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ABSTRACT 

 
Annual average daily traffic (AADT) values are a key variable in many models and policy 

decisions; however, these are simply rough estimates of traffic counts along the vast majority 

of roadway sections. This research quantifies the level of uncertainty in AADT estimates by 

quantifying different errors that emerge, from extrapolating short-term local counts over time 

and space. Factoring errors (from use of day of week and month of year factors, based on 

permanent detector station count patterns) are investigated across roadway and area types, for 

both Minnesota and Florida automatic traffic recorder (ATR) sites.  Errors resulting from 

spatial extrapolation (due to reliance on a nearby count site’s AADT as a proxy) also are 

studied, as a function of distance to the nearest sampling site, using predictions of network 

travel patterns in Austin, Texas and freeway traffic counts from California’s Performance 

Measurement System (PeMS). Temporal errors, from extrapolation of counts forward in time, 

are quantified using 21 years of AADT values from Minnesota’s permanent ATR sites. A table 

summarizing the nature and magnitude of these various errors serves as a reference for 

designers, planners and researchers, who rely on count data. 

 
The analytical results of this investigation suggest a variety of recommendations for agencies 

seeking to reduce and appreciate errors in their AADT estimates. These include sampling in 

spring and summer months (on weekdays), pursuing appropriate site assignment to ATR 

groups, and recognizing the effects of distance to the sampling site – over time and space. 
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With adequate attention, (average) errors in AADT estimates can probably be reduced to the 
level of user-required accuracy.  Nevertheless, these still will have an impact on investment 
decisions, crash rate calculations, travel demand model validation, and other analyses. 

Keywords: Annual average daily traffic (AADT), traffic counts, VMT estimation, automatic 
traffic recorders 
 
INTRODUCTION 

AADT is a key variable in many models and policy decisions, producing vehicle miles 
traveled (VMT) estimates for analyses of crash rates, evaluation of infrastructure management 
needs, air quality compliance and validation of travel demand model predictions.  Despite 
their importance, AADT values are simply rough estimates of traffic counts along the vast 
majority of roadway sections. In the U.S. these emerge from short-period traffic counts 
(SPTCs) in which one- to three-day samples are taken every few years at select points across 
large-scale networks. These counts are factored up to a yearly estimate based on year-to-year 
trends, sampling season and day-of-week factors developed using data obtained from 
permanent automatic traffic recorder (ATR) stations.  
 
The number and spatial frequency of ATR sites and the durations and timing of the remaining 
network’s SPTC vary by state and by region, as well as by functional class of roadway.  For 
example, there are 240 ATR sites in Texas, 293 in Florida and 78 in Minnesota.  In Texas 
sampling is done for 24 hours once every five years at roughly 90,000 sites, except in non-
attainment regions, where the frequency is every three years and on-system highways, where 
counts are done annually.  In Minnesota, the sampling is done annually, for 24 hours at 
roughly 78 sites.  Differences in protocol, from state to state and site to site, shape the 
uncertainty or error in the resulting AADT estimates. It is very important that analysts, 
including designers, planners and policymakers, have a sense of the magnitude of these errors, 
in order to appreciate the reliability of their results, their designs and their policies.  By 
attaching uncertainty information to AADT estimates (e.g., via the use of confidence 
intervals), more accurate results can be communicated and more robust decisions made. For 
example, in designing a road for the next 20 to 40 years, designers should recognize that even 
current AADT estimates based on short-period counts involve non-trivial error.  More cost-
effective and reliable designs to combat congestion may require substantial added capacity 
and/or road pricing policies, in order to incorporate 85% or more of future-demand scenarios.  
This paper seeks to quantify the uncertainty in AADT estimates to provide designers and 
policy makers with baseline values for these errors based on empirical analysis.   
 
AADT can be determined precisely only at sites having permanent automatic traffic recorders 
(ATRs) that are accurately recording traffic flows throughout the year.  In most states AADT 
is estimated by multiplying the short-period traffic counts (SPTCs) by day of week (DOW) 
and month of year (MOY) factors, from the ATR group to which the site is assigned. This 
assignment of an SPTC to ATR groups can be rather imprecise, and different states use 
different methods of assignment (FHWA 2001). The error resulting from applying the factors 
from ATR groups to SPTC to estimate AADT is called the factoring error. In this study, this 
error is considered by assigning sites using simpler but intuitive classification schemes, such 
as the location of the site (urban versus rural), functional class of the roadway (arterial, 
collector and freeway) and number of lanes (4 or fewer, 5 or more) on which the site is located. 
The ATR count data used in the analyses come from Department of Transportation staff in 
Florida (293 ATR sites) and Minnesota (58 ATR sites).  



 
It is expensive to have short term counts on all roadway segments (e.g., every mile in a 
network) and/or every year; thus, the spatial and temporal frequency of SPTCs varies from 
state to state. For this reason, many segments are assigned an AADT estimate from the nearest 
SPTC location and rely on counts that are one to four years old. The errors involved in such 
estimates are referred to here as spatial and temporal errors, respectively. Since we do not 
have access to closely spaced traffic counts, spatial error is studied here using travel demand 
modeling results for network travel patterns in the Austin, Texas region and freeway traffic 
counts from PeMS data. The temporal errors are studied using 21 years of AADT values from 
Minnesota’s permanent ATR sites (63 of which are in rural locations and 81 of which are 
classified as urban locations), between 1984 and 2004.   
 
In this research, the relative magnitudes of errors in AADT estimates due to short-term 
sampling (i.e., day-to-day random variations in traffic counts), reliance on other sites’ factors, 
misclassification, and spatial and temporal approximation were studied using Minnesota, 
Florida, Austin, and Southern California data sets. The following sections describe findings 
from related literature, the data and methodology used here, analytical results, and 
recommendations for sampling. 
 
LITERATURE REVIEW 
 
Despite the central nature of AADT estimates in a variety of transportation planning and 
policy practice, relatively little work exists in this topic area. Sharma et al. (1996) studied the 
precision of AADT estimates using traffic data from 63 ATR sites in Minnesota. The ATR 
sites were grouped into five clusters based on their characteristics. Two of the five groups 
represented regional routes with low seasonal traffic, one represented average rural routes, and 
two represented routes serving recreational areas. The results of the study show estimated 
AADT values to be off by at least 11% in 95% of the cases with “regional routes serving 
commuters and business trips” enjoying the smallest AADT estimation errors and heavy-
traffic rural routes serving recreational areas suffering the highest errors. Sharma et al. 
concluded that it is most important to assign a site to its correct group; incorrect assignment 
carries the greatest potential for significant estimation error.  They also found that estimation 
error falls only moderately with count duration, from 16.5% at 24 hours to 13.13% at 72 hours. 
Granato (1998) used a single ATR’s data in Iowa to demonstrate how use of day-of-week 
(DOW) and month-of-year (MOY) factors reduces AADT error by roughly 25%, as compared 
to using one-day counts directly. He also found that longer counts (48 and 72 hours) 
contribute only minimally (error falls from 11.3% to 10.9%) in improving AADT accuracy. 
This research builds on such earlier work by investigating variability of AADT estimates 
across roadway locations and functional classes, using both Florida and Minnesota ATR data 
sets. It examines error for different classification schemes (including misclassification) and 
count durations (24, 48 and 72 hours), quantifying the relative contribution of different factors. 
Several more recent studies have looked at improving AADT forecasts. Most involve finding 
the most efficient (least-error) methods to predict AADT from SPTCs. In terms of AADT 
forecasts, Lam and Xu (2000) analyzed data at 13 locations and found that neural networks 
consistently performed better than regression analysis, and 8-hour counts (if AADT is 
estimated from something less than a 24-hour interval) are most appropriate. Tang et al. 
(2003) used historical and current-year partial daily flow data from a Hong Kong ATR to 
compare four different forecasting models (including neural nets, nonparametric regression, 
and autoregressive integrated moving average models), and they concluded that Gaussian 
maximum likelihood methods performed best. Jiang et al. (2006) used a weighted combination 



of past and present counts along 122 highway segments over a 10-year period to estimate 
AADT. They concluded that accuracy improved when the averaging was applied on a large 
scale, and that the number of SPTCs could be reduced on many segments.  
 
None of the above mentioned studies has analyzed all the error types, especially those arising 
from spatial and temporal extrapolation of SPTC data.  However, Eom et al. (2006) recently 
used spatial statistics to improve AADT prediction along non-freeway facilities in Wake 
County, North Carolina. They found that a model which takes both spatial trend and spatial 
correlation into account provides better predictions for locations where no observed count data 
exist. Similarly, Goel et al. (2005) used simple correlations between SPTCs and ARTS sites to 
improve AADT estimates. Error reductions were practically significant in cases where 
correlation was high, as expected. Nevertheless, the magnitude of spatial and temporal errors 
emerging from simple extrapolation is yet to be quantified. To address these gaps in existing 
literature, this study uses travel demand model estimates of network flows on an average 
weekday in Austin, Texas and ATR count data from Minnesota, between 1984 and 2004. In 
this way, it is able to quantify AADT estimation error, as a function of distance to sampling 
site and over one to four years of extrapolation. Moreover, none of the literature quantifies or 
summarizes all the errors associated with AADT estimation, making it difficult for designers, 
planners and policymakers to incorporate such errors in their decision making.  By using the 
Minnesota and Florida ATR data to quantify the factoring error associated with site 
classification, (day of week and month of year (for different site types) and by recognizing the 
effects of count duration as well as spatial and temporal extrapolation, this paper seeks to 
quantify the magnitude and nature of all major sources of error in AADT estimation.  
 
DATA COLLECTION AND DESCRIPTION 
 
In this section, data sources are described and summary statistics examined. Generally, traffic 
data are collected at permanent (ATR) and temporary (SPTC) sites. At permanent sites, loop 
detectors, weigh-in-motion sensors, and/or other equipment is installed for year-round, long-
term vehicle detection.  Temporary sites use portable sensors, for 72 hours or less once every 
one to five years. The basic traffic count data used for analysis here were obtained from the 
Florida and Minnesota Departments of Transportation (FDOT and MNDOT).  Network-level 
estimates of flow used for spatial error analysis come from the Austin travel model that was 
calibrated and applied by the consulting firm Smart Mobility (Marshall 2005). In addition, 
loop detector counts along sections of several Southern California freeways were obtained via 
PeMS, and used for spatial error analysis. 
 
FDOT provided a CD-ROM containing traffic data of 293 ATR sites for the year 2004. Data 
were available on an hourly basis, and a functional class and area type were associated with 
each site. Since ATRs sometimes switch off, get moved, and/or lose their data-stream 
connection, 64 sites of these 293 permanent sites had incomplete traffic counts (i.e., fewer 
than 365 days worth of data).  Table 1 provides additional details (on functional class and 
urban/rural location) of these ATR sites.  GIS-encoded maps of all ATR and short-term count 
locations also were provided, along with AADT estimates at all 8,004 SPTC sites.  
 
MnDOT staff emailed 2002 traffic data for 78 ATR sites, along with short-term counts at their 
4,400 SPTC locations. Only 57 of the 78 ATR sites provided functional class, area type and 
number of lanes information, so this study relies only on those 57 sites for analysis. As shown 
in Table 1, 19 of these are coded as urban sites, and the other 38 are rural.  Unlike Florida, 
most of Minnesota’s ATR sites are labeled rural (38 vs. 19 urban sites in Minnesota), and 



lane-number information is given (as described in Table 1).  In both cases, the majority of 
sites are labeled as arterials (rather than freeways or collectors). 
 
Smart Mobility’s 2005 predicted counts for Austin’s over-10,000 coded links also include 
information on functional class, area type, and number of lanes (as shown in Table 1). While 
the Austin data cover all coded links in Austin’s network, they are only predictions.  Actual 
day-to-day counts may vary substantially across links, over space.  For this reason, one week’s 
worth of actual count data from California’s PeMS data base (PeMS 2006) also was acquired.  
These counts come from loop detector stations along three of Southern California’s Interstate 
freeways (I 110 S, I 405 S, and I 5 N) at average spacings of 0.51, 0.58, and 0.68 miles, 
respectively. Together, the Austin and PeMS databases provide a sense of spatial variations in 
AADT prediction error, with the PeMS allowing a closer, more realistic look (though on 
freeways only).  Table 1 describes the Florida, Minnesota and Austin data by area type (urban 
or rural), functional class (arterial, collector or freeway) and number of lanes. As noted earlier, 
states and regions use different protocols in collecting short-term and permanent counts. These 
protocols impact the uncertainty or error in their AADT estimates.  In Florida SPTCs are taken 
annually at roughly 8,000 sites, at a spatial frequency of around 0.8 centerline-miles in urban 
areas and generally between 2 and 10 centerline-miles in rural areas. (Florida Traffic 
Information 2004). In Minnesota SPTCs are taken annually at around 4,400 sites, with a 
spatial frequency of roughly 1 mile in the urban areas and 1.5 miles in rural areas. (Mn/DOT 
2006) In contrast, Texas’ short term counts are taken at approximately 80,000 sites total, at 1-, 
3- or 5-year cycles, depending on whether the site lies along a state-system roadway or in a 
non-attainment area.  They occur at an average spatial frequency of roughly 1 count per 
centerline mile (generally less than a mile in urban areas and potentially more than 5 miles in 
rural areas). (Crum 2005)   Since SPTC data are taken for such a limited duration, the errors in 
their AADT estimates cannot be quantified without acquiring additional data.  Thus, they were 
not examined here.  However, an understanding of their duration and frequency is paramount 
in anticipating errors that emerge from their factoring and extrapolation over space and time. 

METHODOLOGY 

In this section the methods used to estimate and compare different types of error are described. 

 
DOW and MOY factors were created on the basis of individual-site as well as grouped-site 
data.  A year’s AADT was estimated from each day’s short-term count using a variation of the 
Traffic Monitoring Guide’s (FHWA 2001) standard formula: 

iiiiiiest GADMVOLAADT ****, =       (1) 

 

where AADTest,i is the estimate of annual average daily traffic count (vehicles per day) at 
location i, VOLi is the actual 24-hour axle volume, Mi is the applicable “seasonal” (MOY) 
factor (which may come from a group assignment), Di is the applicable DOW factor for factor 
group h, Ai is an axle-correction factor for location i, and Gi is a traffic growth factor for factor 
group h (for inter-sample years).  
 
Eq. (1) can be modified as necessary, depending on the conditions used to take the short 
duration counts. In this study, vehicle counts (rather than axle counts) were given and analysis 
was done for the same year’s count, so axle-correction and traffic growth factors were not 



required. Moreover, every ATR site had (virtually) a full-year’s data, so month-of-year and 
day-of-week factors could be created expressly and precisely for each location.  In this way, 
Eq. (1) becomes the following:  

iiiiest DMVOLAADT **, =        (2) 

The two relevant factors for ATR site i, Mi and Di, were calculated as follows: 

                                                                          (3) 

i
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AADTD DADT=                                                                              (4) 

where AADTi is the true AADT (an average of all 365 days’ counts), MADTi is the average 
daily traffic for the applicable month in question, at location i, and DADT is the average daily 
traffic for the applicable day in question (e.g., all Mondays in the year, or all Fridays in the 
year), at that location.  In this way, if a particular month of the year, or day of the week, has 
unusually low or high counts (e.g., January and Sunday exhibit less-than-AADT traffic levels, 
typically), it will have a monthly or daily factor that corrects for this bias, raising or lowering 
the day’s count to better reflect an annual (AADT) estimate. Data from each site were used 
both collectively and individually in determining these factors.   
 
Since both actual and estimated AADT values were available for all ATR sites, percentage 
errors in AADT estimation were calculated as follows:  

i

iesti

i AADT

AADTAADT
Error

,
100%

−
=                                                                     (5) 

These are computed as absolute errors, for purposes of averaging, and to achieve a sense of 
the overall magnitude of uncertainty inherent in relying on a single day’s data and/or relying 
on other sites’ factors. 
 
As noted, factors were created in three distinct ways: (1) using a site’s own data for a set of 
idealized factors (resulting in estimates of pure sampling error), (2) relying on other similar 
sites’ data for these factors (resulting in estimates of factoring errors), and (3) using an 
incorrect ATR group’s data for these factors (resulting in estimates of misclassification error). 
For the second approach, group membership was determined on the basis of area type (urban 
versus rural), functional class (freeway versus arterial, and, in the case of Florida, collector), 
and, in the case of Minnesota, number of lanes (2 to 4 lanes, versus 5 or more). 
 
 Misclassification error occurs when a site is assigned to an incorrect ATR group. This leads 
to application of the average factors of the (incorrect) ATR group to the site and may cause 
large errors in AADT estimation at that site. For example, if an urban site is misclassified as a 
rural site, the average factors of the rural ATR group are applied, in order to estimate the 
urban site’s AADT. These errors were quantified for the sites in the Florida and Minnesota 
datasets (according to area type and functional class). 

Spatial Error 

i
i

i

AADTM MADT=



Spatial error occurs when a roadway segment is assigned the AADT from its nearest sampling 
site, due to non-availability of more local counts. These errors were quantified as follows. The 
Smart Mobility-predicted flows on the Austin travel network were assumed to be the actual 
counts on each of the coded 10,594 links. Then, the midpoint of a particular link on a 
particular roadway was assumed to be the short term count location. The difference in flow 
from this location to (center points of) nearby links, along the same roadway, gave the spatial 
error involved in assigning the AADT at the short term count location to those links. The 
distance between mid-points of the links along the roadway was noted, in order to appreciate 
how such error varies with distance from the assumed short term count site. Errors were 
averaged for every 0.2 mile bin of values, in order to ascertain average error at a given 
distance. Seven distinct roadway sections were chosen from the Austin network, so that they 
included different area types, functional classes and numbers of lanes. And each provided the 
equivalent of three short-term count sites (using different links as starting points, or count 
sites). Thus, data for 21 hypothetical count sites was analyzed to estimate the extent of error 
likely caused by spatial extrapolation.  
 
Of course, the Austin counts are simply model predictions, rather than actual counts. Actual 
counts may well vary greatly from day to day and link to link.   
To address such potential variations in spatial error, a week’s worth of PeMS data from 10 to 
15 (consecutive) loop detector stations on each of three freeways (I 110 S, I 405 S, I 5 N) were 
used.  Extrapolations were made to a distance of almost 3 miles, and a series of 5 to 6 
consecutive stations were used as the “base” station (to predict downstream counts, up to 3 
miles away). 
 
Temporal Error 
Of course, spatial extrapolation errors are compounded by temporal extrapolation (i.e., using 1 
day’s count rather than 365 days’ count, and forecasting future year’s counts). AADT values 
at Minnesota’s 144 permanent ATR sites were used to analyze the inter-year variability in 
AADT. Error levels in AADT estimates resulting from 1 to 4 years of forward extrapolation 
were calculated based on 21 years worth of data (1984-2004). 

Count Durations 

The effects of longer short-period count durations also were studied, to appreciate how AADT 
prediction errors decline.  To estimate AADT using 48- and 72-hour traffic counts, the DOW 
and MOY factors were modified.  Daily counts on consecutive calendar days were combined, 
and 7 DOW and 12 MOY factors were created. In these cases, DOW really characterized two 
or three consecutive days of the week. MOY factors used either one-half, one-third or two-
thirds of the multi-day counts that crossed their edges i.e., a sequence of 48 hours that 
overlapped with a different month was halved for the two months while a 72-hour count 
sequence that crossed months was divided either as one-third and two-thirds, or as two-thirds 
and one-third for the two months, depending on the overlap.  

RESULTS AND DISCUSSION      

The following describes error results, based on methodologies described above. Factoring 
errors are discussed first, followed by spatial and temporal errors, and finally, error variation 
by DOW, MOY, count duration and traffic flow levels. 
 
Table 1 illustrates data used for quantifying factoring error across all sites and days of week 
for Minnesota and Florida ATR data, after clustering based on area type (urban versus rural), 



functional class, and number of lanes.  These rely on factors from similar sites (as determined 
by area type and functional class), and thus present a common case. In Minnesota, roughly 
40% of the sites exhibited average AADT estimation errors within 6% of the actual values, 
and very few exhibit more than 60% error. In comparison, 32% of Florida’s errors fell below 
6%, and quite a few lied above 60%, with several sites exhibiting average errors as high as 
90%. In terms of overall errors, Florida ATR sites were found to have a higher overall average 
error in AADT prediction (14%) as compared to Minnesota sites (12%). Thus, the factoring 
error is on the order of 10-15%, based on both Minnesota and Florida data. Tables 2 and 3 
present the prediction error results for Florida and Minnesota by area type, functional roadway 
class, and number of lanes. As can be seen, a short-period count’s site classification can have 
significant effects. The average errors in estimation of AADT range from 11.5% to 20% and 
the maximum errors can be as high as 81%. Freeways exhibit slightly greater uncertainty in 
both cases, compared to arterials and collectors in both Florida and Minnesota. Roadways 
with a high number of lanes (more than 5) have much larger errors than those having less than 
5 lanes.   
 
Figure 1 compares the various error components (from sampling, factoring and 
misclassification). When factors from the site’s own traffic counts are used for its AADT 
estimates, the case is ideal (and unrealistic, of course), and the absolute average error is 6.69%, 
as compared to 11.65% when factors from similar sites (properly classified) are used. When 
sites are misclassified, factor-related errors rise to 19.35% in Minnesota. In Florida, the 
comparable values are 8.28% (pure sampling error, ideal factors used), 13.62% (proper 
classification factors used) and 15.09% (misclassified factors used). Clearly, classification 
plays a significant role. 
 
Figure 2 shows the results of spatial error variation in the Austin travel model predictions. The 
results indicate that the average error (for 23 calculations) increases with distance, as 
expected: from 6.33% at just 0.2 miles away to a shocking 79.5% at just 1.6 miles. The 
percentage error is much higher for urban areas as compared to rural areas, and is consistently 
higher for 4 lane roads (as compared to 2 lane roads). The error appears to be quite small in 
rural areas (e.g., 2.14% within 1 mile), supporting, to some extent, the lower sampling 
frequencies that states show in these areas. However, such errors increase beyond 1 mile. In 
urban sites an average error of 20% was computed at distances of 0.5 miles, and 60% at 1 mile 
from count sites. For this reason, DOTs will no doubt want to sample urban locations more 
frequently than every mile. Arterials and freeways experience higher error (20%) compared to 
collectors (4.82%) at short distances, but lower error levels at longer distances. This may be 
due to the limited number of entry and exit ramps on freeways, versus the high frequency of 
intersections and driveways that occur along collectors. Higher errors for four-lane roads (as 
compared to two-lane roads) are consistent with the ATR results.  
 
Figure 3 shows the variations in spatial error using PeMS 24-hour counts over the course of 7 
consecutive days along I-110 S, I-405 S, and I-5 N. The spatial extrapolation errors rise 
quickly, to roughly 10% for I-5 and I-405 and around 40% for I-110 within a mile from the 
assumed count site.  The results found here are comparable to the error data from Austin’s 
freeway sites which have a 30% error at 1 mile from the count site.  The jumps in these counts 
at the lower intervals of distance is somewhat troubling, particularly for I-110.  The same 
day’s data applied just one-half mile away yields sizable misprediction. In the case of I-110, 
the jumps render such spatial extrapolations practically useless to analysts. Freeways are 
relatively well controlled roadway environments, with few points of entrance and exit (though 
these points certainly can represent major ramps and facility merges).  If misprediction can be 



so severe in these cases (consistent with the Austin TDM evidence), analysts should be highly 
skeptical of counts one or more miles away when seeking to estimate VMT, crash rates, 
emissions and other variables. Perhaps a combination of upstream and downstream counts will 
assist the prediction, as well as evidence from cross-street counts, to obtain a sense of whether 
traffic is being added or removed from the facility of interest.  Alternatively, far more frequent 
SPTC spacings may be necessary, to ensure extrapolation does not exceed 0.5 miles, except in 
locations where traffic loads are known to be highly stable over space. 
 
Figure 4 illustrates the error levels in AADT estimates resulting from 1 to 4 years of forward 
extrapolation. In general, the errors at urban sites were found to be greater than those at rural 
sites, consistent with the higher coefficients of variation witnessed at these sites in any given 
year. The average year–to-year increase in forward-prediction errors is about 3%, per year, 
with the greatest jumps in these Minnesota ATR data evident in the first and third years. In 
order to avoid the jumps that are likely to widen as time passes, and more uncertain elements 
enter the prediction picture, state DOTs aim for greater frequency in count measurements.   
Nevertheless, these results do not suggest any highly convex shape for misprediction levels 
over time, so more spatially regular (more tightly spaced) AADT measurements may be more 
worthwhile than more frequent measurement at fewer sites.  
 
Table 4 summarizes the factoring, spatial and temporal errors described above. The error 
variation with distance from site and time of extrapolation is shown with a base factoring error 
of 12% (error at a site from site classification for DOW and MOY factors, with counts from 
the same site in the same year). It is found that the results of the Minnesota ATR temporal 
error and Austin data analyses are combined in the table and these suggest that errors rise 
quicker with distance, than with time of extrapolation. For example, taking count samples 
every 1 mile, every other year will result in average misprediction levels of 70% at all count 
sites in the off year, while taking samples every 2 miles, every year is expected to result in 
average misprediction levels of 125%. Thus, spatial extrapolation is not recommended beyond 
1 mile. The table could be used by designers and planners to determine what error to correct 
for, if they are extrapolating the site count spatially or temporally. This table reflects only the 
average; therefore the actual error could be lower or higher, based on day of week, month of 
year, functional class of the roadway, count duration and actual value of count itself. These 
variations by these factors have been analyzed and summarized in table 5 and figures 6 and 7. 
 
Table 5 presents the results of regression analysis of percentage error on different variables, 
including the DOW, MOY, functional class, area type and number of lanes, for both Florida 
and Minnesota.  Counts taken along rural, arterial roadways with more than 5 lanes on a 
Sunday in January are also used as the base case, for comparison. A higher negative 
coefficient on a particular variable means lower error levels for that day, month or roadway 
type. For example, Minnesota’s AADT errors tend to be lower on Mondays as compared to 
Tuesdays (coefficient of -6.00% vs. -5.08%).  In Minnesota it was found that there is no 
difference in error between February and January and that March, July, November and 
December exhibit the highest errors, among months of the year. In contrast to the Florida 
results, urban area freeways (and roadways with 4 or fewer lanes) exhibited less error than 
their counterparts.  Florida’s data exhibits rather dramatic misprediction tendencies when 
counts come from September and November (an issue that may be specific to the 2004 data 
year). And errors tend to be larger along freeways and in sites classified as rural (and along 
arterials, as compared to collectors). Average errors tend to be lowest in the months of March 
through June in Florida (averaging 10%), and August through October in Minnesota 
(averaging just 6%), suggesting that those periods are most suitable for short term counts.  



 
Figure 6 indicates that multi-day sampling offers little in the way of error reduction, averaging 
roughly 0.7% error reduction for each extra day of sampling (11.0 %(24 hours), 11.7 (48 
hours) , and 12.6 (72 hours)) .  These findings are comparable with the Sharma et al.’s (1996) 
results (where error fell from 16.5% at 24 hours to 13.13% at 72 hours) and Granato’s (1998) 
results (where error fell from 11.3% at 24 hours to 10.9% at 72 hours).  
 
Figure 6 also illustrates variations in AADT prediction error versus actual AADT. The errors 
are found to be high in both Minnesota and Florida, at very low AADT values. Then a 
lowering trend occurs with an increase in AADT values. The lowering is more evident in 
Minnesota where errors decrease from roughly 20% at 2,000 vehicles per day (vpd) to just 6% 
at 120,000 vpd. Evidently, traffic loads are much more predictable on high-volume roads in 
Minnesota but it should be noted that the higher volume roads tend to be freeways in urban 
areas, which, in general, enjoy lower AADT estimation error.  Thus, 5+-lane facilities were 
associated with higher error rates, ceteris paribus (i.e., after controlling for facility type and 
location), in Table 4’s regression results.  It is important to recall that factors such as total 
flow have global as well as marginal roles. 

CONCLUSIONS AND RECOMMENDATIONS 

AADT estimates are fundamental to the analysis of transportation data sets and the 
management of transportation systems. Using several distinctive data sets, this research 
illuminates the magnitude and sources of uncertainty in such estimates. Many of the results 
appeared consistent across states which supports the notion of their transferability to other 
contexts. Consistent with expectations and practice, the sample counts taken over the 
weekends result in greater estimation errors, along with rural sites and multi-lane facilities, 
due to greater variation.  Nevertheless, those with higher counts in Florida tend to prove more 
predictable overall. 
 
Proper site classification is key, and tendencies may vary by state. These analyses of ATR 
data can be performed by any agency, to assess whether certain roadway types or times of 
year require greater sampling caution. Fine clustering, on the basis of functional class, lane 
count, and multiple area types, may prove very useful.  
 
Spatial errors can increase dramatically beyond 0.5 miles (from the count site) in urban areas 
and 1 mile in rural areas; thus, caution is needed when assigning the AADT estimate of the 
nearest SPTC site to a roadway segment, and additional SPTC locations may be most prudent, 
particularly in locations where counts average less than 1 per mile.  
 
Appreciation of the uncertainties inherent in AADT and VMT estimates is paramount for 
robust evaluations of crash rates, pavement deterioration, and other transportation data. This 
research seeks to enlighten the use of such estimates, and thereby enhances transport decision 
making.  The summary table resulting from this work offers base estimates of factoring, 
spatial and temporal errors and  details on how these errors vary by day of week, month of 
year, area type, functional class, number of lanes duration and distance to nearest SPTC 
station. Given the magnitude of errors witnessed here, transportation agencies may wish to 
increase the spatial frequency of their SPTCs as well as increase the frequency of counts at 
along urban freeways and other facilities exhibiting the greatest predictive errors. Investment, 
planning and design decisions stand to benefit greatly from better estimates of roadway use. 
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Table 1. Data description (Number of sites) 

Note: Florida did not provide lane count information, and none of the Minnesota sites was 

labeled as a collector. 

 

Table 2. Average errors in AADT estimation for different site classification schemes in MN 

Classification 
Sub-group 

 
MNDOT 

(#) 

Absolute Avg. Error (%) 

Min Max Mean Std. Dev 

Area Type 
 

Urban 19 4.89 81.14 11.47 17.08 

Rural 38 7.06 38.8 12.84 5.88 

Functional 
Class 

Arterial 37 7.33 40.81 13.25 6.23 

Freeway 20 5.99 83.22 14.60 16.93 

Number of 
Lanes 
  

4 or fewer 
lanes 49 6.87 41.82 13.06 6.24 
5 or more 
lanes 8 8.4 80.17 18.48 24.97 

 

Table 3. Average errors in AADT estimation for different site classification schemes in FL 

Classification 
Sub-group 

 
FDOT 

(#) 

Absolute Avg. Error (%) 

Min Max Mean Std. Dev 

Area Type 
 

Urban 123 5.62 37.77 14.28 6.06 

Rural 153 5.27 34.71 13.26 4.86 

Functional 
Class 
 

Arterial 123 5.62 37.77 14.28 6.06 

Collector 17 8.06 21.99 13.96 3.68 

Freeway 73 6.66 40.14 15.24 6.24 

 

 

  
Classification 

 
Sub-division 

MNDOT FDOT Austin  
Number of sites (n) Number of links 

Area type Urban  19 139 5822 
Rural  38 154 4772 

Functional Class Arterial  37 130 4807 
Collector – 17 681 
Freeway  20 73 796 

Number of lanes 1 0 – 394 
2 22 – 7550 
3 0 – 636 
4 28 – 1748 

5 or more lanes  8 – 266 



 

Table 4. Variations in average AADT estimation error over time, by distance from site 

 

Table 5. Regression analysis of AADT estimation error 

 
Variable 

MNDOT FDOT 
Beta t-statistic Beta t-statistic 

(Constant) 24.738 45.9 19.284 84.1 
Monday -6.004 -14.7 -8.770 -44.4 
Tuesday -5.082 -12.5 -8.933 -45.2 
Wednesday -4.999 -12.2 -8.998 -45.5 
Thursday -6.079 -14.8 -9.643 -49.0 
Friday -6.890 -16.8 -9.853 -50.0 
Saturday -3.196 -7.8 -6.701 -34.0 
February 0.000 N/A -0.508 -2.0 
March 2.575 5.6 -2.222 -8.7 
April -0.906 -1.9 -1.958 -7.6 
May -2.703 -5.8 -2.125 -8.4 
June -3.194 -6.8 -2.484 -9.6 
July 0.825 1.8 -0.679 -2.7 
August -0.757 -1.6 -0.283 -1.1 
September -1.527 -3.3 11.747 45.5 
October -1.445 -3.1 -0.070 -0.3 
November 1.364 2.9 9.788 37.7 
December 1.807 3.9 1.359 5.3 
Urban -3.202 -10.9 0.929 8.7 
Collector N/A N/A -0.129 -0.6 
Freeway -0.976 -3.4 2.400 17.7 
4 or fewer lanes -6.994 -19.1 - - 
   Adj. R Square 0.0476 

y= Error %
0.1106 

y= Error % 
   Std. Error of Y|X 15.766 15.826 
   Nobs 57 293 

  

Time since Count 

Time of 
Extrapolation Same year 1year 2years 3years 4years 

Distance from Site 
No DOW and 
MOY Factors 0% 4% 7% 8% 13% 

0 miles (same site) 0% 12% 16% 20% 21% 26% 
0.2 miles 7% 20% 25% 29% 30% 35% 
0.5 miles 19% 34% 39% 43% 44% 51% 
1 mile 41% 58% 65% 70% 71% 78% 
1.5 miles 66% 86% 93% 99% 100% 109% 
2 miles 93% 116% 125% 132% 133% 144% 



 

 

 

 

 

 

 

 

 

 

Figure 1. Variation in AADT estimate error by factoring method used (using Florida’s 

and Minnesota’s ATR data) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. Spatial variation in AADT estimate error for different roadway and location 

types (using Austin TDM data) 
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Figure 3. Spatial variation in AADT estimate error in AADT estimates for freeway sites 

using one week’s worth of PeMS data at 3 Southern California sites 
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Figure 4. Temporal variation in AADT estimate error in AADT estimates from ATR 

sites in Minnesota 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Distance (miles)

I-110 S I-405 S I-5 N

Quadratic fit (I-110 S) Quadratic fit (I-405 S) Quadratic fit (I-N)

E
rr

or
 P

er
ce

nt
ag

e 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of count duration on AADT estimate error (using Florida’ ATR data) 

0

5

10

15

20

25

0 30000 60000 90000 120000 150000

AADT

E
rr

o
r 

(%
)

MNDOT
FDOT

 

Figure 6. Variation in AADT estimate error, as a function of AADT (using Florida’s 

and Minnesota’s ATR data) 
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