experimental designs (e.g., 
pairing matched neighborhoods) in order to discern travel distinctions related to a few key design 
features (see, e.g., 3, 4, 5, 6). Others have used cross-sectional data and regression techniques to 
quantify the travel impacts of one’s built environment (see, e.g., 7, 8). Krizek (2003) relied on 
longitudinal data involving household relocations to disentangle the relationship of travel 
behavior and the built environment (proxied by a single measure of neighborhood accessibility) 
(9).  In general, much work supports, to some degree, the assertions of New Urbanists. However, 
use of attitudinal data in more recent studies, to correct for self-selection bias (due to residential 
sorting), can suggest little influence of the built environment, thereby highlighting the 
importance of self-selection issue. 

Attitudes are typically difficult to measure, and experimental designs are sometimes 
infeasible. (For example, concerns regarding respondent burden often preclude the inclusion of 
attitudinal and stated preference questions at the end of a travel survey, and we typically cannot 
observe the same household living in different environments at nearly the same time.) Most 
researchers have had to apply appropriate econometric techniques to estimate the causal effects. 
Mokhtarian and Cao (2008) listed the following seven approaches to help address the self-
selection issue, and possibly disentangle the relationship between the built environment and 
travel behavior: direct questioning, statistical control, instrumental variables models, sample 
selection models, joint discrete choice models, structural equations models and longitudinal 
designs (10).  

This study falls under the sample selection approach, also called latent index model. This 
method not only provides consistent estimators of variables of interest, but also allows one to 
derive the treatment parameters that quantify the effects of self-selection in the context of 
specific environments. This method was applied to investigate daily vehicle miles traveled (VMT) 
by households surveyed in Austin, Texas. The following sections discuss related research, the 
data sets and methods used here, as well as model results, and conclusions. 
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LITERATURE REVIEW 
Using different data and geographic scales, prior studies tend to draw different conclusions 
regarding the relationship between built environment and travel behavior. Most studies found 
that the built environment influenced travel behaviors. More recent studies that have controlled 
explicitly for attitudinal characteristics concluded that the built environment have insignificant 
impacts on travel behavior. 

Cervero and Kockelman (1997) factorized built environment attributes into three 
principal dimensions (density, diversity and design, which they called the 3Ds) and examined 
how these variables influenced VMT per household, as well as work and non-work mode choice 
(1). They controlled for a variety of variables and found reduced trip rates and more non-auto 
travel when the household’s built environment was characterized by higher densities, higher land 
use mixing and better pedestrian environments. This study analyzed the impacts of the built 
environment on travel behavior from a comprehensive perspective; but, as noted by the authors, 
the cross-sectional analysis limits the results, making them more associative, rather than causal.  

In addition to the complex nature of describing the built environment (hundreds of 
variables may be needed), self-selection is an issue in disentangling the travel-environment 
relationship. People may choose a residential location in order to realize desired travel patterns, 
so that observed differences in travel behavior of households living in different locations do not 
relate to differences in the built environment alone. In other words, the impact of environment on 
behavior would be over-estimated if individuals’ behavioral preferences help determine the 
environment. As a result, the efficacy of land use policies that focus on altering the built 
environment to shape travel demand could be exaggerated. Several research efforts have 
addressed the self-selection issue by controlling for the attitudes of trip makers.  

Using attitude surveys and travel diaries, Kitamura et al. (1997) examined the impacts of 
the built environment and attitudinal characteristics on measures of mobility (including the 
number and fractions of personal trips, transit trips, and non-motorized trips) (11). They 
calibrated two sets of regression models: one with demographics and neighborhood 
characteristics and the other with additional factors that reflect attitudes towards travel behaviors. 
The authors found that attitudinal variables explained the highest proportion of data variation and 
were more strongly related with travel behavior than with measures of the built environment. 

Bagley and Mokhtarian (2002) applied a system equations model (SEM) using nine 
endogenous variables (12): two residential location types (traditional and suburban), three 
measures of travel demand (miles traveled by different modes), three measures of attitude (pro-
high density, pro-driving, and pro-transit), and one measure of job location (commute distance). 
Attitudinal variables were found to have the greatest impact on travel behavior, while residential 
location classifications appeared to have little impact. The authors argued that the “observed” 
association between the built environment and travel behavior is due to correlations among built 
environment and attitudinal variables, and thus self-selection exists.  

The above studies contribute to an understanding on environmental factors, but require 
additional information on travelers’ attitudes, which are not available in most household travel 
surveys. Other researchers seek to disentangle such relationships using neighborhood matched 
pairs (conventional versus neotraditional designs, for example), but sample sizes tend to be small 
and the issue of self-selection remains. With only the observational data on hand, researchers 
have to apply appropriate econometric techniques to estimate the effects.  
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Aware of the potential correlation between built environment attributes and error terms, 
Boarnet and Sarmiento (1998) applied instrumental variable models to control for such 
correlation, and concluded that information on the relationship between (non-work) travel and 
local land use did not support or oppose New Urbanist assertions (13). In contrast, Greenwald 
(2003) found some variables that represent built environment are statistically significant after 
controlling for residential self-selection, using an “extended” latent index model (14). Essentially, 
he converted a binary selection into a multinomial model of residential choice (combination of 
locations and tenure), and then added the predicted probability of the residential choice into eight 
equations that represent ratios of travel times between modes by purposes. However, his model 
specification differs from a standard latent index model, and its ability to control for residential 
self-selection is unclear. 

Finally, Bhat and Guo (2007) applied a joint model of residential location choice and car 
ownership decisions, considering observed and unobserved variations in sensitivity to the built 
environment (15). They concluded that built environment attributes affect residential choice 
decisions as well as car ownership decisions. 

In contrast to prior work in this area, this study investigates the effect of environment on 
household VMT using latent index models, as introduced by Heckman (16, 17). This method not 
only provides consistent estimators of variables of interest, but also allows one to derive the 
treatment parameters that quantity the effects of individuals’ self-selection into a dichotomous 
measure of neighborhood type. This method was applied to investigate household daily VMT in 
the Austin, Texas region. The following sections discuss the data sets and methods used here, as 
well as model results, and conclusions. 

DATA DESCRIPTION 
The primary data sources used here are the 1998-1999 Austin (Household) Travel Survey results 
and ArcGIS-encoded zonal data for the Austin region (including Williamson, Travis and Hays 
counties), as obtained from the Capital Area Metropolitan Planning Organization (CAMPO). 

The response of interest is household VMT on the survey day (either a weekday or a 
Sunday), as obtained via start and ending odometer readings on all the vehicles owned by the 
household over the survey period. Households reporting more than 1,000 VMT on the survey 
day or having a household head less than 18 years of age were eliminated, resulting in a final 
sample of 1,903 household observations.  

Since anonymity protections permit household location reporting only at the zonal level, 
zone-level (rather than parcel-level) attributes were linked to each household, according to zone 
of residence. Figure 1 shows the locations of all traffic analysis zones (TAZs) having at least one 
observation in the final sample, with Williamson County (to the north) exhibiting relatively low 
coverage (resulting from its lower low population). Figure 1 also identifies the location of zones 
coded as belonging to the region’s central business district (CBD) or urban areas, versus those 
containing land use patterns of a more suburban or rural type. These zones/area types were coded 
by CAMPO, based on the Texas DOT formula, using combination of employment and household 
density values – with defining thresholds of 8, 3 and 1 person-equivalents per acre (where 
equivalent population is simply zone population plus zone employment times the regional 
persons-per-job ratio).  These thresholds are relatively arbitrary, and other values (which are 
suitable for the study area) may serve such purposes just as well or better. Since latent index 
models deal with a binary treatment index (either treated or un-treated), TAZs in the study area 



Bin Zhou, Kara M. Kockelman   5 
 

that were classified as CBD and urban were grouped into one category, and rural and suburban 
TAZs were grouped into a second category. 

One may expect that, on average, households living in low-density areas tend to drive 
more than those in downtown areas – everything else constant.  In the following analyses, 
households living in rural or suburban areas are said to be “treated” while those living in CBD 
and urban areas are said to be “un-treated”. As suggested, only one treatment type is allowed in 
this framework, rendering the neighborhood conditions rather aggregate. This may not be much 
of a limitation in clinical trials of different drugs, but it can pose a serious significant limitation 
when wanting to appreciate the effects of multiple neighborhood types on travel behavior and the 
like. Nevertheless, the model framework is a useful one, and can illuminate certain relationships, 
as described here.  

The following sections discuss how to consistently estimate the impacts of built 
environment on a key response variable (household daily VMT in this case), along with several 
measures of the “treatment” effects. 

METHODOLOGY 

Model Specification and Treatment Parameters 
A common approach to dealing with selection bias is use of a latent index model, which relates 
the treatment to the likelihood of potential treatment outcomes. More specifically, individuals 
receive treatment if the net “utility” of doing so is positive and do not receive treatment if the net 
utility is negative.  Potential-outcome equations (household daily VMT) are specified as follows: 

111
iiiY ε+= βX           (1) 
000
iiiY ε+= βX           (2) 

where Y1and Y0 are the potential outcomes of treated and untreated individuals, respectively. Of 
course, each observation has only one state, so either Y1or Y0 is observed for each individual – 
not both. Xi is a row vector of the observed explanatory variables for individual i, and ε1 and ε0 
are unobserved random variables. 

Letting Di denote the observed treatment decision of individual i (with Di = 1 meaning the 
receipt of treatment [rural or suburban location] and Di = 0 implying no treatment [CBD or urban 
location]), a selection equation essentially generates Di via latent variable Di*, as follows:  

D
iiiD ε+= θZ*           (3) 

where Zi is a row vector of observed explanatory variables for individual i, and εi
D is the 

unobserved random variable, affecting this outcome. Conventionally, Di = 1 if Di* ≥0, and zero 
otherwise. It is important to note that this utility function, which determines treatment 
assignments, can be a combination of preferences of individuals and others, as well as treatment 
availability (such as the number of homes for sale in rural or suburban TAZs). A key idea is that 
the treatment assignment is “random”, to some extent, depending on the size of the additive error 
term, εi

D, relative to the systematic component (Ziθ) of the “utility function” Di*.  
Using the above specification, the measured outcome for individual i can be given as 

follows:  
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In latent index models, ε’s are assumed to be independent of X’s. However, ui is correlated with 
Di, which leads to endogeneity bias. In order to consistently estimate the model, the expected 
value of εi

D is needed to serve as a control variable in Equations (1) and (2). The expected value 
of εi

D can be estimated using Equation (3), given an (assumed) distribution for εi
D.  

Following model estimation, interest lies in various measures of treatment effectiveness. 
The parameter estimates described in the above three models do not provide information on how 
individuals are self-selected. The post-processed treatment effect parameters serve this purpose. 
Heckman and Vytlaci (1999) and Heckman et al. (2001) focus on the following four: the average 
treatment effect (ATE), the effect of treatment on the treated (TT), the local average treatment 
effect (LATE), and the marginal treatment effect (MTE) (18, 19).  Each of these describes a 
specific perspective in evaluating the effect of treatment. 

Average Treatment Effect (ATE) 
Among the four effects, the ATE is perhaps of greatest interest since it is the expected change in 
outcome (Yi) from the treatment of a randomly selected individual. More specifically, it produces 
the expected VMT increase when moving a randomly selected household between an urban/CBD 
zone and a rural or suburban TAZ. 

( ) ( ) ( )0101 | ββxxXx −==−= iiiii YYEATE        (5) 

This parameter is conditional on the distribution of X. The unconditional estimate is obtained by 
integrating the equation over X’s multivariate distribution: 

( ) ( ) ( ) ( )∑∫
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01 1 xXX      (6) 

Effect of Treatment on the Treated (TT) 

The TT is the expected outcome gain from the treatment for individuals that select the treatment 
option. In this study, it represents the expected additional VMT of households located in a rural 
or suburban TAZ. 
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This parameter is conditional on the joint distribution of X and Z, so integration over 
( )1|, =iDF ZX  leads to the unconditional estimate, as follows: 
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Local Average Treatment Effect (LATE) 

The LATE is the expected outcome gain for individuals induced to experience the treatment by a 
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change in an instrument variable, from ii zZ =  to ii zZ = . The instrument variable is the 
“primary exclusion restriction” (19); it affects the treatment decision, but not the outcomes. 
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where [w] denotes a function of variable w. The unconditional estimate of this effect is as follows: 

[ ] [ ]( ) [ ] [ ]( ) ( )

[ ] [ ]( )∑

∫

=

==≈

=====−=
n

i
iii

iiiiii

DDLATE
n

dFDDLATEDDYYELATE

1

01

,1,01

,1,01,0|

xzz

XXzzzz
  (10) 

As Heckman et al. (19, pp. 215) explain, this parameter “corresponds to the treatment effect for 
individuals who would not select into treatment if their vector Z was set to zk (all other 
components of Z unchanged), but would select into treatment if Z was set to zk (z’ in the original 
literature).”  

Marginal Treatment Effect (MTE) 

The MTE is the expected outcome gain for individuals with a given value of εD, which means 
this parameter measures the average outcome gain for the individuals “who are just indifferent to 
the receipt of treatment when the zθ index is fixed at the value -εD” (19, pp. 216). 

 
( ) ( )

( ) ( )D
i

D
iiii

D
i

D
iiii

D
ii

UUE

YYEMTE

ε

εε

=Ε−+−=

=Ε=−=

|

,|,
0101

01

ββx

xXx
     

 (11)The unconditional estimate is as follows: 
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Trivariate Normality and Estimation 

Under an assumption of trivariate normality across the three error terms, estimates of these four 
treatment effects enjoy closed-form expressions. In addition, the model can be consistently 
estimated using a straightforward two-step procedure (as described in 19). Beyond trivariate 
normality, Heckman and Vytlaci (2005) have described estimation procedures for more general 
error term specifications (20). In these cases, the four treatment effects can be expressed as 
weighted averages of MTE, involving integral calculations. 

First, one assumes that the error terms (ε1, ε0, and εD) are jointly normally distributed: 

  
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

00100

10111

01

0

1

1
,

0
0
0

~
σσσ
σσσ
σσ

ε
ε
ε

D

D

DDD

N  

Equation (5) (for conditional ATE) can not be further simplified because the distributional 
assumption does not change the functional form. However, Equation (7) (for conditional TT) can 
now be given as follows: 
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where ρ1 = Corr(ε1, εD ), ρ0 = Corr(ε0, εD ), φ () is the standard normal density function, and Ф() 
is the standard normal cumulative distribution function. Due to normalization of the variance of 
the error term in the selection equation (σDD = 1), one finds that ρ1σ1 = σ1D and ρ0σ0 =σ0D.  

Equation (9) for the conditional LATE is then given as: 
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And Equation (11) for the conditional MTE can be written as:  

( ) ( ) ( ) D
ii

D
iiMTE εσρσρε 001101, −+−= ββxx       (15) 

It is apparent that when εD equals zero, MTE reduce to ATE because of the symmetry of the 
normal distribution. 

Heckman (1976) proposed a two-step procedure to estimate such latent index models (16), 
and Heckman et al. (2001) provide a detailed procedure for doing so (19), as summarized here 
now: 
Step 1. Run a binary probit model to obtain θ̂  for the treatment decision and then use θ̂  to 
compute the selection-correction terms (the expectation of the control variables). These 
expectations are defined as follows: 
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Step 2. Estimate two OLS regression models for Y values: one for groups that received the 
treatment (households living in rural or suburban Austin) and another for groups that did not, 
using the appropriate selection-correction terms. Use the estimation results (e.g. 1β̂ , 0β̂ , 

11 ˆˆ σρ and 00 ˆˆ σρ ) to obtain estimates of the treatment parameters, given X, Z and Z.  

MODEL RESULTS 
In this study, Y1 denotes household daily VMT for those living in rural or suburban 
neighborhoods, and Y0 denotes VMT for those in CBD or urban neighborhoods. Model 
specifications and analytical results are described below. 

A Model of Treatment Selection 
The explanatory variables in the binary probit model of treatment selection include an intercept, 
household size, number of workers, number of children under 5 years of age, household annual 
income, and age of household head. This last variable was chosen to serve as a “primary 
exclusion restriction” (19) that affects the treatment decision (e.g., residential location choice) 
but should not affect potential outcomes (e.g., household VMT). This variable is needed to 
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calculate the LATE. Attitudinal variables, such as strength of preference for living in less-
populated area, are ideally suited to this purpose. However, age of household head appears to be 
the only variable in the Austin Travel Survey that may be able to fulfill this role. Household 
income, originally a categorical variable, was transformed into a single, quasi-continuous 
variable using mid-point values.  

The model estimation shows that number of workers and number of children variables 
are not statistically significant, and were removed from the model specification. Table 1 provides 
summary statistics of all explanatory variables used in the final treatment-selection model, and 
binary probit model results are shown in Table 2.  

Not surprisingly, household size is estimated to positively impact the probability of one’s 
living in a rural or suburban area. Homes in these less intensely developed neighborhoods tend to 
be larger, single-family houses, and thus generally favored by larger households. The positive 
signs on household annual income and age of household head indicate that higher-earning 
households and those more advanced in age are more likely to live in rural or suburban areas, 
everything else constant.  

Models of Treatment Outcome 
Outcome models (for household daily VMT) are based on Equations (1) and (2), corresponding 
to the two treatment-specific groups (i.e., those living in rural or suburban areas, versus those 
living in CBD or urban areas). Explanatory variables include household size, number of workers, 
number of children, household annual income, number of vehicles, an indicator for whether 
proximity to work or school influenced their decision to locate in their current residential 
location (named Close to Work or School), an indicator for the presence of household member(s) 
driving a delivery vehicle (Delivery Driver[s]), and various neighborhood attributes (including 
median income of the home zone, population and household densities, and zonal employment, as 
determined by CAMPO for year 1997).  

Estimation results suggest that household size, number of children, “Close to Work or 
School”, median income of the home zone and household density are statistically insignificant in 
both equations, so these are not included in the final model. Since calculation of Heckman’s four 
treatment parameters requires the same number of explanatory variables in each of the two 
equations, variables that are statistically insignificant in just one of the equations are retained in 
both models. Table 3 gives summary statistics of model variables for both treatment groups, and 
Table 4 provides estimates of all model parameters. 

As expected, the numbers of workers and vehicles have positive impacts on household 
daily VMT, thanks to commute needs and easier access to vehicles. The presence of a delivery 
driver (as a household member) also increases the daily VMT. Interestingly, population and 
employment densities (of the home zone) are estimated to have opposing effects on household 
VMT, depending on location: significantly negative (as expected) in rural/suburban locations yet 
slightly positive in CBD/urban locations.  It may be that households living in downtown Austin 
are making more shopping and recreational trips, often by car, when there are more opportunities 
nearby, and everything else constant. 

Size of Treatment Effects 
Heckman’s four treatment parameters were calculated using Equations (5), (13), (14) and (15). 
The ATE is estimated to be 17.0 vehicle miles per day, which means a randomly selected 
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household is expect to increase its daily VMT by 17.0 miles when living in a rural or suburban 
neighborhood, as compared to living in a CBD or urban neighborhood (within the Austin region). 
Given the average Austin household’s 61.3 daily VMT, 17.0 represents more than a 27% savings 
in daily VMT.  

The TT was estimated to be 29.2 miles, suggesting that a household living in a rural or 
suburban neighborhood can be expected to exhibit 29.2 more daily VMT than one living in a 
CBD or urban neighborhood, all other attributes constant.  Based on the size of these two effects 
(ATE and TT), the impacts of the “built environment” on household daily VMT (i.e., the VMT 
increase due to living in a rural or suburban area of Austin, rather than centrally or downtown) is 
estimated to be 58% of the as-observed differences in treated and non-treated households. This 
implies that self-selection accounts for 42% of observed VMT differences across Austin 
households in suburban/rural versus CBD/urban zones. Essentially then, moving all rural or 
suburban residents into CBD or urban zones may be expected to yield lower VMT savings than 
analysts may perceive at first glance.   

It is worth mentioning that results on treatment effects are not highly robust to model 
specifications. When using the presence of four or more visitors on the travel survey day as the 
“primary exclusion restriction” variable (which affects the treatment decision but not the 
potential outcomes), the ATE is estimated to be 20.2 vehicle miles per day, the TT is estimated to 
be 22.5 vehicle mile per day, and the impacts of the “built environment” on household daily 
VMT are then estimated to be 90% of the observed differences in treated and non-treated 
households. However, the number of visitors varies from day to day, and so does not robustly 
represent a household, like age of household head. Certainly, different contexts will impact this 
ratio as well – for example, VMT by households residing in a transit-oriented station area versus 
those residing just outside.  Ideally, Heckman’s latent index model will be tested in a variety of 
contexts, with a variety of specifications, using more appropriate variables than one usually finds 
in standard travel surveys. 

CONCLUSIONS 
Land use-transportation interactions present a complex problem, and self-selection in location 
choice is a difficult issue to address properly. To date, different approaches, using different data 
sets and geographic scales, draw rather different conclusions.  Seeking a statistically defensible 
approach, this study applied Heckman’s latent index model to estimate the impact of 
neighborhood type on household daily VMT.  Based on a sample of 1,903 Austin households 
residing in either rural or suburban zones (“treated”) versus CBD or urban zones (the “untreated” 
population), results suggest that this binary measure of neighborhood conditions is associated 
with significant changes in a household’s daily VMT: 17.0 more VMT per day per household 
when moving a household from a CBD/urban zone to a rural/suburban location, everything else 
constant. Essentially, the data indicate that at least 58% of observed VMT differences are due to 
the household’s location while the remaining 42% can be attributed to self-selection. This result 
provides support for New Urbanist claims, in that “built environment” attributes account for the 
majority of observed VMT differences. However, self-selection also is evident, as households, to 
some extent, choose a residential location in order to realize desired travel patterns.  Therefore, 
modifications of land use patterns and the “built environment” can moderate automobile reliance, 
but to a lesser extent than is often argued, based on standard analyses of VMT data.   

In addition to providing such estimates, this paper sought to illustrate the modeling 
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paradigm’s potential.  Heckman’s approach is powerful, for a variety of contexts. Nevertheless, 
several enhancements can be made. For example, detailed address information on home, 
workplaces, and trip destinations is obscured (with such locations tied only to a TAZ). Without 
exact locations, it is difficult to construct more careful and meaningful measures of 
neighborhood design (e.g., distance to the nearest shopping center or bus stop). Furthermore, the 
CBD/urban versus rural/suburban distinction (based on a threshold density of 3 person-
equivalents per acre) is quite arbitrary, and more interesting land use distinctions can be posited 
(e.g., transit-friendly zones versus all others).   

Of course, one very desirable extension of Heckman’s methodology is the option of 
multiple treatments, via a multinomial model for location choice and/or neighborhood attributes.  
This would allow for more continuity and variety in built environment conditions. Of course, 
computation of treatment effects under such a setting will be more difficult, but may remain 
feasible. Another potentially useful extension is to consider discrete models of latent 
segmentation for consistent treatment of discrete outcomes (e.g., vehicle ownership decisions, 
rather than, say, VMT). 

Finally, it should be mentioned that this model’s estimation does rely on assumptions of 
normality in the three key equations error components, and may not be robust to departures from 
this distributional assumption (19). More robust approaches tend to be non-parametric in nature, 
and therefore more complicated. In addition, a single percentage result (e.g., 58% or 90% of 
VMT differences being attributable to one’s location) is not highly robust to model specification. 
More finely defined location types and more appropriate control variables than those offered in 
the Austin Travel Survey would be helpful in disentangling the role of home location. Regardless, 
Heckman’s past methodological contributions take transportation planning and design in a new 
and rigorous direction. The present work offers transportation analysts a sense of the magnitude 
of the self-selection issue, at least for the important case of central versus non-central locations. 
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TABLE 1   Summary Statistics for Variables Used in the Location Choice Model 

Explanatory Variables Minimum Maximum Mean Std. Deviation 
Household size (all persons) 1 10 2.61 1.33  
Annual income (in $1,000, 
for year 1996) 5 150 44.93  30.97  

Age of household head 18 99 42.34  15.76  
        Nobs 1,903 
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TABLE 2   Probit Model Results for Residential Location Choice 

Explanatory Variables Coefficient t-statistics 
Constant -1.08 -9.27 
Household size 0.286 11.49 
Annual income (in $1,000) 0.00242 2.42 
Age of household head 0.0113 5.88 
        Nobs 1,903 
Log Likelihood   

Market Share -1286.5 
Convergence -1196.2 
LRI 0.0702 

 
Note: Residential locations in CBD or urban zones serve as the base. 
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TABLE 3   Summary Statistics for Variables Used in the Models of Household VMT 

Explanatory Variables Minimum Maximum Mean Std. 
Deviation 

Living in Rural or Suburban Areas (Treated Sample) 
Number of workers 0 5 1.51 0.86 
Number of vehicles 1 8 2.05 0.87 
Delivery driver(s) 0 1 0.0550 0.228 
Population density 
(1,000/square mile) 0 5.63 1.91 1.71 

Job density 
(1,000/square mile) 0 11.19 0.403 0.776 

Household daily VMT 0 962 71.03 88.14 
        Nobs 1,127 
Living in CBD or Urban Areas (Untreated Sample) 
Number of workers 0 4 1.31 0.838 
Number of vehicles 1 5 1.73 0.798 
Delivery driver(s) 0 1 0.0374 0.190 
Population density 
(1,000/square mile) 0 25.09 6.32 3.48 

Job density 
(1,000/square mile) 0.136 164.8 3.85 8.26 

Household daily VMT 0 981 47.04 81.55 
        Nobs 776 
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TABLE 4   Model Results for Household Daily VMT (OLS) 

Explanatory Variables 
Living in Rural or Suburban 

(Treated) 
Living in CBD or Urban 

(Untreated) 
Coefficient t-statistics Coefficient t-statistics 

Constant 30.43 2.41 -16.30 -1.23 
Number of workers 13.55 4.08 8.97 2.30 
Number of vehicles 16.75 5.05 16.03 3.81 
Delivery driver(s) 18.89 1.70 26.87 1.77 
Population density 
(1,000/square mile) -6.57 -4.39 0.50 0.60 
Job density 
(1,000/square mile) -5.23 -1.60 0.90 2.60 
Selection-correction -1.02 -0.08 -18.40 -1.50 
Number of Observations 1127 776 
        R2 0.097 0.072 
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Note: All zones contain at least one sampled household, except for those labeled as “Study Area” zones, 
which complete the three-county region. 

 

FIGURE 1   Classification of Austin’s traffic analysis zones. 
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