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ABSTRACT 

 
Annual average daily traffic (AADT) values have long played an important role in transportation 

design, operations, planning, and policy making. However, AADT values are almost always 

rough estimates based on the closest short-period traffic counts, factored up using permanent 

automatic traffic recorder data. This study develops Kriging-based methods for mining network 

and count data, over time and space. Using Texas highway count data, the method forecasts 

future AADT values at locations where no traffic detectors are present. While low-volume road 

counts remain difficult to predict, available explanatory variables are very few, and extremely 

high-count outlier sites skew predictions in the data set used here, overall AADT-weighted 

median prediction error is 31% percent (across all Texas network sites). Here, Kriging performed 
far better than other options for spatial extrapolation − such as assigning AADT based on a 

point’s nearest sampling site, which yields errors of 80%.  Beyond AADT estimation, Kriging is 
a promising way to explore spatial relationships across a wide variety of data sets, including, for 

example, pavement conditions, traffic speeds, population densities, land values, household 

incomes, and trip generation rates. Further refinements, including spatial autocorrelation 

functions based on network (rather than Euclidean) distances and inclusion of far more 

explanatory variables exist, and will further enhance estimation. 
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INTRODUCTION 
 
For transportation professionals, vehicle flow is perhaps the most important indicator for 
infrastructure management decisions, air quality estimates, and crash rate analyses. Each year, 
transportation agencies within the U.S. spend a significant amount of time and money collecting 
this information, as required by the Federal Highway Administration for the nation’s Highway 
Performance Monitoring System (HPMS) database.  
 
At roughly 50 to 200 sites across each U.S. state’s highway network, automatic traffic recorders 
(ATRs) exist to continuously collect traffic count data.  In essence then, just one ATR station 
exists for over 400 centerline miles of State-maintained roadway (or more than 1,000 miles of 
total public roadway), and these counts are often incomplete (as devices falter and go “off line” 
for days or weeks at a time).  In order to estimate AADT at other network locations, agencies 
collect short-period traffic counts (SPTCs) at thousands of locations statewide, for one to three 
days every year or two − or five, as in the case of the data used here.  In any given year, each 
short-period collection result may proxy for 5 to 20 or more centerline miles of state-maintained 
roadway.  
 
The SPTC data are factored up using ATR-based day-of-week, month-of-year, axle-number and 
annual-growth factors, in order to obtain AADT estimates. While there is great opportunity for 
estimation error at any given site − estimated to be on the order of 10 to 20 percent by Gadda et 
al. (2007), an even bigger challenge is to forecast traffic flows at locations anywhere else in the 
network. Intuitively, traffic volumes between two SPTC sites should be close to counts at those 
two sites, particularly if they share the same road classification and number of lanes. A spatial 
technique worth evaluating here is the method of Kriging, which presumes spatial 
autocorrelation in error terms/unobserved factors, as a function of distance. This method is 
common to the discipline of regional science and could be put to much use within the field 
transportation. 
 
Using linear extrapolation for temporal forecasting and Kriging methods for spatial interpolation, 
this study utilizes available data while producing AADT estimates for all sites in the Texas 
DOT-maintained network (of 79,500 centerline miles). The method exploits the spatial features 
of traffic count data while providing future-year traffic forecasts at any network location. Results 
indicate where traffic count uncertainty (errors in prediction) is highest, allowing agencies to 
more strategically sample under this not inexpensive, federally-mandated process. 
 
The data used here are AADT estimates for 27,738 sites from 1999 to 2005, estimated using 
Texas DOT permanent ATR data to factor up one-day urban saturation count data. The 2006 
AADT values at these 27,738 sites are predicted first , and then values at other locations 
throughout the network are spatially interpolated.  The following sections describe existing 
studies on related topics, the data and method used here, and finally the analytical results. 
 
LITERATURE REVIEW 
 
Over many years, researchers and practitioners have sought to produce better traffic volume 
predictions (over time and space) based on limited data. The methods adopted most widely to 



date involve ordinary least squares regression with as many control variables as possible. For 
example, Zhao and Chung (2001) developed such models for AADT predictions in Florida, by 
using a variety of land-use and accessibility measures. Various other methods have also been 
explored. Tang et al. (2003) compared time series, neural network, nonparametric regression, 
and Gaussian maximum likelihood (GML) techniques and found that GML methods were most 
promising. Lam et al.’s (2006) later study used non-parametric models and GML methods to 
forecast Hong Kong’s traffic volumes (using the state’s Annual Traffic Census data). With the 
growing availability of geographic information system (GIS) datasets and evolution of spatial 
analysis techniques, researchers have started to explore methods that exploit the spatial context 
of traffic and other data. The study most closely related to this topic is Eom et al.’s (2006) use of 
Kriging methods to predict AADT for non-freeway facilities in Wake County, North Carolina. 
They conclude that the overall predictive capability of such methods eclipses traditional models.  
 
The method of Kriging was first developed by Georges Matheron (1963), based on the Master's 
thesis of Krige (1951), a South African mining engineer who used a prototype of this technique 
to predict ore reserves. After several decades’ development, Kriging has become a core 
geostatistics tool and is now used in many topic areas. For example, Bayraktar and Turalioglu 
(2005) used Kriging for air quality analysis, Emerson (2005) applied Kriging to natural resource 
analysis, and Zimmerman et al. (1998) used Kriging for water studies. Such methods can be used 
to predict count values at unmeasured locations while assessing the errors of these predictions.  
They rely on the notion that unobserved factors are autocorrelated over space, and the levels of 
autocorrelation decline with distance. Meanwhile, the values to be predicted may depend on 
several observable causal factors (e.g., number of lanes, posted speed limit, and facility type). 
These create a “trend” estimate, µ(s); so, in general, spatial variables can be defined as follows:  
 

)()()( sssZ iii εμ +=         (1) 
 
where )(sZi  is the variable of interest (actual traffic count here) and s gives location (x,y 

coordinates) of site i. )(sZi  is composed of a deterministic trend )(siμ  and a random error 

component )(siε . The various ε(s) values are correlated over space. Features of “trend” (often 

called “drift” in other studies), or the expected value of Z(s), result in three types of Kriging: If 
µ(s) is constant across locations (or explanatory information is lacking), one can rely on 
Ordinary Kriging. Trends that depend on explanatory variables and unknown regression 
coefficients must rely on Universal Kriging. If the trend is known, one has Simple Kriging. 
ArcGIS’s “Geostatistical Analyst” and “Spatial Analyst” (ESRI 1996) tools can be used to fit 
and then apply these three different methods. 
 
Weak stationarity is assumed in all three cases, so that the correlation between Z(s) and Z(s+h) 
does not depend on actual locations, but only the distance h between the two sites. Furthermore, 
thanks to weak stationarity, the variance of Z(s+h) - Z(s) equals 2γ(h) for any s and h. Useful 
illustrations of such behaviors include variograms, where 2γ(h) values are plotted along the y-
axis (versus distance), and semivariograms, where γ(h) is used as the y coordinate. 
 
In Universal Kriging, µ(s)can be a deterministic function of any form. A simple assumption is to 
use a linear function where µ(s)=Xβ (where X contains explanatory variables, like number of 



lanes and facility type). In contrast, ε(s) reflects unobserved variation (e.g., local land use 
patterns and transit service levels). 
 
For purposes of prediction, Kriging is performed on the Z(s) values. The sum of interpolated 
random components ε(s) and estimated µ(s) values provide the Z(s) value estimates. The 
following section explains how the random component ε(s) is estimated via Kriging.  
 
As noted above, weak stationarity ensures the following: 
 

γ(h) = 1/2 var [Z(s+h)  – Z(s)]         (2) 
 
Where var [Z(s+h) – Z(s)] is the variance (over all sites) between counts at sites s and s+h. The 
first step is to select an appropriate “curve” or semivariogram model to best fit this relationship 
(γ vs. h), for a given dataset. There are several commonly used models, including exponential, 
spherical and Gaussian models. These specifications are as follows: 
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3. Gaussian 
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These models all rely on three parameters that describe their shape while quantifying the level of 
spatial autocorrelation in the data. c0 is called the “nugget effect”, and it reflects discontinuity at 
the variogram’s origin, as caused by factors such as sampling error and short scale variability. (In 
theory, γ(h=0) should be zero.) Here, a is called the “range”, and this scale factor determines the 
threshold distance at which γ(h) stabilizes (i.e., flattens). c0+c1 is the maximum γ(h) value, called 
the “sill”, with c1 referred to as the “partial sill” (Cressie, 1993). Figure 1 illustrates these 
parameters. 
 
It is simplest to estimate the three shape parameters using Ordinary Kriging (much like non-
linear least squares, when all Z(s) values enjoy the same mean. In Universal Kriging, the vector 
of parameters β needs to be estimated simultaneously or iteratively (in synch with c0, c1 and a) 
because 



 
E[(Z(si)-Z(sj))

2]  
= var [(Z(si)-Z(sj)] + (µ(si)- µ(si))

2       (6) 
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One approach is to use a series of feasible general least square (FGLS) regressions to estimate β 
and ∑ iteratively, where ∑ indicates the covariance matrix of error terms (ε) and is a function of 
a, c0 and c1. Starting from an initial value of β (e.g., β=0), residuals are e=Z-Xβ (where X is the 
matrix of explanatory information across all sites). Using these values, one can estimate the 
variogram’s three parameters to get an estimate of ∑. The updated estimate of β then is β= (X’∑-

1 X)-1X∑-1Z. This process repeats until all estimators stabilize/the system converges (which is 
guaranteed by the algorithm).  
 
Another approach is to use restricted maximum likelihood estimation (REML) by assuming the 
errors follow a normal distribution, so that the data set’s log-likelihood enjoys the following 
proportionality: 
 

LL ∝ -|∑|-1/2[(Z-Xβ)’ ∑-1(Z-Xβ)]       (7) 
 
This likelihood can be maximized with respect to all unknown parameters using Newton-
Raphson or other optimization techniques. The real challenge is the calculation of distance: 
currently, all available packages use Euclidean distances, which can be easily derived based on 
locations of the sites. The computational burden can increase dramatically if non-Euclidean 
distances are used and sample size is large. Nevertheless, with efficient algorithms for network-
distance calculations (or patience on the part of the analyst), such extensions certainly are 
feasible.  
 
DATA SET DESCRIPTION 
 
The AADT data used here was generated for Texas using a combination of permanent (ATR) 
and a subset of the state’s SPTCs, referred to as urban-area saturation traffic counts. There are 
roughly 240 ATR sites in Texas, and their locations are generally selected based on coverage 
need for the roadway functional classification. Other factors that can influence site selection 
include power and phone line availability, level of congestion, road design, and requests by local 
district officers. These ATRs are operated continuously, but due to construction and 
communication problems, some operations are often discontinued, leading to approximately 200 
usable sites each year.  
 
In addition, 75,000 to 95,000 short period traffic counts (SPTCs) are collected in rural and urban 
areas of Texas annually. Among these, about 28,000 urban “saturation” count locations are 
visited on staggered five-year cycles, and their resulting AADT estimates were provided to the 
research team. These 28,000 saturation-count sites are monitored for 24 hours to obtain a day’s 
traffic count, Monday through Thursday, when school is in session. As mentioned earlier, AADT 
values for such sites are estimated by applying day-of-week, month-of-year and other factors, 
developed on the basis of values from groups of similar ATR sites. According to previous studies 
(e.g., Gadda et al. [2007] and Granato [1998]), this factoring process results in average 



estimation errors of approximately 12% to 25%, depending on data quality and site type. Thus, 
the data used here are measured with error.  Errors introduced by the factoring algorithm may 
obscure errors produced by the temporal and spatial extrapolation in this analysis1. Moreover, 
not every saturation site offers a complete panel of estimated AADT values; for the period 1999 
through 2005, 27,738 are complete, and thus used here. Table 1 provides some descriptive 
statistics of these traffic counts over different years, and these data are the basis for the temporal 
forecasting and spatial interpolation pursued here, as described in the following sections.  
  
Temporal Extrapolation 
 
Traffic counts at each site over these seven years follow a nearly linear trend. The magnitude or 
slope of the change, however, varies significantly across sites. In order to reasonably extrapolate 
future traffic counts, each site was analyzed using ordinary least square (OLS) regression based 
on all seven years’ traffic counts. Assuming counts change linearly with time, two parameters 
can describe the equation for counts at each site. These are the slope and the average count 
(which together provide an intercept term). Figure 2(a) is a histogram of all slope estimates for 
the 27,738 sites. Due to the long right-side tail, the horizontal axis uses a logarithmic scale, and 
traffic counts at most sites increase by around 100 each year. For the 6,829 sites experiencing 
volume reductions, the most common reduction in daily count per year is 10 vehicles. 
 
Figure 2(b) shows the distribution of the traffic count averages (over 7 years) also with a 
logarithmically-scaled horizontal axis. As shown, most sites average around 6,000 vehicles/day. 
To give a sense of relative change in counts, Figure 2(c) is a histogram of slope-to-mean count 
values.  After mean count values and slopes are calculated, traffic counts at these saturation sites 
in future years can be extrapolated, assuming that the changes in traffic volumes follow a linear 
pattern. As an example, Figure 3 provides year-2006 predicted values for all 27,738 sites.  
 
Spatial Interpolation of AADT Data 
 
There are nearly 80,000 centerline miles of state-maintained highways Texas, and another 
144,000 in the form of county roads. According to the Texas Almanac (Alvarez 2006), total 
street and roadway miles sum to roughly 300,000. Working with the smallest of these three 
values, the 27,738 urban saturation counts imply roughly one count site every 2.9 centerline 
miles of state-maintained highway (but sampled just once every five years). The AADT 
estimates between those traffic counts sites are often directly given as the AADT value of the 
closest site with traffic count detector. For urban areas, it is a very strong assumption that the 
AADT value keeps constant on the section of 2.9 miles long road. It is more reasonable to 
believe that the AADT values should be some function of AADT values at nearby sites. To this 
end, ordinary Kriging is used here, for strategic spatial interpolation of AADT values.  How 
many total centerline miles in TX that are getting counted? 
 
While traffic count predictions at each site can be enhanced by controlling for variables like 
number of lanes, speed limit, and functional class, such information was unavailable; so only 

                                                 
1 Of course, the initial factoring process does remove much variability in the data (due to day of week, month of year, 
year of sample, and other effects), so it is a recommended approach when only 24-hour counts are available for a 
network, most acquired on different days of the year, in different years. 



general location details are used here. Table 2 summarizes all variables across TxDOT’s 25 
districts, illustrating how different districts across Texas have experienced very different rates of 
traffic growth. Dallas, Bryan (home to Texas A&M and College Station) and Corpus Christi are 
among the fastest growing. The maximum values of traffic occur on US 59 in Houston, where 
the 350,000 AADT values imply that each of the 12 lanes averages 1,200 vehicles per hour, 
every hour of every day.  
 
To improve location information for purposes of AADT estimation, this study obtained network 
details based on the TxDOT-provided network file.  This was done by joining road links (in a 
vector layer) to the 27,738-site point layer. Each site was matched to attributes of the closest 
ESRI-network road section, providing a variable of functional class. Among these, the two most 
commonly represented classes are interstate highways (Class 1) and other principal arterials 
(Class 2).  
 
Traffic counts on segments of the same class were spatially interpolated using Kriging. While 
using network distances interpolating spatial dependencies between locations along a network is 
behaviorally most reasonable, it is far more computationally intensive at the outset. (For example, 
the distances would have to be calculated 24,031x24,031 times for Class 1 road segments in the 
saturation count data set, and 3,707x3,707 times for the Class 2 segments.) Fortunately, existing 
studies (e.g., Hoef et al. [2006] and Kruvoruchko and Gribov [2004]) on small networks find that 
using Euclidean distances can yield satisfactorily results, even when the dependencies arise over 
a network. To ensure computational tractability, this work relies on Euclidean distances. The 
following two examples show how Class 1 and Class 2 road segment AADTs are estimated. 
 
Different semi-variogram specifications were estimated and compared for each class of roadway, 
and the exponential form (Eqn. 6) was selected for both, thanks to its better fit. For Class 1 
segments, the estimated range value (a) is 1.248, partial sill (c1) is 1.62E7 and nugget value (c0) 
is 2.33E7. For Class 2 segments, range (a) is 0.158, partial sill (c1) is 2.82E9 and nugget (c0) is 
9.86E8. The fitted prediction lines are shown in Figure 4.  
 
As expected, the variance (hence semivariogram) increases with distance, and becomes stable 
after a certain distance threshold. As compared to Class 2, Class 1 scatter is higher for a given 
distance, and becomes stable after a comparatively longer distance. The data also suggest that the 
variability increases with distance, as is typical in other studies, such as ESRI (1996). The larger 
sill and nugget values of the Class 1 suggests that the spatial autocorrelation of Class 1 AADT is 
more distance-dependent. Its wider range also suggests that Class 1 autocorrelation is more 
distance sensitive. One possible reason for this difference is that Class 1 roads are more 
physically connected than Class 2 roads. In other words, the access points along Class 1 roads 
may lead to significant fluctuations in AADT over space, while flow changes along Class 2 roads 
is likely to appear more continuous in nature.  

 
As expected, of course, relying on a series of seven past values to predict the next year’s count at 
any given site results in better prediction.  Temporal dependence is “stronger” than spatial 
dependence, for a variety of reasons.  Kriging methods are therefore most useful in 
uncounted/unsampled locations, or where past counts are getting too old to be reliable.  



Assessing Goodness of Fit 
 
In order to validate the Kriging method, this study used 80% of the Class 1 observations to 
spatially interpolate AADT values and compare these estimates to the actual AADT values for 
the remaining 20% of observations. Differences in these values were evaluated using the 
following error ratio indicator: 
 

,est i i
i

i

AADT AADT
Error

AADT
−

=         (8) 

 
Figures 5 and 6 provide the spatial distribution and histogram of these error ratios. As shown in 
Figure 8, the error ratio exhibits no clear spatial trends. The simple median of these errors is 
0.333 (or 33%). Apparently, the spatially interpolated values tend to over-estimate AADT by 
about 33% − which is sizable. Figure 7 indicates that this overestimation is mainly caused by 
locations with very low AADT values for which Kriging methods are less reliable − in part 
because they do not recognize/respect a zero-count boundary. The performance is significantly 
better for locations with traffic counts higher than 1,000 vpd. However, when the AADT values 
get too high, their values tends to be under-estimated. When errors are weighted by AADT 
values, the average bias switches to a negative 31%. When weighted by the quarter power of 
AADT (i.e., AADT0.25), the median weighted error is 0.018 (or 1.8%). Given the fact that only a 
limited number of influential factors are considered, such a bias indicates that this spatial 
interpolation method yields fairly reliable estimation results, especially for road sections with 
moderate to high traffic volumes.  
 
Related to all this, Gadda et al. (2007) tested the spatial error of AADT estimation by assigning 
the AADT from its nearest sampling site, which is the standard technique for no-information 
AADT estimation. They found that the average error rises significantly with the number of lanes. 
Error patterns also vary by general location (using a rural/urban indicator) and functional class. 
As expected, such estimates of error also rose with distance between the unknown-count site and 
its neighbor site − rather dramatically.  They averaged just 6.33% at 0.2 miles away to 79.5% at 
just 1.6 miles, eclipsing the 33% and 31% figures noted here (which are at an average distance of 
2.9 miles away).  
 
The comparison of their study and this one first suggests that estimation may significantly 
improve when other variables are controlled for.  Moreover, when no other explanatory 
information is used, the Kriging method is capable of yielding more reliable estimations than 
simply relying on the count of a location’s nearest count location, given the fact that the average 
distance between the Class 1 sites is around 2.9 miles. 
 
CONCLUSIONS 
 
This study describes a rather straightforward process that can be used to estimate real-time and 
longer-term traffic counts throughout a network based on limited information, using ArcGIS 
Kriging tools. Given AADT estimates at over 27,000 urban saturation traffic count stations, 
AADT values are first forecast for future years and then spatially interpolated for sites without 
detectors. Spatial interpolation using ordinary Kriging methods suggests that traffic volumes on 



different classes of roadways exhibit rather different patterns of spatial autocorrelation. 
Furthermore, model validation suggests that, while relatively uninformed Kriging tends to 
overestimate AADT values, the bias is still tolerable − particularly in cases where no earlier 
counts exist at that site or very nearby.  Such methods can be applied to many other aspects of 
transportation studies, as long as they exhibit some sort of spatial dependence; these include 
variables like housing price, trip generation rates, pavement conditions, and crash rates. 
 
Of course, the data sets used here can be dramatically enhanced by those who have direct access 
to such data, and the methods used here can be further refined (particularly when coding the 
routines directly, rather than relying on ESRI commands). Both temporal extrapolation and 
spatial interpolation stand to benefit from the inclusion of standard explanatory information (e.g., 
number of lanes and speed limits). And reliance on network (rather than Euclidean) distances 
between all count locations may be helpful (particularly for small data sets).  New code for 
temporal and spatial extrapolation in the presence of heteroskedasticity while controlling for 
various explanatory factors will make a valuable extension of this work.  Nevertheless, the 
predictions in the study make effective use of temporal and spatial information in existing data 
sets. These predicted values can be used as estimates of traffic conditions at unmonitored sites in 
any year, facilitating system management, data analysis and investment decisions.  
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Table 1. 24-HourTraffic Counts  

Year 
Number 
of Sites 

Minimum 
Count  

Maximum 
Count 

Mean 
Count 

Standard 
Deviation 

1998 27,914 10 361,890 7004.8 17,748 
1999 27,980 10 328,000 7437.7 19,405 
2000 28,075 10 337,000 7709.4 19,961 
2001 28,271 10 337,000 7928.0 20,626 
2002 28,285 10 349,000 8107.8 21,309 
2003 28,304 10 345,000 8225.4 21,549 
2004 28,303 10 335,000 8429.1 21,859 
2005 28,278 10 341,940 8702.2 22,723 

Over all years 27,738 10 349,000 7943 20,647 
 

Table 2.Patterns of Change for Urban Saturation Count Sites AADT Values by Districts 

District of TxDOT 
Number of 
SPTC Sites 

Change in 24 
Hour Traffic 
Count/Year 

(Slope) 

Average of 
AADT 

Estimates 

Ratio of Slope 
to Mean Value 

(%) 

Abilene           1075 33.6 2,518 1.085% 
Amarillo          1141 50.8 3,243 1.094 
Atlanta           1209 82.2 4,336 1.399 
Austin            1258 348.6 12,842 2.135 

Beaumont          952 103.1 6,612 0.907 
Brownwood        877 17.4 2,189 0.115 

Bryan             1192 172.5 4,901 3.197 
Childress         713 17.3 1,167 0.454 

Corpus Christi    1181 201.1 5,868 3.185 
Dallas            1433 535.9 18,452 3.516 
El Paso           386 530.4 14,721 1.234 

Fort Worth        1278 396.9 13,860 2.582 
Houston           1246 729.5 20,769 2.671 
Laredo            506 67.9 3,399 1.351 

Lubbock           1661 39.4 2,493 1.062 
Lufkin            1336 34.2 3,696 1.060 
Odessa            728 51.3 3,417 0.738 
Paris             1405 62.2 3,373 1.591 
Pharr             1019 367.0 9,181 2.971 

San Angelo        686 37.3 2,126 1.037 
San Antonio       1425 375.0 11,986 2.512 

Tyler             1697 82.7 4,910 1.551 
Waco              1392 224.3 6,334 2.582 

Wichita Falls     962 72.3 3,128 1.362 
Yoakum           1511 66.9 3,630 1.910 

 



 
 

 
Figure 1. Illustration of Semivariogram 
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(a). Distribution of Slope Parameters 
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(b). Distribution of Mean Traffic Counts 
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(c). Distribution of Slope-to-Mean Count Values (Relative Change) 

Figure 2. Distribution of Parameters for 24 Hour Traffic Counts across SPTC Sites 
 



 
Figure 3. Predicted Counts for all SPTC Sites in 2006 

(Using TxDOT’s road network, and the 1983 North American Global Coordinate System) 
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(a). Class 1 Segments 
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(b). Class 2 Segments 

 
Figure 4. Semivariogram Fitting for AADT  

 
 

 
 

Figure 5. Differences between Kriging Estimates and Observed Traffic Counts 
(Using TxDOT’s road network, and the 1983 North American Global Coordinate System) 
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Figure 6. Histogram of Differences between Kriging Estimates and Observed Traffic 

Counts 
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Figure 7. Relationship between Kriging Estimates and Actual Traffic Counts 
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