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Abstract: 

Models of departure time presently rely on discrete choice or simple proportions across 

blocks of time within a 24-hour day. Duration models allow for more flexible specifications 

to explain both unimodal (one-peak) and multi-modal (multi-peak) data, which are common 

in (aggregate) departure time data. This paper offers Bayesian estimates of continuous 

departure time models using accelerated failure time (AFT) specifications for various trip 

purposes with several distributional specifications, including the lognormal, Weibull, Weibull 

(with and without unobserved heterogeneity), and a mixture of normals. The home-based work 

(HBW) and non-home -based (NHB) trip models are modeled using unimodal distributions, 

while the home-based non-work (HBNW) trip departure times are modeled via 

a bi-modal distribution. The results indicate that a Weibull with unobserved heterogeneity 

performs well among unimodal distributions, and that multi-peak profile can be modeled well 

with a mixture of normals. 
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1. Introduction 
 
An individual faces several choices in making a trip, namely mode, destination, departure 
time and route. These choices have been researched in depth and are treated explicitly in 
travel models. The time of day aspect generally is dealt with by applying simple proportions 
across blocks of time or by calibrating logit models for several times of day (typically treated 
as independent alternatives). Calibration is performed using maximum likelihood estimation 
or other, simpler techniques. Duration models, in which time is treated as a continuous 
variable, offer several advantages over discrete alternatives. They predict trip departure times 
on a continuous scale, thus enhancing the inputs to, and outputs of, models of traffic and 
emissions. Such model predictions influence policies targeting congestion management and 
air quality.  In addition, continuous-time models allow one to avoid problems of temporal 
aggregation and period association, providing more fluid estimates of choice and illuminating 
finer adjustments in traveler behavior, while offering the necessary inputs for dynamic traffic 
assignment models. This paper looks into estimation of continuous departure time models 
using Bayesian techniques. This paper applies such models to the case of Austin, Texas’ 1996 
Travel Survey data, to predict departure times for travelers engaged in various trip types. The 
following presents a detailed literature review of previous departure time models. Sections 3, 
4 and 5 describe the model specifications, their estimation methods, and method of 
comparison.  Section 6 discusses the empirical findings, and Section 7 offers several 
conclusions. 

2. Literature review  
 
Most of the early departure time studies used multinomial logit (MNL) models for work trips. 
For example, Abkowitz (1981), Small (1982) and McCafferty and Hall (1982) modeled 
departure and arrival time choices of individuals using demographic variables (like income 
and age) and chosen mode. Their results suggested important effects of work schedule 
flexibility, income, age, occupation, and transportation-system level of service on departure 
time choice. Hendrickson and Plank (1984) modeled mode and departure time choice 
simultaneously, using an MNL model with 28 alternatives. These represented combinations 
of 4 modes (drive alone, auto, shared ride, and transit) and 7 different departure time intervals 
of 10 minutes each. Their results suggested that travelers were more likely to change their 
departure time than their mode. Chin (1990) also modeled morning departure times for 
Singapore commuters using MNL and nested logit (NL) models. The NL model was used to 
moderate certain violations of the independence of irrelevant alternatives (IIA) property 
(McFadden (1978), Ben-Akiva & Lerman (1985)). He found that departure time choice was 
influenced by journey time (with longer journeys requiring earlier start times, as anticipated), 
and that occupation and income affected one’s propensity for switching departure times. 
 
All above-mentioned studies have examined departure time for work trips. In contrast, Bhat 
(1998) and Steed and Bhat (2000) modeled departure time for home-based recreational and 
shopping trips. Bhat (1998) adopted a nested structure with mode choice at the higher level of 
the hierarchy and departure time choice at the lower level. A MNL form was used for mode 
choice; and an ordered generalized extreme value (OGEV) form, which recognizes the 
natural (temporal) ordering of the departure time alternatives, was adopted for departure time 
choice. “The OGEV structure generalizes the MNL structure by allowing an increased degree 
of sensitivity (due to excluded exogenous factors) between adjacent departure time 
alternatives compared to between non-adjacent departure time alternatives.” (Bhat, 1998. pg. 
362).   
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The MNL-OGEV model was applied to data obtained from the 1990 San Francisco Bay Area 
travel survey and found to perform better than MNL and NL models. Moreover, the MNL 
and NL models lead to biased estimates of travel time and cost coefficients and lead to 
inappropriate policy evaluations of congestion pricing and other transportation control 
measures. Steed and Bhat (2000) estimated discrete departure time choice models for four 
categories of HBNW trips using the 1996 activity survey data collected in the Dallas-Fort 
Worth region. They focused on the effects that individual and household demographics, 
employment attributes, and trip characteristics have on departure time choice. MNL and 
OGEV model structures (as in Bhat 1998) were used for modeling departure time choice 
among six discrete periods. In all four trip-purpose cases, the MNL model was adequate for 
capturing controlled effects, when compared to the OGEV results.  Trip level-of-service 
variables had relatively low effects, suggesting “that departure times for non-work trips are 
not as flexible as one might expect, and are confined to certain times of day because of 
overall scheduling constraints.” (Steed and Bhat, 2000. pg 152)   
 
More recently, Abou-Zeid et al. (2006) and Popuri et al. (2008) sought to control for 
variations in network conditions (speeds and travel times) by time of day. They discretized 
time into half-hour intervals, for activity-based modeling applications across a variety of trip 
types. While their standard logit specifications neglect the ordering of time-slot alternatives, 
the network performance measures they infer from various data sets proved useful to the 
models. 
 
Of course, all studies discussed above use discrete methods to model departure time choice.  
In contrast, there has been a variety of relatively recent exploration of continuous methods 
using Cox’s (1972) proportional hazards (PH) specification. For example, Wang (1996), Bhat 
(1996), Bhat and Steed (2002) and Lee and Timmermans (2007) used hazard-based models to 
model departure time on a continuous scale. Essentially, the ending time of the activity prior 
to the trip start is viewed as a “failure” or death of the activity.  
 
There have been several applications of such continuous failure time models to different 
kinds of events/activities like onset of disease, equipment failures, job terminations, arrests 
and, more recently, departure time. Wang (1996) used a parametric-baseline hazard-rate 
model of durations, to estimate the revealed preferences of Canadians in activity start times.  
The estimates were then applied in a scheduling program, in order to examine how trip 
makers maximize their “total timing utility”, and simulation results were used to quantify the 
tradeoffs between travel time and scheduling choices. Finally, a commuter-based network 
equilibrium was established on this basis. Bhat (1996) estimated a hazard-based model from 
grouped (7.5-minute interval-level) data of shopping durations (during work-to-home travel). 
He used a nonparametric baseline hazard distribution while parametrically controlling for 
covariate effects. Empirical results indicated significant effects of unobserved heterogeneity 
on shopping duration. Bhat and Steed (2002) used a similar semi-parametric model, to 
estimate departure times for shopping trips in Dallas-Fort Worth household survey data. 
Their continuous-time model was used to forecast temporal shifts in shopping trips, in order 
to evaluate the effects of congestion pricing.  
 
Heckman and Singer (1984) illustrated means of incorporating heterogeneity via a non-
parametric, finite-mixture specification. Such specification requires no prior assumptions, 
thereby minimizing the impacts of distributional assumptions that are standard in Cox’s 
(1972) classic model. Most recently, Lee and Timmermans (2007) used a latent class 
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specification for the accelerated hazard model to capture heterogeneity and propensity to 
accelerate (or decelerate) activity durations. Theirs is the first example of a latent class 
accelerated hazard (LCAH) model for activity diary data on activity types (three out-of-home 
and two in-home). The data were collected in Eindhoven, The Netherlands, and the results 
suggest that heterogeneity relates strongly to demographic variables. 
 
There also has been some exploration of a combination of discrete and continuous models. 
Mannering et al. (1990) employed such an approach to model route choices and departure 
times during morning work trips. They estimated a logit-type model for route choice and a 
continuous model of departure times. These were incorporated into a dynamic equilibrium 
framework, and several simulations were performed. Hamed and Mannering (1993) used a 
discrete/continuous framework for activity participation decisions, and associated travel times 
and activity durations. They modeled the “home-stay” duration using a Weibull survival 
model. 
 
All studies mentioned above analyze departure time preferences either for work or non-work 
trips. There is almost no literature that examines the distribution of trips throughout the day, 
across trip purposes, on a continuous time scale.  In order to address the gap, this paper looks 
into predicting continuous departure times for travelers and trips of various types. Most prior 
studies use a proportional hazards (PH) model (Cox, 1972), or some variation of it, to model 
departure time on a continuous scale. But as Kalbfleish and Prentice (1980) point out, the PH 
model’s semi-parametric specification does not postulate a direct relationship between the 
covariates and the failure time without any restriction on the baseline hazard.  In contrast, 
accelerated failure time (AFT) models use a log-linear specification and allow for 
straightforward interpretation of the covariate effects. Lee and Timmermans (2007) also point 
out such benefits. 
 
Parametric AFT methods permit closed-form expressions for tail area probabilities, and their 
results are easier to interpret than those of semi or non-parametric models. The lognormal 
model is a pure version of AFT models, while the “Weibull model is a special case of both 
PH and AFT models” (Kalbfleish and Prentice, 1980, p. 34). For this reason of flexible 
interpretation, the Weibull is typically used. An extension of the Weibull model that includes 
unobserved heterogeneity via a gamma distribution has been very popular in the frequentist 
literature. However,  in spite of promising research results by several authors, and as noted by 
Anderson et al. (1993), formal and completely satisfactory justifications of these likelihood-
based methods await more results, related to their asymptotic and convergence properties. 
Furthermore, as Ibrahim et al. (2001, p.102) note, “none of these likelihood-based methods 
directly maximizes the full likelihood given the data, and the small sample properties of these 
estimators have yet to be studied. Thus, Bayesian methods are attractive for these models 
since they easily allow analysis using the full likelihood, and inference does not rely on 
asymptotics.” (Ibrahim et al., 2001. pg). This paper uses parametric AFT models.  
 
In view of these issues, this paper estimates and examines parametric (rather than semi-
parametric) AFT models within a Bayesian framework, in order to model unimodal data. It 
then compares these results with those based on various other distributional assumptions, like 
the lognormal and Weibull (with and without latent heterogeneity). No previously published 
studies have modeled multimodal data, though this feature is certainly very common in 
aggregate departure time data (for certain trip purposes) and likely exists, to some extent, at 
the level of individuals (e.g., for business meetings, which generally may not take place 
during the noon hour). This paper develops a normal mixture model specification for such 
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data and illustrates those results for HBNW trip data. Of course, a key advantage of the 
Bayesian approach is that it allows for complicated hierarchical model specifications while 
facilitating estimation of predictive distributions; in contrast, maximum likelihood estimation 
methods cannot do so (see, e.g., Ibrahim et al. 2001). 
 
To this end, this paper develops a Bayesian estimation of several parametric duration models 
for trip departure time with and without control for unobserved heterogeneity for unimodal 
data and also develops mixture models for multimodal data. These models are estimated and 
evaluated using data from the 1996 Austin Travel Survey (ATS).  
 
3. Model description 
 
Data that represent an interval of time are called duration data. Departure times (generally) 
mark the end of an activity’s duration. Our interest lies in understanding how the covariates 
of an individual affect the distribution of these times. This requires assuming a base start time 
to compute the duration of activities that occur prior to one’s departing for a trip. The choice 
of this time point “origin” is often problematic in continuous time models (Allison 1995), 
leading to somewhat different results for different origin choices. In ambiguous cases, this is 
dealt with by choosing the most intuitive origin. Here, the origin has been chosen as 
midnight, i.e., all the durations are calculated with respect to midnight.  For example, an 8 am 
departure time implies an 8-hour (480-minute) event duration. 
 
Parametric duration models using distributions like the exponential, lognormal and Weibull 
have been popular in the time-to-event/time-to-failure and survival analysis literature (see, 
e.g., Wang (1996)). This section describes the parametric AFT formulation of such models 
using the lognormal and Weibull distributions (as described in Kalbfleisch and Prentice 
(1980)). In addition, the Weibull-based model is extended to include unobserved 
heterogeneity among individuals, and a normal mixture specification is described for 
modeling bi-modal behaviors. 
 
3.1 Accelerated failure time specification 
 
Let the natural log of duration t (of an activity that occurs before taking a trip) be related to 
the covariates through a linear model,  
 

wXt σβ +=)log(                                                           (1) 
 
where, X is the set of covariates, β is a vector of parameters to be estimated, σ is the standard 
deviation of the transformed t value, and w is a random variable having a specified 
distribution.  
 
Eq (1) is the most generic form of an AFT model. It not only provides for an easier 
interpretation in terms of log(t) but also specifies that the effect of the co-variable as 
multiplicative on t rather than on the hazard function (as in the case of PH model). Different 
AFT models can be developed by varying the distribution of w. For example, if w is assumed 
to be a standard normal, it leads to a lognormal AFT model; and, if w is assumed to have an 
extreme value distribution, it results in a Weibull AFT model. These are described below. 
 
3.1.1 Lognormal model 
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When w is assumed to have a standard normal distribution the density of t is log-normal, and 
is given by, 
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where Xβμ = and τ = 1/σ2 , from Eq (1).  
 
If T is defined as the duration during which an individual i does not take a trip (as measured 
relative to some base starting time, like midnight of the evening before), then the distribution 

( )F t  provides the probability that the duration for which an individual does not take a trip is 
less than a certain duration t. This is the same as the probability of taking a trip before a 
duration t elapses.  The associated density ( )f t then offers the trip’s departure time 
probabilities over the course of the day Moreover, the probability that a person takes a trip 
between times t1 and t2 can be obtained by integrating ( )f t  from t1 to t2. Under this definition 
the likelihood of a trip starting at time t (relative to the base start time) for an individual i can 
be written as follows: 
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Assuming, all reported trips (across respondents) are independent of one another, the joint 
likelihood for n trips is: 
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3.1.2 Weibull model 
 
If we let w have an extreme value distribution, the duration T before a respondent’s trip will 
have a Weibull density (Kalbfleisch and Prentice [1980], pg 32). Letting the parameters of 
the Weibull density be α and λ, we have the following: 
 

)exp(1 αλtλαtα)λ,f(t α−=                                                                 (5) 
 
where σα /1= , *)exp( βλ X= (thereby ensuring non-negativity of the hazard rate) 
and σββ /* −= . X is a set of covariates and β* is a vector of parameters to be estimated. X, β 
and σ are as in Equation (1). 
 
It follows that the likelihood of a trip starting at time t from the designated starting time 
(taken to be midnight here) for an individual i can be written as follows: 
 

*))exp(exp(*)exp(*),,( 1 ββαβα αα
iii XtXtXtf −= −                                    (6) 

 
The choice of designated starting time can be an important consideration. In most cases, one 
is modeling the duration of an activity or the time since completion of one’s last activity, so 
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the starting time is obvious and implicit.  Here, however, departure times (based on the clock) 
are being modeled, and the origin time was chosen to be midnight, for a couple reasons. First, 
lognormal and Weibull distributions are unimodal, so starting time must far from the data’s 
mode.   Secondly, a midnight origin facilitates interpretation of model results (since no 
shifting needed). A 3 am start time also was investigated here (since that is the cut-off time 
for many one-day travel diaries), and the results were nearly identical to those shown here.  
Assuming that all trips in one’s data set are independent of one another (which may not be 
the case for members of the same household), the joint likelihood for n trips is: 
 

∏
=

− −=
n

i
ii XtXtxt

1

1 *))exp(exp(*)exp(*),,( ββαβα ααl                                   (7) 

 
The independence of trips assumption is largely a reasonable assumption here, since different 
trip types were modeled separately; so so almost no one had two trips of the same trip type. 
However, in the model of HBNW trips many travelers were headed out and back during the 
survey day. Ideally, some sort of correlation in departure times would be permitted, and 
Bayesian methods would be a natural way to accommodate such correlation.  
 
3.2 Weibull model with unobserved heterogeneity (UH) 
 
One way to accommodate UH in a Weibull model is via a multiplicative error term vi in each 
respondent’s hazard function, as follows: 
 

*)exp(),( 1 βα α
iii XtvXth −=                                                                            (8) 

 
The associated density and likelihood functions are as followsKalbfleish and Prentice 
(1980)): 
 

*))exp(exp(*)exp(),,( 1 ββαβα αα
iiiii XvtXtvXtf −= −                                (9) 
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To ensure non-negativity, vi is assumed to be gamma distributed here, with a mean of 1 and 
an unknown variance δ (to be estimated). 
 
3.3 Normal mixture model  
 
A mixture of normals provides a relatively flexible model for estimation of densities in a 
Bayesian framework (Roeder and Wasserman, 1997). Such models help capture any 
multimodality existing in the data. Consider, for example, a set of observations y1, 
y2,…,yj,…,yn to be modeled through a normal mixture distribution (as a mixture of k normals): 
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where pi is the probability of individual j’s behavior belonging to group i (of the k groups), so 

that 1
1

=∑
=

k

i
ip , and N( ) is the normal density function.   

 
Here, we assume a lognormal density for duration t, which makes the distribution of ln( )y t=  
normal.  Moreover, the (aggregate) home-based non-work (HBNW) trip data appear to be 
largely bimodal in nature, so we examine a mixture of two normal distributions, in order that 
each observation yj is presumed to come from one of two groups. The model can be 
formulated as follows: 
 

2 2 2 2
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Thus, the likelihood for n (independent) departures will be, 
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4. Model Estimation 
 
A parametric Weibull model implies that the departure time distribution (for any individual) 
is unimodal. Of course, HBW trips are defined to include both directions of travel, and thus 
generally exhibit two peaks each day.  In order to more accurately represent these distinct 
behaviors, HBW trips were separated into home-to-work trips and work–to-home trips, and 
separate models were estimated. NHB trips also appeared unimodal (in the aggregate) and 
thus were modeled similarly. In contrast, HBNW trips appear multimodal and a to/from 
separation of peaks will not resolve this multimodality. Thus, a mixture model formulation 
was used for HBNW trips. All parameters are estimated here using a Bayesian approach. 
(Gelman et al. 2003) 
 
The posterior distributions are obtained as a product of the prior distributions and the data’s 
likelihood functions. In canonical notation, the four model specifications are as follows: 
 
Lognormal model: 
 
        )()(),,(),,( σβσβσβ ffxtlxtf ii ⋅⋅∝                                                         (15) 
 
Weibull model: 
 

)()()(),,(),,,( δβαβαδβα fffxtlxtf ii ×××∝                         (16) 
 
Weibull model with UH: 
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)()()(),,(),,,( δβαβαδβα fffxtlxtf ii ×××∝                (17) 
 
Mixture of two normals: 
 

)()()()()(),,,,(),,,,,( 21212,1212,121 pfffffxtlxtpf ii ⋅⋅⋅⋅⋅∝ ττββττββττββ          (18) 

where f(τ), f(α), f(β) and f(δ) are the prior densities of parameters τ, α , β and δ, respectively.  
 
The prior distributions for τ, α and δ are assumed to be independent gamma distributed (in 
order to ensure non-negativity), and the β’s are assumed to follow a multivariate normal. The 
prior for p is a Dirichlet distribution (to ensure that the probabilities sum to 1), and this 
reduces to a beta distribution for a mixture of just two normals. All priors are non-informative 
with appropriate mean values (e.g., zero means for all beta values and unit means for gamma 
size and shape parameters) and large variances (since there is little to no information on these 
values prior to the model’s estimation).   
 
The joint posterior distributions do not have a closed form, so Markov chain Monte Carlo 
(MCMC) simulations were developed using WinBUGS1.4 (or BUGS [http://www.mrc-
bsu.cam.ac.uk/bugs/]) software, which simulates posterior distributions for known likelihood 
specifications using standard priors.  BUGS (Bayesian inference Using Gibbs Sampling) is an 
open-source software for the Bayesian analysis of complex statistical models using MCMC 
methods. The basic idea is to successively sample from the conditional distribution of each 
parameter given all the other parameters, and this process eventually provides samples from 
the joint posterior distribution of the unknown random quantities. Results for the first three 
model specifications (each with three applications, for home-to-work, work-to-home, and 
NHB trips) and one application of the mixture of normals (for HBNW trips) are all based on 
10,000 simulations, following a 1000-draw burn in.  In the interest of brevity, convergence 
monitoring is not shown in this paper.  Here we merely note that standard procedures 
described in BUGS were used to ensure proper convergence.   
 
Model selection was based on stepwise deletion of variables based on statistical and practical 
significance of the associated coefficients. Coefficients with t-statistics less than 1 generally 
were removed; however, several that appeared intuitive were left in the specification, even if 
only marginally significant (in a statistical sense). And some coefficients which were 
statistically significant in one specification were left in other specifications (though 
insignificant) to allow for comparison. 
  
Model evaluation was performed by comparing the model-predicted departure time densities 
to the actual histogram of departure times, and model-predicted departure densities were 
estimated as the average of all individuals’ departure time densities. The process is not so 
trivial for the Weibull with UH model, due to conditioning on v. Details of this process are 
provided in the Appendix to this paper.  
 
5. Empirical Analysis 
 
The analysis was carried out using a total of 3,189 HBW trips (of which 1,717 are home-to-
work trips and 1,472 are work-to-home trips), 4,856 NHB trips, and 7,325 HBNW trips. 
Tables 1 and 2 provide descriptive statistics for all variables used. Tables 3, 4, and 5 present 
the estimation results for the lognormal, standard Weibull and Weibull with UH models for 
the home-to-work, work-to-home and NHB trip types, respectively. Table 6 shows the results 
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of the normal mixture model for HBNW trips. Figure 1’s four images illustrate model fit for 
each of these models against actual data information.  
 
5.1 Interpretation of Coefficients and Marginal Effects 
 
As described in the specification, μ is parameterized as βX for the lognormal model. Thus, the 
signs of β values indicate whether an individual with associated attribute X leave later or 
earlier in the day. For example, if the sign on the coefficient of age is negative, it indicates 
that older individuals are more likely to depart earlier for that trip type (essentially 
experiencing a shorter activity duration prior to their departure). The coefficients 
corresponding to each peak of the bi-modal model also can be interpreted similar to the case 
of the lognormal model, but relative to the associated peak. For example, if the sign on the 
coefficient of student is positive for the AM peak, it indicates that the students are more 
likely to depart later in the AM period for that trip purpose. As noted earlier, in both the 
Weibull models, σββ /* −= . Thus, an appropriate interpretation of a positive beta in these 
two models is that people belonging to the corresponding demographic class will depart 
sooner (thanks to a higher failure rate), thus ending their prior activity earlier. This is in 
contrast to interpretation of signs for the lognormal model, discussed above. For example, if 
the coefficient estimate for the male variable is positive in the Weibull models, it would be 
correct to say that men take such a trip earlier than women, everything else held constant. 
(The opposite would be true for the lognormal model’s interpretation.)  
 
Based on these tendencies, results for each control variable shown in Tables 3, 4 and 5 are 
consistent across all three models. In other words, if the coefficient on a control variable is 
positive in the lognormal model, it is negative in both of the Weibull models and vice-versa. 
Of course, as expected, the magnitude and statistical significance of the coefficients vary. 
 
 The percentage increase/decrease in expected departure time for a unit change in X can be 
computed as )1(100 −βe  and )1(100 / −− αβe  for the lognormal and Weibull models, 
respectively. For indicator variables, these equations give the percentage increase (lognormal 
model) or decrease (Weibull models) in the expected departure time for those exhibiting such 
characteristics (X=1), relative to others (X=0) – and relative to the midnight start time. These 
values are presented (parenthetically) in Tables 3, 4, and 5, and the key results (in terms of 
minutes, rather than percentages) are discussed here. 
  
A variety of demographic and trip-related variables were found to be highly statistically 
significant in all estimated models. In the home-to-work models, the attributes of greatest 
practical significance (in terms of their effect on departure times) were found to be (in order 
of importance, and using the Weibull model): (a) Hispanic ethnicity (resulting in a 10% or 
40-minute earlier departure time than the base ethnicity of Asian, and a 20-minute earlier 
departure time than Caucasians), (b) employment status (with full-time employees departing 
35 minutes earlier than part-time employees), (c) trip attributes (external trips leaving 27 
minutes later after controlling for distance), and (d) flexible work hours (25 minutes later 
than those without flexible work hours). 
 
In the Weibull model of work-to-home departure times, the most practically relevant 
attributes were found to be: (a) ethnicity (Hispanics generally departing 20 minutes later than 
Asians and at the same time as Caucasians), (b) external-zone destination  (which occur 115 
minutes later than intraregional trips, after controlling for trip cost), (c) day of the week (with 
workers departing an average of 20 minutes earlier on Fridays), and (d) mode (with 
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carpoolers and solo drivers departing an hour later than bus users).  Under both the Weibull 
models, the key variables were somewhat fewer: (a) mode, (b) external trips, (c) ethnicity, 
and (d) job type.  
 
While the model results suggest that individuals tend to depart earlier from work on Fridays, 
no day-of-week effects were found in home-to-work trips (i.e., departures from home). 
However, there is some evidence here that individuals leave later for work in the summertime 
(though there is no such effect for work-to-home trips). Interestingly, the presence of children 
in the household appears to have little effect on departure time choice in home-to-work trips, 
but an earlier departure time for parents (or those living in households with children) is 
evident in the work-to-home trips. Combining the effects from the two HBW models, one can 
conclude that individuals with higher incomes, Caucasians and Hispanics, full-time workers, 
and those commuting solo tend to work the longest days. In contrast, those enjoying flexible 
work schedules and those working at offices tend to experience more compressed work days 
(though their lunch breaks may also be shorter). 
        
Table 5’s NHB trip model results indicate that a work-trip purpose, the presence of children, 
traveler age and employment status are the most statistically and practically significant 
variables. Most results are intuitive: for example, males, those in households with children 
present and those making a NHB trip to or from work tend to make such trips earlier in the 
day (15 minutes earlier for males [versus females], 45 minutes in presence of children, and 80 
minutes when for work purposes, as computed using the Weibull model’s results). NHB trips 
also appear to occur earlier in summer (50 minutes earlier than in the fall and wintertime) but 
somewhat later in the springtime (by 18 minutes) and on Fridays (by 24 minutes). 
 
Table 6 presents the bi-modal model results for HBNW trips. These indicate that the most 
important determinants of departure time for such trips are the presence of children (which 
tend to occur 30 minutes earlier in the PM period, when using the normal mixture model ), 
employment status (with full-time workers leaving 50 minutes earlier [in the AM period] than 
their part-time counterparts), mode of travel (with bus users departing 45 minutes earlier than 
car drivers, in the AM period) and travel cost (with every added dollar of cost associated with 
a 5 minute later AM departure time and 5 minute earlier PM time). The directional effects of 
each of the variables and their comparison for AM and PM peaks is accomplished by 
focusing on coefficient signs. For example, retired individuals tend to take HBNW trips later 
in the AM period (βAM = +0.0574) but earlier in the PM period (βPM = -0.0673). Interestingly, 
such trips are taken later in the AM period in spring and later in the PM during summer.  
 
Clearly, there is strong consistency across model results by trip type, and many explanatory 
variables are associated with very practically significant effects. Nevertheless, it is important 
to recognize which of the model specifications performs best, so that analysts can focus on 
their results. The following section describes such evaluations. 
 
5.2 Model Comparisons 
  
Models can be compared in multiple ways.  Two of the most common are the magnitude of 
factor impacts, as well as goodness of fit.  Both of these evaluation approaches are examined 
here. 
 
5.2.1 Coefficients and Marginal Effects 
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For home-to-work trips most parameter estimates were similar (in terms of having the same 
general effect on departure time) in all three models. However, the presence of children was 
found to be both statistically and practically significant in the Weibull model with UH, but 
not in the other two models. Summertime and educational employment variables were found 
to be statistically insignificant in the Weibull model with UH, but significant in the other two 
models. Overall, the results from the Weibull model appear somewhat more intuitive. In 
terms of marginal impacts of control variables, the lognormal and Weibull models offered 
higher values than those of the Weibull model with UH.  
 
For work-to-home trips the coefficients were similar across models, except that income and 
office-employment variables were statistically significant only in the lognormal model.  In 
contrast, African-American race and retail occupation variables were statistically significant 
only in the two Weibull models. The coefficients for both Weibull models are roughly the 
same. This is consistent with the estimate of vi’s standard deviation being quite small (0.05) – 
and only marginally significant (since vi averages to 1). Essentially, unobserved heterogeneity 
in the work-to-home trips model is slight, resulting in more similar outcomes. In terms of 
factor magnitudes, the lognormal model exhibits stronger responses to variations in control 
variables than do either of the Weibull models. 
 
For NHB trips the results are consistent across all three models except for the cost variable, 
which was statistically insignificant in lognormal model , and the summertime variable, 
which was found to be statistically (and practically) significant only in the lognormal model. 
In terms of marginal impacts, all factors offered values in the same range across all three 
models.  
            
5.2.2 Goodness of fit 
 
Spiegelhalter et al.’s (2002) Deviance Information Criterion (DIC) was used to compare the 
models’ overall performance.  The common Akaike and Bayesian Information Criteria (AIC 
and BIC) are limiting cases of the DIC, which is composed of two terms: one accounts for 
model fit and the other for model size. Models with smaller values of DIC are preferred.  
(This is also the rule for model choice under the AIC and BIC, which are felt to be inferior 
metrics. [Spielgelhalter et al (2002), pp 185].) 
 
DIC values illustrate how the Weibull with UH is preferred for home-to-work trips 
(suggesting that latent heterogeneity is important for this trip type), while the standard 
Weibull is only slightly preferred to the Weibull with UH for work-to-home trips (DIC = 
19,668 versus 19,682) (an indication that less latent variation exists for this trip type).  
Consistent with Table 3’s results, Figure 1(a) illustrates population density function estimates 
for trip departure times across the sample population, supporting the conclusion that the 
Weibull with UH substantially outperforms the lognormal in both cases and the standard 
Weibull in the home-to-work case.  Figure 1(b) clearly illustrates how both Weibull model 
predictions for work-to-home trips are nearly the same (consistent with their nearly equal 
DIC values).  Unfortunately, while both out-perform the lognormal model, neither performs 
impressively in the aggregate comparisons. Both exhibit far too much spread compared to the 
observed distribution of work-to-home travel times. 
 
A comparison of Figures 1(a) and 1(b) raises an important question: Why is it that work-to-
home trips are so much harder to predict than home-to-work trips with these models?  
Perhaps the symmetry and slightly leftward skew of the work-to-home departure time pattern 
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is a problem, in addition to the rather clear bi-modality?  Perhaps business practices govern 
departure times from work, while home location, presence of children, and commute times 
play far more important roles in the home-to-work decision?  Such a scenario is easy to 
imagine and suggests that other control variables may be key for the work-to-home model.  
 
For NHB trips, the DIC values suggest that the Weibull is the best model, as evident in 
Figure 1 (c).  The Weibull model also performs best in replicating the aggregate data. 
Moreover, in terms of unobserved heterogeneity, it was found to be only marginally 
significant statistically, with no real practical significance. Thus, there seems to be little 
difference in Weibull model results with and without UH, suggesting the attributes already 
controlled for in the model capture the NHB trip departure time behavior as well as they can.  
 
The bi-modal normal mixture model for HBNW trips predicts the distribution’s two modes 
quite well (Figure 1 (d)), but missed the AM peak’s spread in departure times quite a lot. This 
may be due to the abrupt nature of the AM peaking (i.e, a very large number of trips in a 30-
minute interval, which is difficult to capture in such models).  
 
6. Conclusions 
 
The formulation, estimation, and evaluation of Bayesian parametric duration models using 
different distributional assumptions were demonstrated here, using models for various trip 
purposes from the 1996 Austin Travel Survey. The departure time models for home-to-work 
and work-to-home trip purposes were estimated using lognormal, standard Weibull and 
Weibull with unobserved heterogeneity (UH) models. These specifications were compared 
using a relatively new goodness of fit statistic, called the DIC. The Weibull model with UH 
was found to perform best for both trip purposes, both in terms of goodness of fit and 
predictive (aggregate) distributions for HBW trip departure times. However, recognition of 
unobserved heterogeneity in the home-to-work departure time model improved model fit 
much more than in the work-to-home application. 
 
The Weibull model performed best in fitting the NHB trip data, and the normal mixture 
model did well in terms of predicting the modes of the HBNW departure time distribution. 
The empirical analyses provided intuitively appealing results, allowing for behavioral 
understanding of departure time patterns across user groups, as well as generalized travel 
costs, recognizing both time and money. The Bayesian approaches employed here provide a 
valuable alternative to the presently MLE-based methods, in terms of the breadth of 
information obtained on parameter distributions, unbiased comparison methods for different 
(non-nested) models (via the DIC), and the availability and user-friendliness of the associated 
software (WinBUGS). Gadda (2006) performed a comparison of the Bayesian and MLE 
methods for the Weibull specification, and both sets of results were very similar for this data 
set.  Bayesian methods should be of even greater use in future analyses, when some prior 
information exists for inclusion, which is not possible with MLE-based methods.  
 
In terms of immediate, practical applications of this work’s results, estimates explain how 
departure time choices are likely to vary according to traveler attributes. Such information is 
likely to be useful in anticipating the peak travel times for different cities and different areas 
of a network, as well as the travelers most impacted by new policies. Key features of time-of-
day dependent policies include variable-rate toll schedules, carpool lane hours of operation, 
and staggered work start time decisions. 
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While the results shared here appear very promising, some limitations remain.  For example, 
departure time models in this application require a base start time, which affects results 
slightly.  Moreover, standard approaches do not have an end time, when, in fact, 24 hours is 
the effective constraint used here, impacting left-skewed distributions (e.g., late-night 
activities like movie watching).  This constraint would not apply, of course, if one wanted to 
use these models for activity durations, as individuals could remain in an activity indefinitely.  
Other limitations in the current models, as applied here, include the independence of trips 
assumption which is mostly handled by “divorcing” outbound and return trips (which may be 
intimately related in reality) and an inability to control for time-of-day-varying travel costs, 
which are important for various applications (such as variable tolling). Also, the use of 
parametric distributions is less flexible than semi-parametric and non-parametric approaches 
and may lead to erroneous conclusions if the assumed underlying distributions are incorrect.  
 
The next step for enhancing the models presented here is to allow for time-varying covariates 
(as used in Popuri et al. 2008 and Abou-Zeid et al. 2006, for example) and simultaneous 
analysis of inter-activity durations, in order to resolve most of the issues highlighted here. 
This can be done by studying all trips made by an individual in a day and estimating 
durations of all activities, and then re-formulating the model in terms of these durations. 
Also, recent research in Bayesian nonparametric modeling shows that these models typically 
tend to outperform parametric models in both fit and prediction.  Among other reasons, 
nonparametric priors allow for high levels of skew and kurtosis in the data that parametric 
models typically fail to capture (see, e.g., Dey and Rao’s 2006 compendium of papers).  Past, 
current, and future research will no doubt evaluate the value of these models in transportation 
research.  In particular, developing hierarchical semi-parametric scale mixture models, which 
better account for uncertainty in the observed data, is one area of research that should be 
pursued. In addition, a comparison of this paper’s methodology with those applied in prior 
works using hazard-based models of departure time is of interest. 
 
The methodologies presented in this paper should assist the development of more robust 
models for continuous departure time choices like incorporating these in the tour/activity 
based travel data and modeling systems. Also, the outputs of theses modles could be useful 
inputs to emerging dynamic traffic assignment models and traffic control measure evaluation 
(such as implementation of congestion pricing policies). Departure time choice is a complex 
phenomenon, and continuous-time models are needed, to capitalize on the power of emerging 
dynamic traffic assignment models while providing the requisite data. 
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As noted, model evaluation was performed by comparing model-predicted departure time 
densities to the actual histograms of departure times.  These model-predicted departure 
densities were estimated as the average of all individuals’ departure time densities (evaluated 
at the average values of parameter estimates) in the data set. Evaluating these densities for the 
lognormal, Weibull and normal mixture models was a straightforward process. However, to 
find these densities for the Weibull model with UH, the conditioning on vi had to be removed.  
This resulted in the following departure time density: 
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The derivation of Eq. (A1) is as follows: Individual i’s conditional departure time is given by: 
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Since vi is gamma distributed with mean 1 and variance 1/ δ, the following holds: 
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Substituting λi = exp(Xi β) into the last equation completes the derivation. 
 
These results were used to calculate the departure time density of each individual, as well as 
their average, thus providing the population’s predictive density for a comparison with 
observed distributions.  
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Table1. Descriptive Statistics of Sample Data for HBW Trips  
 

Variable  Description of the Variable 
Home-to-work trips Work-to-home trips 

Min Max Mean S.D Min Max Mean S.D 
Dep. Time Departure time (minutes after midnight) 170 1380 520.80 183.44 5 1440 991.89 194.76 
Age Age of respondent (years) 5 81 39.08 12.29 5 99 38.85 12.71
Income Household income (divided by $10,000) 0.25 17.5 5.41 3.34 0.25 17.5 5.35 3.28 
Kids Presence of children under the age of 5 (1 = yes) 0 1 0.15 0.35 0 1 0.15 0.36 
Gender (1 = male)  0 1 0.50 0.50 0 1 0.51 0.50 
Student Student full time (1 = yes) 0 1 0.13 0.33 0 1 0.13 0.34 
AfAm African-American (1 = yes) 0 1 0.05 0.23 0 1 0.81 0.39 
Hispanic Hispanic (1 = yes) 0 1 0.11 0.31 0 1 0.06 0.23 
Caucasian Caucasian (1 = yes) 0 1 0.78 0.42 0 1 0.11 0.31 
Full time Full-time worker (1 = yes) 0 1 0.83 0.38 0 1 0.78 0.42
Flex Work Enjoy flexible work-hours (1 = yes) 0 1 0.41 0.49 0 1 0.42 0.49
Retail Retail sector employee (1 = yes) 0 1 0.16 0.37 0 1 0.18 0.38 
Industrial Industrial sector employee? (1 = yes) 0 1 0.12 0.33 0 1 0.12 0.33 
Education Work for an educational institution (1 = yes) 0 1 0.06 0.24 0 1 0.07 0.25 
Office Works in an office (1 = yes) 0 1 0.21 0.41 0 1 0.20 0.40 
Government Works in a government agency (1 = yes) 0 1 0.12 0.33 0 1 0.12 0.33 
Drive alone Drive alone (on trip in question, 1 = yes) 0 1 0.86 0.35 0 1 0.80 0.40 
Shared ride Shared ride (on trip in question, 1 = yes) 0 1 0.10 0.30 0 1 0.16 0.37 
External Travel to an external zone on trip in question (1 = yes) 0 1 0.01 0.10 0 1 0.01 0.10 
Cost Generalized cost of trip ($, in 1996) 0.205 34.8 5.03 3.49 0.205 30.71 5.23 3.62 
Friday Trip took place on a Friday (1 = yes) 0 1 0.16 0.37 0 1 0.16 0.37 
Summer Trip took place during summertime (June, July, & August) 0 1 0.03 0.18 0 1 0.03 0.18 
Number of observations 1717 1472
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Table 2. Descriptive Statistics of Sample Data for NHB and HBNW Trips  

 

 
Variable  Description of the Variable 

Non-home-based trips Home-based non-work trips 
Min Max Mean S.D Min Max Mean S. D 

Dep. Time Departure time (Minutes after 12am) 10 1440 875.56 291.06 10 1440 843.61 224.30 
Age Age of respondent (years) 5 92 38.37 16.64 5 99 34.77 20.23 
Income Household income (divided by $10,000) 0.25 17.5 5.83 3.68 0.25 17.5 5.40 3.64 
Kids Presence of children under the age of 5 (1 = yes) 0 1 0.16 0.37 0 1 0.18 0.38 
Male Gender of the person (1 = male) 0 1 0.49 0.50 0 1 0.50 0.50 
Hispanic Hispanic (1 = yes) 0 1 0.08 0.28 0 1 0.12 0.32 
Caucasian Caucasian (1 = yes) 0 1 0.84 0.37 0 1 0.78 0.41 
Full time Full-time worker (1 = yes) 0 1 0.62 0.49 0 1 0.41 0.49 
Part time Part-time worker (1 = yes) 0 1 0.08 0.28 0 1 0.10 0.29 
Retired Retired from employment (1 = yes) 0 1 0.07 0.25 0 1 0.10 0.30 
Student Student full time (1 = yes) 0 1 0.23 0.42 0 1 0.37 0.48 
Retail Retail sector employee (1 = yes) 0 1 0.09 0.29 0 1 0.08 0.26 
Industrial Industrial sector employee (1 = yes) 0 1 0.09 0.28 0 1 0.05 0.23 

Education Work for an educational institution (1 = yes) 0 1 0.04 0.20 0 1 0.03 0.17 
Office Works in an Office (1=yes) 0 1 0.19 0.39 0 1 0.11 0.31 
Government Works in a Government agency (1=yes) 0 1 0.09 0.29 0 1 0.06 0.25 
Drive alone Drive alone (on trip in question, 1 = yes) 0 1 0.52 0.50 0 1 0.38 0.49 
Shared ride Shared Ride (on trip in question, 1 = yes) 0 1 0.41 0.49 0 1 0.49 0.50 
Trip cost Generalized cost of trip ($, in 1996) .13 34.80 2.54 2.63 0.13 23.35 2.16 2.06 
Friday Trip took place on a Friday (1=yes) 0 1 0.20 0.40 0 1 0.18 0.38 
Summer Trip took place during Summer (1=yes) 0 1 0.03 0.18 0 1 0.04 0.20 
Spring Trip took place during Spring (1=yes) 0 1 0.87 0.34 0 1 0.83 0.38 
Number of observations 4856 7325 
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Table 3. Final Model Results for Home-to-Work Trips 

Note: ME = Elasticity around Mean (shown parenthetically) 

Attribute   Variable 
Lognormal Weibull Weibull with UH 

Beta (ME) t-stat Beta (ME) t-stat Beta (ME) t-stat 
  Alpha(α)   2.997 58.638 7.884 6.116 
  Constant(b0) 6.531 143.160 -20.300 -50.347 -50.280 -6.367 

Household 
Attributes 

Income (divided by 10000) -0.003(-0.3) -1.435 0.021(-0.7) 2.762   
Kids     0.167(-2.1) 1.156 

  
Individual 
attributes 
  
  

Age (divided by 10) -0.024(-2.4) -4.008 0.083(-2.8) 3.943 0.146(-1.8) 3.348
Student 0.036(3.7) 1.618 -0.081(2.7) -1.014 -0.148(1.9) -0.939 
African-American -0.051(-4.9) -1.728   0.523(-6.4) 1.810 
Hispanic -0.105(-9.9) -2.981 0.257(-8.2) 2.492 0.626(-7.6) 2.559 
Caucasian -0.051(-4.9) -1.728 0.129(-4.2) 1.664 0.309(-3.8) 1.477 

Employment 
attributes 
  
  
  
  
  

Full-time -0.080(-7.7) -3.751 0.281(-9.0) 4.028 0.472(-5.8) 3.294 
Flex Work 0.059(6.1) 4.234 -0.184(6.3) -3.571 -0.372(4.8) -3.664 
Retail 0.038(3.8) 1.725 -0.163(5.6) -2.314 -0.195(3.0) -1.224 
Industry -0.031(-3.1) -1.461   0.260(-3.2) 1.904 
Education -0.031(-3.1) -1.461 0.161(-5.2) 2.441   
Office 0.022(2.3) 1.078   -0.225(2.9) -1.64 
Government -0.050(-4.9) -2.107 0.161(-5.2) 2.441 0.260(-3.2) 1.904 

Trip 
attributes 
  
  

Drive alone -0.042(-4.1) -2.109 0.236(-7.6) 3.243 0.286(-3.6) 1.144 
Shared Ride     0.217(-2.7) 0.740 
External 0.062(6.4) 0.927 -0.23(8.0) -0.968   
Cost -0.017(-1.7) -8.649 0.064(-2.1) 9.862 0.099(-1.3) 6.338 

Season Summer 0.037(3.7) 0.97829 -0.164(5.6) -1.223   

  

τ  (inverse of variance) 12.67 28.973     
σv  (SD of iv )     1.285 8.169 

Number of observations 1717 1717 1717 
DIC (Deviance Information Criterion) 21849.1 22559.6 19976.1 
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Table 4. Final Model Results for Work-to-Home Trips 

Note: ME = Elasticity around Mean (shown parenthetically) 

Attribute   Variable 
Lognormal Weibull Weibull with UH 

Beta t-stat Beta t-stat beta t-stat 
  Alpha (α) - - 6.1480 17.831 6.2240 18.030 
  Constant (b0) 6.7680 96.493 -43.0700 -17.580 -43.6500 -17.948 
Household 
Attributes 

Income (divided by 10000) 0.006(0.6) 1.816  
Kids -0.018(-1.8) -0.656 0.073(-1.2) 0.960 0.075(-1.2) 0.986 

  
Individual  
attributes 
  
  

Age (divided by 10) -0.008(-0.8) -0.931 0.117(-1.9) 5.093 0.118(-1.9) 5.275 
Student 0.039(4.0) 1.232 -0.098(1.6) -1.118 -0.089(1.4) -1.013 
African-American   -0.200(3.3) -1.253 -0.207(3.4) -1.339 
Hispanic 0.088(9.3) 2.159 -0.122(2.0) -1.022 -0.155(2.5) -1.151 
Caucasian 0.059(6.1) 1.915 -0.122(2.0) -1.022 -0.126(2.1) -1.121 

Employment 
attributes 
  
  
  
  

Full-time 0.018(1.9) 0.681 0.085(-1.4) 1.101 0.092(-1.5) 1.254 
Flex Work -0.013(-1.3) -0.654 0.05(-0.8) 0.912 0.05(-0.8) 0.915 
Retail -0.143(2.4) -1.906 -0.144(2.4) -1.949
Industry -0.044(-4.3) -1.377 0.178(-2.9) 2.609 0.154(-2.5) 1.771 
Office -0.024(-2.3) -1.066     
Government -0.024(-2.3) -1.066 0.178(-2.9) 2.609 0.206(-3.3) 2.387 

Trip 
attributes 
  
  

Drive alone 0.03(3.1) 0.614 -0.371(6.2) -2.786 -0.339(5.6) -2.598 
Shared Ride 0.042(4.3) 0.786 -0.371(6.2) -2.786 -0.339(5.6) -2.598 
External 0.078(8.1) 0.787 -0.663(11.4) -2.389 -0.669(11.4) -2.420
Cost 0.003(0.3) 1.170 0.031(-0.5) 3.748 0.032(-0.5) 3.885 

Day of week Friday -0.056(-5.5) -2.169 0.122(-2.0) 1.705 0.123(-2.0) 1.694 
  τ  (inverse of variance) 7.4550 26.894 - - - - 

  σv (SD of iv ) - - - - 0.0506 1.660 

Number of observations 1472 1472 1472 
DIC(Deviance Information Criterion) 21439.8 19667.6 19682.3 
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Table 5. Final Model Results for NHB Trips 

Note: ME = Elasticity around Mean (shown parenthetically) 
 

Variable Attribute Lognormal Weibull Weibull with UH 
Beta t-stat Beta t-stat beta t-stat 

 Alpha (α)   4.441 55.932 4.403 56.096 
 Constant (b0) 6.763 244.948 -30.7 -54.433 -30.46 -53.495 
Household 
Attributes 

Income (divided by 10000)   0.010(-0.2) 2.428 0.010(-0.2) 2.464 
Kids -0.055(-5.3) -4.121 0.245(-5.4) 6.106 0.241(-5.3) 5.874 

Individual 
Attributes 

Age (divided by 10) -0.181(-16.6) -5.106 0.106(-2.4) 10.993 0.105(-2.4) 10.78 
Male -0.019(-1.9) -2.01 0.077(-1.7) 2.636 0.077(-1.7) 2.632 
Hispanic -0.065(-6.3) -2.651   0.055(-1.2) 0.97 
Caucasian -0.027(-2.7) -1.471 0.0308(-0.7) 0.774 0.055(-1.2) 0.97 

Employment 
attributes 

Full-time 0.072(7.4) 5.332 -0.287(6.7) -8.049 -0.288(6.8) -7.919 
Part-time 0.052(5.4) 2.691 -0.100(2.3) -1.784 -0.103(2.4) -1.782 
Retired 0.031(3.2) 1.228     

Trip 
attributes 

Work trip -0.096(-9.1) -8.696 0.527(-11.2) 14.255 0.522(-11.2) 14.021 
Shared ride 0.032(3.3) 3.122 -0.172(4) -5.247 -0.175(4) -5.313 
Cost   -0.012(0.3) -1.973 -0.012(0.3) -1.963 

Day of week Friday 0.029(3) 2.418 -0.134(3.1) -3.554 -0.133(3.1) -3.479 
Season Summer -0.058(-5.7) -1.954     

Spring 0.021(2.1) 1.268 -0.085(1.9) -1.878 -0.086(2) -1.96 
 τ  (inverse of variance 9.3700 48.751     
 σv  (SD of iv )     0.0383 1.818 

Number of observations 4856 4856 4856 
DIC (Deviance Information Criterion) 67943.6 65934.9 65935.8 
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 Table 6. Normal Mixture Model Results for HBNW Trips 
 

Variable 
 

Attribute 
AM Peak PM Peak 

Beta1 t-stat Beta2 t-stat 
 Constant (b0) 6.202 94.30 6.894 416.30 

Household 
Attributes 

Income (divided by 10000)   -0.0018 -2.45 
Kids   -0.0347 -5.00 

 
Individual 
attributes 

Age (divided by 100) 0.1909 2.54 -0.091 -3.85 
Student   0.01357 1.59 
Hispanic -0.07154 -1.82 -0.0096 -0.91 

Caucasian   -0.0106 -1.23 
 
 
 

        Employment 
attributes 

Full-time 0.07171 2.30 0.08576 8.71 
Part time 0.1297 3.78 0.05601 5.12 
Retired 0.05743 1.44 -0.0673 -3.40 
Retail -0.08453 -2.14   

Industry 0.05343 1.20   
Education 0.06427 1.11 0.02036 1.44 

Office -0.05817 -1.63   
Government 0.05204 1.19 0.01302 1.20 

 
Trip 

attributes 

Drive alone 0.05448 1.69 0.08308 8.42 
Shared ride 0.05637 1.91 0.1113 13.10 

Cost 0.006153 1.49 -0.0047 -3.68 
 

Season 
Spring 0.04648 1.68   

Summer   0.03339 2.61 
P (probability) 0.3018 25.49 0.6982 58.97 

τ (inverse of variance) 5.507 29.08 265.5 9.40 
Number of observations 7325 



 25

 
Figure 1. Comparison of Model Predictions for Different Trip Purposes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a. Home-to-Work Trips.                                                            b. Work-to-Home Trips 
 
               
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
c. NHB Trips                    d. HBNW Trips  
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