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ABSTRACT 
 
A great disparity exists between the direction of travel demand forecasting by researchers, and 
the travel demand models used by transportation planning organizations.  Activity-based models 
of travel demand have become increasingly studied in the academic realm and significant 
advances have been made in recent years.  However, travel demand forecasting tools used in 
practice have lagged behind, relying on traditional, aggregate 4- (or 5- ) step approaches.  One 
reason behind the divergence in methods is the lack of work that directly compares performance 
of the two approaches.  This research provides such a comparison, with an emphasis on 
calculations of traveler welfare.  A traditional, aggregate model and an activity-based 
microsimulation model of travel demand were developed in parallel using the same data for 
Austin, Texas.  The models were applied for both a base scenario and several policy scenarios to 
test model performance and sensitivity to inputs.  The spatial distribution of traveler welfare 
implied by these scenarios illuminates a variety of key differences in the the models’ 
performance, suggesting that the activity-based model enjoys a greater sensitivity to inputs.  
Additional outputs demonstrate the level of segmentation that can be attained in model outputs 
using microsimulation methods.  The comparative analysis of these two competing approaches to 
travel demand forecasting also offers some insight into the practical benefits of an activity-based 
approach. 

 

INTRODUCTION 

 
Limitations in the traditional, aggregate approach to travel demand modeling have led to the 
emergence of more sophisticated travel forecasting methods.  Activity-based models generally 
incorporate several attributes that add behavioral realism relative to their traditional counterparts.  
First, the consideration of activities as opposed to trips necessitates a tour-based approach to 
capture interactions and interdependencies between activities/trips as part of the same tour.  
Second, an activity-based approach can depict relationships across tours during the course of a 
day.  Third, interdependencies across household members can exist.  And finally, the activity-
based approach allows for an explicit hierarchy of activities and trips, although this hierarchy is 
not yet fully understood, and specification of different structures affects model estimation (1).   

There have been substantial advances in activity-based theory over the past 20 years, and 
the theoretical basis for moving from the more traditional, aggregate models to activity-based 
models seems rather clear; yet the use of aggregate models in practice remains widespread.  One 
major reason for this could be that the literature offers next to nothing in terms of comparing the 
performance of these two different approaches; hence, planning organizations may be reluctant 
to invest in such costly approaches.  Outside of work by the authors (2), only a couple reasonably 
relevant comparisons of models similar to these appears to have been presented or published.  
Walker’s (3) modeling of Las Vegas, Nevada provides a direct comparison of a microsimulation 
model with a rather traditional model.  However, the basis for comparison was a trip-based 
microsimulation approach (not activity-based).  Griesenbeck and Garry (4) compare the 
specification of Sacramento’s past, trip-based model to a newer, activity-based model on the 
basis of inputs and outputs, run times, effort required, and the process of model validation. They 



Lemp and Kockelman  3 
 

 

also test the sensitivity of the models to key demographics, but no other results were available or 
discussed.   
 In contrast, this paper presents a direct comparison of traditional and activity-based 
microsimulation approaches, with an emphasis on results.  Moreover, this work’s focus on 
welfare measures under such model settings is highly unusual.  The two models used in this 
paper were developed specifically for the purposes of comparative analysis of model outputs.  
They use the same datasets for parameter estimation and share several features in order to 
facilitate model comparison (e.g., population synthesis, auto availability, and traffic assignment).  
Even with such shared attributes, certain questions remain difficult to answer.  For instance, it is 
difficult to deduce that one model performs better than the other or that differences in model 
results are due to one factor or another.  In fact, such questions may never be fully answered in 
such a context (except possibly in highly idealized and tightly constrained settings with 
simulated data).  The purpose this paper is to highlight differences in model complexity, identify 
the types of results that can be achieved, and offer a sense of how the two models perform. 
 The remainder of this paper discusses the specification, application, and results related to 
changes in traveler welfare for the two separate models of travel demand.  Earlier versions of the 
models and results are presented by McWethy (5) and Lemp et al. (2), and those are focused on 
system-level comparisons, such as total travel time, VMT, and speeds.  In contrast, this paper 
emphasizes traveler welfare computation methods and results, for both model systems.  Welfare 
calculations at the level of individuals and within relatively narrow population segments 
illustrate how microsimulation techniques can better address a variety of important policy 
questions than their aggregate counterparts. 
 
DEMAND MODEL DESCRIPTION 
 
The methodology used in estimation of the aggregate and activity-based models of travel 
demand was carefully structured to provide the most consistent basis for comparison of results 
and model sensitivities.  Because of this, the two models share several features, including 
population synthesis and auto availability modules.  However, the models are really quite 
distinct.  This section describes the models rather briefly.  More details on model components, 
assumptions, limitations, and estimation results can be found in Lemp (6). 
 
Austin Data Sources and Details 
Data used for model estimation for both models come from the 1996-1997 Austin Travel Survey 
(7), as provided by the Capital Area Metropolitan Planning Organization (CAMPO).  After data 
cleaning, the data contained 1,609 households, 3,960 persons, 15,695 trips, 5,182 home-based 
tours, and 407 work-based tours.  In addition to its travel survey, CAMPO provided a coded 
network for the region, zone to zone travel times, distances, and costs (for transit skims), zonal 
land use data, and truck/commercial vehicle and external-zone trip tables.  These external trips 
include trips with at least one external-zone trip end. 
 The other source of data was the 2000 Census and the corresponding Public-Use 
Microdata Sample (PUMS) found at the Census website (www.census.gov).  This data was used 
in the population synthesis procedure for the creation of the base population of households and 
persons. 
 
Population Synthesis and Auto Availability 
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While the population synthesis procedure is an important one, it is not discussed in detail here 
due to space constraints.  For a detailed discussion of the procedure, the reader is referred to 
McWethy (5) and Lemp (6).  However, it is important to note that while population synthesis is 
unnecessary for the aggregate model, the same procedure was used, and synthesized households 
were aggregated by type (across the 24 classes) for each TAZ.  In doing so, consistent inputs 
were generated for both models providing a more uniform basis for comparison between the two. 
 Since our population synthesis procedure does not control for the number of automobiles 
in a household, an auto availability sub-model was calibrated specifically for use in both TDMs.  
The model is structured in a discrete choice framework using an ordered-probit structure with 
four alternatives (0, 1, 2, or 3+ autos), and controls for several household attributes and 
household location characteristics.   
 
Traditional Model Specifications 
The traditional TDM employed here relies on many standard techniques (including several 
outlined by Martin and McGuckin’s [8] NCHRP report), and is based on data in the 1996-1997 
ATS.  All components were estimated to facilitate comparison with the activity-based model, 
while maintaining a rather traditional (though not highly simplistic) structure.  In addition, each 
model is segmented by trip type (home-based work [HBW], home-based non-work [HBNW], 
non-home-based work [NHBW], and non-home-based non-work [NHBNW]).  The model uses 
reasonably standard and streamlined approaches:  regression models for trip generation; 
multinomial logit models for destination, mode, and time-of-day (TOD) choice; and constant 
vehicle-occupancy assumptions.   
 Trip production models (segmented by trip type) were estimated using ordinary least 
squares (OLS) methods.  While home-based (HB) trip productions are modeled at the household 
level, non-home based (NHB) trip productions are modeled at the TAZ level since they do not 
have either of their trip ends based at the household (by definition).   
 As is relatively common in destination choice models, a logsum (expected maximum 
utility or minimum cost) formulation across modes and times of day (TODs) was used to 
estimate (and then apply) multinomial logit models of destination choice (segmented by trip 
type).  The logsum from origin i to destination j for trip purpose p is computed as shown in 
equation 1, across all modes m and time periods t.  Here, there are four modes and four time 
periods, which yield 16 terms in the logsum formula. 
 

 







 

Ctm
ijmptijp ULOGSUM

,

expln       (1) 

where Uijmpt is the systematic (non-random) utility associated with mode m during time period t 
from zone i to zone j for trip purpose p. 
 For mode and TOD choice, joint multinomial logit models were estimated for each of the 
four trip types.  Here the mode alternatives include drive alone (single occupancy) auto, shared 
ride (occupancy greater than 1) auto, transit, and walk/bike.  The four TOD alternatives include 
AM peak (6am – 9am), midday/evening (9am – 3pm and 7pm – 9pm), PM peak (3pm – 7pm), 
and overnight (9pm – 6am).  Because of the unreasonable values of travel time implied by the 
models (less than $2/hour and sometimes negative), and the desire for time-sensitive travel 
patterns (in mode, route, and destination choices), values of travel time were assumed to be $9 
per hour per person for work trips and $4.50 per hour per person for non-work trips.  In addition, 
marginally relevant vehicle operating costs (for purposes of mode choice) of $0.10 per mile were 
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assumed, to approximate past gasoline costs (e.g., 20 mi/gal fuel economies coupled with $2 per 
gallon fuel costs).  
 
Activity-Based Model Specifications 
The activity-based model was originally structured much like the MORPC model (9), though 
several simplifications were made.  However, they do provide several important improvements 
on the model structure used for previous versions of this multi-year work, as presented by 
McWethy (5) and Lemp et al. (2).  The current model structure, as shown in Figure 1, is 
discussed here now. 
 
Travel Generation Modules 
The notion that persons are assigned an overall daily pattern of activity is widely used in discrete 
choice models of activity-based travel demand (e.g., the Portland model [10, 11], the MORPC 
model [9], the SACOG model [12], and several others [13]).  Here MNL models were estimated 
for primary activity pattern (PAP) choice.  PAP alternatives include work patterns (1 or 2+ work 
tours), a school pattern, university pattern, work and university pattern (i.e., 1 or more work tour 
and 1 or more university tour), non-mandatory pattern (i.e., no work, school, or university 
activities), and stay-at-home pattern.  Similar to the MORPC model, maintenance activities 
(e.g.., shopping, escorting, and banking) are modeled at the household level and allocated to 
household members, while discretionary activities (e.g., eating out and exercise) are modeled at 
the level of individuals.  Finally, work-based sub-tour generation, based at the primary work 
location, is modeled in an MNL framework. 
 
Tour Primary Activity Models 
Each tour has an associated primary activity.  MNL models of primary destination choice (for 
each tour segmented by tour type) determine the location of each primary activity.  Measures of 
accessibility are lower-level mode choice logsums, constructed similar to the logsums 
implemented in the aggregate model’s destination choice specification.  However, the logsums 
do not consider the time-of-day element in the same way.  Instead, representative time-of-day 
periods were selected for departure time and return times for each activity purpose, similar to the 
construction of the MORPC activity-based model. 
 Time-of-day is modeled in two sub-models:  tour departure time and duration models 
(both segmented by travel purpose).  These models represent a substantial departure from the 
tour TOD models employed by MORPC.  In particular, the aggregate units of time considered 
for our model are six TOD periods:  early morning (EM, before 6am), AM peak (AM, 6am-
9am), midday (MD, 9am-3pm), PM Peak (PM, 3pm-7pm), evening (EV, 7pm-9pm), and late 
night (LN, after 9pm). 
 These models both employ MNL structure.  Since an individual may undertake multiple 
tours, careful consideration was necessary in both the estimation and application of these models 
to ensure consistency in an individual’s overall scheduling of tours (i.e., temporal constraints 
limit the feasible scheduling alternative choice sets).  To this end, a hierarchy was implemented 
among tours for an individual for the sequencing in which tours are scheduled.  Once the first 
tour is scheduled, the choice set for subsequent tours is limited to the representative set of 
feasible options.   
 As with the aggregate model of mode choice, the tour-based mode choice model, 
considers fixed values of travel time, though travel times and costs are bi-directional here 
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(instead of uni-directional).  In addition, the same choice alternatives are considered, although 
the mode alternatives are specific to the entire tour, not individual trips.  To economize on 
models, the tour mode choice model does not employ full segmentation by primary activity 
purpose, but does use control variables specific to the primary activity, and the models use a 
MNL structure.   
 
Tour Secondary Activity Models 
A tour stop frequency MNL model determines the number of secondary activities on a tour:  no 
stops, 1+ stops on the first half-tour, 1+ stops on the second half-tour, or 1+ stops on both half-
tours.  The model is conditional upon the tour mode chosen, tour departure time, and tour 
duration, and is segmented across tour travel purposes.  The purpose of stops is not modeled, 
however. 
 If the stop frequency choice model application produces additional tour stops beyond the 
primary stop, the stop destination, TOD, and mode choice models are activated.  For stop 
destination choice, generalized cost measures specific to the tour mode are used.  These models 
take an MNL structure, segmented by tour type. 
 Stop TOD choice is performed in a rather unique way.  Two choice alternatives are 
permitted: (1) the choice of the same TOD as the previous trip, and (2) the choice of the TOD 
immediately following that TOD, which is only available if global and individual time 
constraints allow.  These constraints tend to be very different systematically for stops on the first 
half-tour versus the second half-tour.  For this reason, segmentation across half-tours was 
considered in these models using MNL techniques. 
 Trip mode choice is the final stage in this activity-based paradigm, and is applied to all 
trips.  Like the other mode choice models discussed in this paper, the trip mode choice model 
was structured as a MNL model. 
 
Traffic Assignment and Model Feedback 
The traffic assignment routine for both the aggregate and activity-based models is the same and 
is based on trips (as opposed to tours).  The routine considers four TODs (AM and PM peaks, 
midday/evening, and overnight), and typical deterministic user equilibrium (DUE) assignment 
routines were implemented using TransCAD GIS.  For the activity-based model, midday and 
evening trip tables and late night and early morning trip tables are aggregated for assignment, in 
order to be consistent with the aggregate model).  Before traffic assignment is implemented, 
fixed truck and external trips provided by CAMPO were added onto modeled trip tables 
(accounting for approximately 5.3 million VMT daily and about 15 to 20% of region-wide daily 
VMT).  While this procedure is not ideal, it is not uncommon and provides a simple way for 
dealing with travel of these types.   
 In model application, full feedback (from network assignment to trip patterning) is an 
important component to ensure consistency between input and output travel times.  In the 
aggregate model, output travel times are used in the upper level destination choice models.  In 
the activity-based model, travel times are introduced at the point of primary tour destination 
choice.  To facilitate convergence, a method of successive averages (MSA) was utilized here 
(14).  TransCAD’s gap convergence formula (based on differences in link flows between 
iterations) was used here to determine convergence.  The aggregate model was run to reach full 
convergence (at a level of 0.01 or less, as suggested in TransCAD’s documentation) in each 
TOD while the activity-based model runs completed four iterations since each iteration requires 
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a great amount of time for model application.  In general, however, four iterations were enough 
to reach reasonable levels of convergence (of 0.02 or less). 
 
WELFARE CALCULATIONS 
 
For the aggregate model, normalized differences in logsums of systematic utilities are the basis 
for welfare change estimates relative to the base scenario.  As indicated by Ben-Akiva and 
Lerman (15), when divided by the marginal utility of money, these logsum differences provide a 
measure of consumer surplus (CS).  The differences in destination choice logsums for the 
aggregate model provide a fairly complete evaluation of welfare, since mode and TOD choices 
are nested in the destination choice model.  The consumer surplus can then be expressed as the 
normalized difference in the expected maximum utilities before and after a policy change, which 
causes a change in network performance: 
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where CSiph is the expected change in the monetized value of maximum utility across 
alternatives.  This change in consumer surplus (or compensating variation) is for trips originating 
at origin i engaged in trip purpose p by household of type h, and B and A denote the before and 
after travel conditions. Vijph is the systematic destination choice utility, C is the choice set of all 
zones, and γp is the marginal utility of money. 
 As shown by Kalmanje (16), the marginal utility of money from such nested model 
structures can be expressed as follows: 
 

cpplsp  )(          (3) 

 
where β(ls)p is the logsum coefficient from the destination choice model for trip purpose p, and βcp 
is the cost coefficient from the mode choice model.  Hence, the marginal utility of money varies 
only by trip purpose, as shown in Table 1 (for the aggregate model). 
 Changes in consumer surplus (CS) are computed at the trip level using Equation 2, but 
these are most interesting at the level of individuals.  Therefore, average trip making per person 
by purpose provided a weighted sum of welfare impacts.  On average, each Austinite makes 
0.828 HBW trips, 1.92 HBNW trips, 0.491 NHBW trips, and 0.749 NHBNW trips on a typical 
weekday.  These values are applied at the zonal level to develop an average welfare impact per 
person living in that zone.  However, NHB trips are not made from the home zone, so NHB 
welfare effects were averaged over all zones (similar to Gulipalli [2005]), as shown in equation 
4, and added to each zone’s computed HB trip-making consumer surplus.   
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where n is the total number of zones. 
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Since the activity-based model does not contain an obvious or econometrically meaningful 
nesting structure, calculating welfare effects is less clear.  However, tour-mode choice and 
destination choice models display such a nesting structure.  Therefore, CS changes are defined 
specifically by the tour unit, ignoring the welfare changes that occur at the trip level.  As in the 
aggregate model, the tour destination choice model represents the upper level of a nest with tour 
mode choice embedded in the lower level.  A similar welfare measure can then be formulated 
(equation 5), but at the tour level (instead of the trip level).  In addition, such welfare effects are 
not only specific to each origin and tour purpose, but also to individuals - of known person type 
and PAP.   
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where CSindp is the change in CS for individual n choosing PAP d with tour type p from origin 
(home) zone i, B and A again represent the before and after systematic utilities, Vijndp is the 
systematic utility from origin i to destination j for tour type p by individual n choosing PAP d, C 
is again the choice set of all destination zones j, and γp is (as before) the marginal utility of 
money for tour type p. 
 The marginal utility of money is formulated much like equation 3, except that it now 
refers to each of the seven tour types (as shown in Table 1), instead of trips. 
 Here, unlike the aggregate model calculations, there are probabilities associated with 
each person choosing different PAPs and numbers of tours.  Instead of computing welfare effects 
for each tour combination possibility, the chosen PAP and number of tours of each type for each 
individual from the base scenario are considered.  Essentially, this means that travel generation 
and trip chaining decisions (into tours) are held constant.  While individuals certainly have 
opportunities to shift their travel patterns from one scenario to another, trip and tour generation 
will be less affected than trip-level behaviors in the model, since the upstream travel generation 
models are insensitive to network performance.  Of course, the same holds for welfare 
calculations in the aggregate model, and this is a characteristic of nearly all models of travel 
demand. 
 Since the systematic utility calculations for the aggregate model are disaggregated by 
household type (i.e., those with and without a surplus in autos), zonal level calculations of 
welfare changes for each household type must be performed individually.  For comparison 
purposes, activity-based model calculations are also disaggregated by the same auto surplus 
variable. Due to space constraints and similarity in results, this paper presents only the results for 
households without an auto surplus. 
 
SCENARIO DEVELOPMENT 
 
The traditional and tour-based TDMs were applied to four different scenarios in order to better 
understand model sensitivities to network changes and job distributions.  The first scenario is the 
base scenario, which provides a status quo representation of the region, as well as a basis for 
comparison.  In the second scenario, capacity of freeways is expanded, to represent a reasonable 
system expansion project.  Capacities for the region’s two main north-south corridors (IH-35 and 
Loop 1) were modified, by simply adding a lane in each direction of each corridor.  Total lane 
miles added to the network are over 200 in this scenario, which represents a capacity increase of 
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about 37% for these two corridors, or roughly 9% of the region’s coded transportation network 
(not including centroid connectors).   
 The third scenario is a centralized employment scenario where the location of jobs is 
concentrated in the region’s most central and densely developed zones.  For zones classified (by 
CAMPO) as rural (506 zones, about 47% of total), half of the basic, retail and service jobs were 
removed and for zones classified as suburban (342 zones), 30% of such jobs were removed.  All 
removed jobs were then distributed among the zones classified as urban (201 zones) and CBD 
(25 zones) in proportion to these more central zones employment totals, resulting in a 58% 
increase in their (total) employment. 
 The last scenario is one in which fixed tolls are introduced along key freeway corridors:  
IH-35 and Loop 1.  Since IH-35 is not so congested outside of Austin, tolls were applied only to 
a 20-mile segment near central Austin.  For Loop 1, the same section used in the expanded 
capacity scenario is used here, since it is largely congested.  Tolls for these corridors were set at 
$0.10 per mile.  
 
RESULTS 
 
While the system-level results of these analyses would provide some interesting insight, such 
analyses have been provided in previous literature (see 2, 5, 6).  The results presented in this 
section emphasize the distribution of net benefits and costs (due to scenario shifts) across the 
region’s households and travelers.  Here, traveler welfare is measured as the change in consumer 
surplus from the base scenario to each other scenario.  While the aggregate model welfare 
calculations are simpler and more comprehensive, the aggregate nature of the model’s outputs 
does not allow for detailed benefit analysis of user groups.  The activity-based model, on the 
other hand, offers many more opportunities for benefit analysis of different user groups, but the 
welfare calculations are rather cumbersome and require some simplifications. Since the 
calculation of welfare for the activity-based model ignores changes in consumer surplus at the 
trip level, welfare analyses are not directly comparable across the two modeling approaches.  
However, it is theorized that such trip-level effects in the activity-based model may be rather 
small in comparison to the relatively more important tour-level effects. 
 
Welfare Results 
Figure 2A shows the spatial distribution of welfare change predictions for the aggregate model 
under the expanded capacity scenario.  One key feature we see is that for each origin zone, the 
consumer surplus is positive.  In other words, everyone benefits.  In general, this seems 
reasonable since link travel times should be reduced in most cases under the expanded capacity 
scenario.  The spatial variation in the consumer surplus indicates that persons gaining the most 
tend to be along (and especially to the ends) the expanded capacity corridors.  Those gaining the 
least tend to be zones on the periphery (especially in the east) of the region, and the central zones 
since these zones are already quite near many job centers.   
 Figure 2B shows the spatial distribution of consumer surplus changes under the expanded 
capacity scenario, as predicted by the activity-based model.  The spatial distributions of benefits 
are very similar to those of the aggregate model, but levels of consumer surplus for the activity-
based model tend to be smaller in magnitude (median values of $0.12 per person – versus $0.27 
per person for the aggregate model).  If the additional “trip-level” benefits (as opposed to “tour-
level” only) were realized in the welfare calculation for the activity-based model, the overall 
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benefits would be greater, though they would probably still be lower than the aggregate model’s 
predictions. 
 Of course, such a policy is not costless; someone will be paying for the capacity 
expansion, so true net benefits may not be positive.  Litman (17) suggests that capacity 
expansion for freeways in built-up areas costs between $5 million and $10 million/lane-mile.  If 
it is assumed that the entire length (16 centerline-miles) of Loop 1 is located in built-up areas, 30 
(of the 85) centerline miles of IH-35’s capacity expansion lie in built-up areas, and the freeways 
cost $5 million/lane-mile in built-up areas of Austin, Texas and $3 million/lane-mile elsewhere, 
the total cost of the capacity expansion project would be $790 million.  After accounting for 
traveler welfare changes, the total daily benefits estimated using the aggregate model’s results 
are about $285,000 per day (or $104 million yearly), versus $173,000 per day (or $63 million 
yearly) for the activity-based model.  If the lifetime of the new lanes is roughly 20 years, the 
aggregate model predicts total benefits in the amount of $1.3 billion (assuming an annual 
discount rate of 5%) or $885 million (with a 10% discount rate).  This amounts to net benefits 
ranging from about $100 million to over $500 million depending on the discount rate.  
Discounting at 5% per year, total benefits for this scenario predicted by the activity-based model 
are negative (net loss of $4 million).  Of course, if trip-level benefits (described above) were 
included in these welfare calculations, net benefits may be experienced.  Moreover, the addition 
of new residents and travelers to the region over the coming 20 years will increase travel times, 
but also make delay costs more severe, thus improving the net present value of such an 
investment.  
 One main feature of the consumer surplus changes, as predicted by both models for the 
centralized employment scenario (Figure 3), is their organized and concentric nature, ringing 
central Austin.  The biggest gainers are concentrated in the city center, as expected, since this is 
the location to where most employment was moved.  The biggest losers tend to be on the 
periphery of the region, especially to the north.  However, the aggregate model (Figure 3A) 
predicts almost no losers (i.e., welfare gains are positive for almost all zones).  The implication 
of this is that Austin apparently does not have enough employment in central zones, and 
centralizing employment could be a good thing for everyone in the region.  This result seems 
rather peculiar since there is already much congestion to and from Austin’s downtown in the AM 
and PM peak periods.  In contrast, the activity-based model predictions (Figure 3B) are 
somewhat more modest (and reasonable).  For households without an auto surplus, the 95th and 
99th percentile net benefits were computed to be $0.579 and $0.763 per day per person, 
respectively, for the activity-based model, while the aggregate model predicted daily benefits of 
$0.936 and $1.00 per person, respectively.  It is expected that the centralized employment 
scenario would generate both winners and losers, but the aggregate model predicts almost all 
winners.  The activity-based model predicts both winners and losers, with about an equal number 
of both.  It seems that the welfare predictions of the activity-based model for this scenario are 
more consistent with expectations.  
 Like the other two scenarios, both models predict similar spatial trends in welfare for the 
tolling scenario (Figure 4).  Not surprisingly, the biggest losers tend to be located nearest to the 
tolled corridors, and to their south.  Those zones with residents that lose the least tend to be on 
the fringes of the region, farthest from the toll ways.  Though almost all are predicted to lose 
under this scenario, net benefits can be calculated as the sum of welfare change for each person 
in the region plus the revenue generated from the tolls.   
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For the aggregate model predictions, the tolls cost the region’s population roughly $163,000 per 
day, but they generate about $269,000 per day, for a yearly net benefit just over $38 million.  If a 
lane-mile costs $5 million, and one discounts future toll earnings (assuming no population/travel 
demand growth), Austin may be able to build over 90 new freeway lanes-miles from such toll 
revenues, expanding capacity in the most congested corridors of Austin, reducing travel times 
and possibly converting all travelers’ welfare losses into gains.  Alternatively, one might 
consider returning all congestion-based toll revenues to travelers in the form of travel budgets or 
“credits”, as proposed in Kockelman and Kalmanje (18); this can have sizable benefits in 
congested regions, by offsetting any toll-related welfare losses, particularly among lower-income 
households (19).  The activity-based model predicts welfare losses of about $132,000 per day, 
but daily revenues at around $241,000.  Over the course of a year, net benefits total nearly $40 
million, nearly the same prediction as in the aggregate model.  Of course, when factoring in the 
fact that trip-level welfare changes are neglected in the activity-based model, net benefits would 
likely total something less than predicted here.   
 To reiterate, the comparisons of welfare across the two modeling approaches are 
imperfect, since welfare measures are computed differently (for reasons described previously).  
Nevertheless, the analyses provide some interesting insights into how these two models spatially 
predict welfare change under different scenarios.  If it is assumed that the exact welfare changes 
for the activity-based model are not dramatically different from our calculations, it is possible to 
draw some more definitive conclusions across these modeling paradigms.  In the case of capacity 
expansion, one would probably see greater benefits overall, though these additional benefits 
would likely remain less than those predicted by the aggregate model.  In the case of centralized 
employment, calculated benefits were close to zero, so there is no reason to think that the overall 
welfare would change much if other forces were allowed to play a role.  And in the case of 
tolling, there are likely to be even fewer benefits, since overall traveler welfare fell in all cases.  
Thus, in each scenario, it seems that the welfare predictions of the aggregate model are greater 
than those of the activity-based model.  In at least one case, that of centralized employment, the 
aggregate model predictions appear to be too high.  This may indicate that the other scenario’s 
aggregate model predictions are high as well. 
 While is difficult to establish the exact causes for the discrepancies between the two 
models’ welfare predictions, one possible reason may be the great amount of aggregation that 
occurs in the trip-based model.  After trip generation, almost all characteristics are lost about the 
individual/household producing the trip: only trip-type information is retained.  In contrast, there 
several more types of travel in the activity-based model, and all household, individual traveler, 
and PAP attributes are retained, thus avoiding aggregation errors.  This situation is similar to 
averaging over individuals before evaluating a function, versus evaluating the function for each 
individual and then averaging.  Thus, the activity-based method is arguably more accurate.   
 While the spatial distribution of welfare change is an important consideration in policy 
analysis, welfare change of different population segments is also of great interest.  The 
microsimulation approach used for the activity-based model permits these sorts of illuminating – 
and often equity-driven – investigations, while the aggregate model does not, in general. 
 
Welfare by Traveler Groups 
Since one can compute consumer surplus changes for each individual in the activity-based 
model, it is possible to not only investigate welfare spatial distribution but also its demographic 
distribution.  For instance, populations can be segmented by income (and neighborhood), and 
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equity-focused analyses can be performed.  Castiglione et al. (20) indicated that this is an area of 
growing concern for planners in the United States.  Here, just such an analysis is provided for the 
activity-based results. 
 The analysis discussed here is limited to three segments of the population: older 
individuals (over age 64), non-workers, and low income individuals (from households with 
income less than $25,000), along with combinations of such attributes.  The same welfare 
measure (as defined previously for the activity-based model) is used, and average welfare 
changes are computed for each traveler type.  Table 2 shows the welfare change for each of the 
population types under each of the three alternative scenarios.   
 Under the expanded capacity scenario, all three types examined here demonstrate lesser 
benefits in comparison to the average person.  This is not so surprising since all three are 
expected to generate less travel in general than the population as a whole (and less travel allows 
for fewer benefits).  When combinations of the population types are analyzed, the non-worker 
type tends to dominate the calculations.  This indicates that being a non-worker is a more 
meaningful indicator of expected welfare effects than is income or age, and may be a 
consequence of the model structure itself (travel generation is segmented by person type [e.g., 
non-workers versus all others] at the start of the model) since similar trends are apparent for the 
other two scenarios.  Under the centralized employment scenario, all three segments of the 
population are better off than the average, while under the tolling scenario, only low income 
individuals are better off.  This is a peculiar finding since one would expect low income 
individuals to be less willing (and able) to pay tolls, and consequently, worse off.  However, the 
model specifications for value of travel time do not vary by income level; thus, the model does 
not differentiate individuals on the basis of willingness to pay tolls (which is a model weakness).  
In the welfare calculations, income level is only recognized explicitly in its effect on the 
systematic utilities of tour mode choice, and implicitly through its effect on auto ownership 
(which also has an effect on the systematic tour mode utilities).  As income rises, the systematic 
utility of transit mode decreases and, in general, auto ownership level increases.  As auto 
ownership levels increase, systematic utilities of shared ride, transit, and walk/bike modes 
decrease.  And therefore, lower income households will generally not be as negatively affected 
by tolls as would higher income households, which is an unfortunate consequence of the activity-
based model specifications. 

CONCLUSIONS 

 
The purpose of this research was to provide an objective comparison between welfare 
calculations of a traditional, aggregate model of travel demand and a microscopic tour-/activity-
based model of travel demand.  For the expanded capacity scenario, the aggregate model 
predicted considerable benefits ($500 million benefit over 20 years), even after accounting for 
the cost of such a capacity expansion project.  In contrast, the activity-based model predicted 
more modest user benefits, which resulted in a small net loss ($4 million over 20 years) after 
accounting for costs.  Both models predicted travel enhancements under the centralized 
employment scenario (though the enhancements were much greater for the aggregate model).  
And both predicted almost identical welfare impacts of the tolling scenario, where tolling 
revenues were predicted to offset added travel costs by roughly $40 million per year.  While 
these results are quite interesting, the focus of this study was in identifying what (if any) gains 
are realized by moving to activity-based, microsimulation approaches for travel demand 
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forecasting (as opposed to traditional, aggregate methods).  Based on these welfare analyses, it is 
not so clear that the activity-based model performed “better” or was more sensitive to the inputs, 
though the microsimulation technique is quite useful in analysis of population segments, as 
demonstrated in this work.  The aggregate model welfare can only really be segmented across 
zones.  As we become more concerned with equity analyses of transport policies, this sort of 
welfare analysis could prove critical.  Of course, microsimulation methods also can be used with 
a trip-based approach.   
 At least in one case (the centralized employment scenario), the results did indicate that 
the welfare calculations of the aggregate model were quite different than what one would expect.  
Moreover, if one accounts for the fact that trip-level welfare changes in the activity-based model 
were ignored, it seems that the overall welfare changes suggested by the aggregate model are 
greater for each scenario than the activity-based model.  This could be a result of the model 
specifications used for the two particular models studied here, or it could be a consequence of the 
activity-based or microsimulation modeling paradigm.  
 Of course, there is no questioning that the estimation, calibration, and implementation of 
an activity-based microsimulation approach is a much more computationally and time-
consuming endeavor than its aggregate counterpart.  Here, the activity-based model required the 
estimation of 621 parameters across 43 models, while aggregate model required just 132 
parameters across 13 models.  Moreover, model running times are also quite long for the 
activity-based model relative to the aggregate model.  In this experience, the aggregate model 
required about 15 minutes to complete a single run (not including any feedback).  Somewhat 
dramatically, a single run of the activity-based model was approximately 40 times longer (10-11 
hours). 
 In summary, this study examined two separate approaches for travel demand forecasting.  
While there are many limitations to the modeling methodologies and analyses, this investigation 
has illustrated many of the key differences between the two approaches and has highlighted 
important advantages and disadvantages.  From a planning perspective, this research could prove 
to be helpful in the choice of modeling approach.  If any planning agencies fear that a new 
(activity-based) model will produce very different results from past model runs, the analysis 
provided here should temper such reservations: for this Austin case study, both model systems 
yield similar implications overall.  Of course, the activity-based model system offers several 
advantages, and it appears that top MPOs can and should ultimately make the leap to activity-
based models.   
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Figure 1:  The Activity-Based Model System 
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Figure 2:  Consumer Surplus ($/person) for Members of Households without Auto Surplus under Expanded Capacity 
Scenario 
 

A) Aggregate Model      B) Activity-Based Model 
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Figure 3:  Consumer Surplus ($/person) for Members of Households without Auto Surplus under Centralized 
Employment Scenario 
 

A) Aggregate Model      B) Activity-Based Model 
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Figure 4:  Consumer Surplus ($/person) for Members of Households without Auto Surplus under Tolling Scenario 
 

A) Aggregate Model      B) Activity-Based Model 
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Table 1:  Marginal Utilities of Money by Trip/Tour Purpose/Type 
 

Aggregate Model 

Trip Purpose 

Logsum 
Coefficient from 

Destination Choice 
Model 

Cost Coefficient 
from Mode/TOD 

Choice Model 

Marginal Utility of 
Money, γp 
(utility/$) 

HBW -1.669 -0.191 0.318 
HBNW -1.958 -0.639 1.250 
NHBW -6.379 -0.091 0.578 

NHBNW -4.542 -0.257 1.169 
  

Activity-Based Model 

Tour Type 

Logsum 
Coefficient from 
Tour Destination 

Choice Model 

Cost Coefficient 
from Tour Mode 

Choice Model 

Marginal Utility of 
Money, γp 
(utility/$) 

Work -1.995 -0.112 0.223 
School -3.089 -0.252 0.716 

University -1.002 -0.301 0.301 
Shopping -2.254 -0.295 0.666 
Escorting -2.708 -0.253 0.685 

Other Maintenance -4.435 -0.112 0.497 
Discretionary -2.593 -0.216 0.559 
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Table 2:  Activity-Based Model Predictions of Welfare Changes for Population 
Segments under Alternative Scenarios 

  
Segment 

  
Number of 
Individuals

Change in Consumer Surplus 
($/person/day) 

Expanded 
Capacity 
Scenario 

Centralized 
Employment 

Scenario 

Tolling 
Scenario 

Entire Population 1,059,008 0.1632 0.2072 -0.1245 
Over Age 64 82,416 0.1253 0.2651 -0.1341 
Non-Workers 119,337 0.0356 0.2397 -0.1378 
Low Income 
(HH income < $25,000) 

204,485 0.1218 0.2937 -0.1135 

Over Age 64 & Non-Worker 13,088 0.0340 0.2513 -0.1415 
Over Age 64 & Low Income 24,218 0.1053 0.2815 -0.1178 
Non-Worker & Low Income 29,204 0.0344 0.2259 -0.1261 
Over Age 64, Non-Worker, & 
Low Income 

4,212 0.0332 0.2360 -0.1344 

 


