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Abstract

This paper is concerned with finding first-best tolls in static trans-
portation networks with day-to-day variation in network capacity, as ac-
counted for by changes in the volume-delay function. The key question in
addressing this problem is that of information, namely, which agents have
access to what information when making decisions. In this work, travelers
are assumed to be either fully informed about network conditions before
embarking on travel, or having no information except the probability dis-
tributions; likewise, the network manager (toll-setter) is either able to
vary tolls in response to realized network conditions, or must apply the
same tolls every day. Further, travelers’ preference for reliable travel is ac-
counted for, representing risk aversion in the face of uncertainty. For each
of the scenarios implied by combinations of these assumptions, we present
methods to determine system-optimal link prices. A demonstration is
provided, using the Sioux Falls test network, suggesting that attempts
to incorporate uncertainty into nonresponsive tolls involve significantly
higher prices.

1 Introduction

In recent years, pricing of highway driving (tolling) has attracted much political
and institutional attention for a variety of reasons, including its potential as
an alternate revenue stream, the introduction of technologies allowing efficient
toll collection and dynamic pricing, and consideration of public-private partner-
ships. To support the process of determining appropriate prices, a large amount
of research has been conducted to provide guidance on how users respond to
prices, and how they should be set to achieve particular objectives. From the
standpoint of maximizing social welfare, the fundamental notion, originated by
Pigou (1920), is that economic efficiency occurs when the cost faced by each
traveler equals the marginal social cost of his or her trip.

Traditionally, this marginal cost is determined by assuming a separable and
differentiable volume-delay function (VDF) mapping travel demand to travel
delay on each roadway segment, a homogeneous population of user-optimizing
travelers with the same value of time, and commonly-known network structure
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and travel demand. Within this framework, the marginal cost of tripmaking is
readily calculated, along with the associated Pigouvian tolls.

One significant assumption in this process is the determinism of the trans-
portation network. Uncertainty pervades both transportation planning and op-
erations, and researchers are realizing the importance of explicitly incorporating
this into transportation models. Uncertainty exists both in the short run, at
the “operational” level (due to incidents, weather conditions, fluctuations in
travel demand, etc.), and in the long run, “planning” level, due to imperfect
prediction of future land use and economic conditions, and impacts parameters,
both on the supply and demand sides of transportation. In this paper, the focus
is on operational, supply-side uncertainty including, for instance, the impact of
incidents, while excluding forecasting errors, or variations in travel demand.

This type of uncertainty directly leads to unreliability in travel times, which
has a clear impact on user behavior. At the very least, the assumption that
travelers seek to minimize travel time is ill-defined, since travel time is a random
variable. The simplest extension is to assume that travelers seek to minimize
expected travel time, but this is problematic because of an implicit assumption of
risk neutrality. That is, under this assumption, travelers are indifferent between
a trip which takes 30 minutes (with absolute certainty), and one which can
either take 10 minutes or 50 minutes, with equal probability. For almost any
conceivable trip purpose, the former is much preferred, since the consequences
of late arrival are typically much worse than the benefits of early arrival. In fact,
due to this asymmetry, it is reasonable to expect a traveler would even prefer a
slightly longer trip, say, 35 minutes, if this travel time could be guaranteed.

However, this concept has not yet been integrated into pricing models in-
tended for use in large-scale networks. Further, given recent technological ad-
vances, network operators and planners wonder whether prices should be dy-
namically varied in response to traffic incidents or other disruptions, and, if so,
how this variation should occur. For instance, one might argue that tolls on a
facility should increase if an incident occurs, to discourage additional vehicles
from entering and exacerbating the resulting congestion. However, in response,
one might argue that users paying a higher toll should expect a higher level of
service, as this is one of the usual arguments provided to gain public support for
congestion pricing. Wouldn’t travelers resent paying a higher toll, while most
likely still experiencing greater-than-average delay? Or is there some way to
account for uncertainty on a daily basis without varying tolls?

As with most problems concerning uncertainty, the question of information
is key: who knows what, when they make their decisions? For instance, the issue
of resentment for higher tolls during an incident is greatly decreased if operators
can communicate to motorists the presence and severity of the incident. This
research presents four possible scenarios relating to the information available
to motorists when choosing a travel route, and to the ability of the network
manager to adjust the toll in response to network conditions.

The key contribution of this work is the development of pricing methods to
apply in the presence of operational supply uncertainty and risk-averse travel-
ers, for several information provision scenarios. The remainder of this paper
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is organized as follows: Section 2 discusses prior literature related to pricing,
travel time uncertainty, and user attitudes to risk. Section 3 describes the mod-
eling approach, introducing appropriate notation and defining the four informa-
tion scenarios. Section 4 presents solution methods for each of these scenarios.
The models described thus far make a number of simplifications, and Section 5
discuss how they can be adapted to account for correlated link states, user het-
erogeneity, and elastic demand. Section 6 demonstrates the basic model using
the well-known Sioux Falls test network, and suggests that constant tolls should
not be used to address nonrecurring congestion. Finally, Section 7 concludes
the paper, and summarizes the key findings.

2 Literature Review

This section summarizes prior related work, focusing on three areas: pricing
under uncertain network conditions; the impact of reliability on route choice;
and how pricing and reliability interact. In this light, the contribution of this
paper should be more apparent, and is briefly discussed at the end of the section.

The question of how to appropriately price freeway facilities in uncertain
environments is still very open. Yang (1999a) considered the problem of deter-
mining optimal prices when users behave according to the stochastic user equi-
librium principle, where uncertainty lies in user perception, rather than system
conditions. It is known that there need not exist a set of tolls that can drive a
stochastic user equilibrium traffic flow pattern to a system optimal one (Aka-
matsu and Kuwahara, 1988; Smith et al., 1994). Yang (1999b) also considered
how road pricing can be combined with advanced traveler information systems
which inform users of system conditions. A number of numerical experiments
were performed in a small test network, from which the author concluded that
the two technologies “complement each other and that their joint implementa-
tion can reduce travel time more efficiently.” Separately, de Palma and Lindsey
(1998) considered information provision under three different scenarios: free
access, non-responsive congestion pricing, and dynamic pricing based on con-
gestion levels. These authors explicitly considered capacity uncertainty in all of
their models, but in a simplified setting without network effects and multiple
origins and destinations. Under these assumptions, when pricing is dynamic
and responsive to congestion, these authors showed that better information al-
ways improves welfare. A key result of Mohring and Harwitz (1962) is that
marginal-cost pricing generates enough revenue to provide socially-optimal fa-
cility capacity; Lindsey (2008) showed that this result generalizes to the case of
uncertain capacity if drivers are perfectly informed and tolls are responsive, or
under imperfect information if tolls are set according to the same information
drivers have, and if the price elasticity of demand does not vary with system
conditions.

It is clear that reliability plays a significant role in route choice decisions;
however, there is no consensus on how “reliability” should be defined. Usually,
this is done in relation to the distribution of possible path costs. For instance,
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Small et al. (2005) and Liu et al. (2007) used the difference between the 80th-
and 50th-percentile travel times, while Pinjari and Bhat (2006) used the max-
imum additional time that could be needed, compared to a typical case. Gao
(2005), on the other hand, assumed a piecewise-linear utility function to model
risk aversion. de Palma and Picard (2005) considered four utility function spec-
ifications to represent risk aversion: penalizing the standard deviation of travel
time, penalizing travel time variance, constant relative risk aversion, and con-
stant absolute risk aversion. Bates et al. (2001) and Noland and Polak (2002)
provided overviews of theoretical and empirical research in travelers’ valuations
of travel time reliability. Typically, travelers’ sensitivity to reliability is com-
parable to their sensitivity to increased travel time; for instance, Small et al.
(2005) estimated a $21.46/hr value of time, and a $19.56/hr value of reliability,
using data from SR-91 in California.

In contrast to the utility-based methods above, Avineri and Prashker (2003)
accounted for uncertainty in route choice using cumulative prospect theory, the
Fudenberg-Levine learning model (Fudenberg and Levine, 1998), a behavioral
“reinforcement learning” model, and a novel cumulative prospect theory learn-
ing model. Chan and Lam (2005) took a completely different approach, using
a novel concept of user equilibrium based on “path preference indices.”

Several researchers have studied the interaction between pricing and facility
reliability. The research in this area has been descriptive (attempting to eval-
uate how pricing affects facility reliability, or studying pricing to discern how
travelers value reliability) rather than prescriptive (how should prices be set
to maximize reliability or traveler welfare). Supernak et al. (2003) performed
a before-after study of the I-15 FasTrak value pricing project in San Diego,
California, looking specifically at changes in travel time and travel reliability,
measured as the 99th-percentile of travel time. Using this definition, they found
substantial improvements in reliability after implementation. Liu et al. (2004)
used freeway loop data from California State Route 91 to estimate a random-
parameters logit model with two alternatives, free and tolled lanes. Travel
time, reliability (defined as the difference between the 80th- and 50th-percentile
travel times, approximately one standard deviation in several common proba-
bility distributions.), and toll amount are used as alternative-specific variables.
They applied a genetic algorithm to estimate the logit parameters, resulting in
an estimated value of time of $13/hour and an estimated value of reliability of
$21/hour. Brownstone and Small (2005) also considered the I-15 and SR-91
project, and used both stated and revealed preference data. They estimated a
relatively high value of time (between $20/hour and $40/hour for the morning
commute) based on revealed preference data, and a much lower value (around
$12/hour) from stated preference surveys.

Although considerable research exists on pricing and network routing under
uncertainty, relatively little research combines the two, especially regarding trav-
elers’ risk attitudes and/or valuation of reliable travel. Further, that which has
been done has typically involved simplified settings and small networks, which
admit important analytical results but which are less useful in guiding imple-
mentation of pricing policies. Emmerink et al. (1996) showed that no subsidy
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towards information provision is needed to maximize social welfare, given first-
best congestion pricing and costly information provision. Verhoef et al. (1996)
simulated a two-link network under different pricing and information scenarios,
concluding that information provision and “flat” (unresponsive) tolls are nearly
as effective as perfectly responsive tolls. Kobayashi and Do (2005) considered a
simple network with non-overlapping routes and a single origin-destination pair,
and showed that perfect information and ex post tolls maximize social welfare.

In this light, this paper’s primary contribution is the development of mod-
els to identify optimal tolls in large-scale networks, when roadway capacity
is stochastic. In these models, corresponding to different information scenar-
ios, route choice is endogenous (i.e., traffic assignment and equilibrium are in-
cluded), and prices inducing system-optimal (or approximately system-optimal)
link flows are sought.

3 Problem Statement

This section mathematically describes the network and pricing model assump-
tions, along with four information scenarios. Section 3.1 defines the basic prob-
lem and introduces notation that will be used throughout this document. Sec-
tion 3.2 addresses the issue of how to model users’ valuation of reliability in
route choice, and reviews the equilibrium concepts that will be applied to deter-
mine user response to a set of tolls. Section 3.3 describes the network manager’s
goal, and section 3.4 defines the information scenarios we analyze. Three strong
assumptions — independence of link states, inelastic demand, and user homo-
geneity — are taken in this section to emphasize the key points of the basic
model; the implications of relaxing these are discussed in Section 5.

3.1 Notation

Generally, pricing problems are a type of Stackelberg game, in which a regula-
tor acts as a “leader” by establishing a set of tolls, to which individual drivers
(“followers”) respond by choosing preferred routes. We adopt the same per-
spective, but with the additional complication of uncertain network conditions.
As described in Section 3.2, a generalized cost function is assumed for travelers,
accounting for average travel time, reliability, and monetary tolls. The goal of
the network manager is to choose tolls so as to bring the user equilibrium and
system optimal link flows into alignment (i.e., incorporating externalities into
individual costs).

Specifically, consider a network G = (N,A,D) consisting of a set of nodes N ,
a set of arcs A, and a set of origin-destination (OD) demand pairs D (OD pair,
for short). Each arc (i, j) ∈ A can exist in a variety of states Sij = {1, 2, ..., sij}.
For each state s of arc (i, j), a positive and increasing travel time function tsij(xij)
relates the demand xij for arc (i, j) to the experienced travel time in state s (for
instance, one state might represent a slightly lower capacity due to wet roadway
conditions, while another represents a significantly lower capacity due to the
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temporary loss of a lane). State s is presumed to occur with probability p(sij),
independent of the state of any other arc. This induces a probability space
(Ω,Pr) where Ω consists of all realizations of the network (i.e., each ω ∈ Ω is
an element of ×(i,j)∈ASij), and Pr(ω) =

∏
(i,j)∈A p(s

ω
ij).

Note that the independence assumption limits the models’ ability to repre-
sent, for instance, secondary incidents which occur as a result of an earlier inci-
dent, or weather events which simultaneously affect multiple links. In Section 5,
the implications of relaxing this assumption are discussed; briefly, relaxing this
assumption only introduces difficulties if users do not receive travel information
before departing. In the interim, the independence assumption is adopted to
simplify the exposition.

Other notation is defined as follows: the decision variables τij represent the
monetary toll on link (i, j). A fixed and known amount of demand drs, assumed
to be infinitely divisible, is associated with each OD pair (r, s) ∈ D. Let Πrs be
the set of simple paths connecting origin r to destination s, Π = ∪(r,s)∈DΠrs,
and δπ

ij be an indicator variable set to unity if arc (i, j) ∈ π for all π ∈ Π, and
zero otherwise.

Depending on the information provision scenario, the tolls and link flows
may vary according to the network realization ω; when needed, a superscript
will denote which realization a toll or flow value corresponds to.

3.2 User Behavior

All travelers are assumed to be homogeneous, and value travel on any path π
according to an additive generalized cost function C, so the cost associated with
any path Cπ =

∑
(i,j)∈A δ

π
ijcij , where cij is the cost associated with travel on

any link (i, j).
When travelers know link states before departing, the link cost function is

simply
cij = V OTT × tij + τij (1)

where V OTT represents the value of travel time. On the other hand, if link
states are unknown to travelers when they choose routes, the cost function is

cij = V OATT × E[t̃ij ] + V OTR× V ar[t̃ij ] + τij (2)

where V OATT and V OTR represent the value of average travel time (not nec-
essarily the same as V OTT ), and the value of travel reliability, respectively.
In either case, users are assumed to correctly perceive travel times, tolls, and,
in the latter case, the travel time distributions as well. That is, there is no
need to adopt a stochastic user equilibrium framework, because the model as-
sumes users’ attitudes towards uncertain conditions are exactly as described
by these utility functions. Note that in the case of information provision, cost
function (1) is a special case of (1), in which the variance in link cost vanishes.
Thus, these two utility functions are consistent, and meaningful comparisons
can be made between tolls derived for both scenarios.
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This specification only considers within-day travel time uncertainty: even if
travel times vary widely from day to day, equation 1 is used as long as travelers
learn the exact realization before departing. That is to say, the inherent value
of stable travel times over multiple days, such as the establishment of routine
habits, is excluded from consideration. Rather, the focus in this paper is the
cost of imperfect knowledge of travel times on a given day, leading to earlier
departure times (leaving a “safety margin”) or running the risk of late arrival.

As described in Section 2, some researchers prefer to use standard deviation
instead of variance, since it has common units with expected travel time. In
this paper, we opt to use variance for three reasons: first, mean-variance models
are commonly used to model risk in domains such as finance (see, for instance,
Markowitz, 1952; Sternbach, 2001); second, it is more convenient mathemat-
ically, since variances add linearly under the independence assumption (i.e.,
V ar[A+B] = V ar[A] +V ar[B]), allowing ready computation of path variance;
finally, since variance is the square of standard deviation, this model places
increasingly greater weight on travel reliability as travel times become more
uncertain.

All travelers are assumed to be self-optimizers who independently choose
routes to minimize their own generalized travel cost; in a deterministic and
toll-free environment, this is identical to Wardrop’s first condition and the clas-
sic deterministic user equilibrium problem. It should be emphasized that our
model describes a long-term (planning-level) equilibrium, despite consideration
of day-to-day uncertainty. The key notion is that day-to-day uncertainty im-
pacts habitual decisions which long-term models seek to capture. The choice
of a long-term framework justifies the assumptions of users’ knowledge of the
network, gained from experience.

As a side note, one may not need to explicitly sum over all arc states when
evaluating E[t̃ij ] and V ar[t̃ij ], depending on the cost function. For instance,
assuming a standard Bureau of Public Roads cost function of the form t̃ij =
t0ij(1 + α(xij/c̃ij)β) in which only the capacity parameter c̃ij is stochastic, it
is readily verified that E[t̃ij ] = t0ij(1 + αφijx

β
ij) and V ar[t̃ij ] = θij(αt0ijx

β
ij)

2,
where φij =

∑
s∈Sij

c−β
ij p(sij) and θij =

∑
s∈Sij

c−2β
ij p(sij)−φ2

ij are link-specific
constants that need only be calculated once, independent of demand values and
route choices.

3.3 Network Manager Behavior

In our model, the network manager’s goal is to maximize the total travel time-
related costs experienced by travelers; that is, when users learn link states before
departing, the network manager seeks to minimize∑

(i,j)∈A

xij(V OTT × E[t̃ij ]) (3)
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In contrast, when users are ignorant of link states when choosing routes, the
network manager minimizes∑

(i,j)∈A

xij(V OATT × E[t̃ij ] + V OTR× V ar[t̃ij ]) (4)

This is done by setting the tolls τ in such a manner as to bring the user and
system objectives into alignment. Note that the network manager’s goal does
not include minimizing the toll-related costs. This assumes that toll revenues
are effictively returned to travelers with minimal administrative burden, perhaps
through additional infrastructure spending or reduced taxation.

3.4 Information Scenarios

The question of which agents have access to what information plays a defin-
ing role in determining the structure and results in a stochastic optimization
model. In this problem, there are two types of agent: the network manager,
who establishes the tolls, and the users, who choose routes.

Initially, we consider two information scenarios for each agent (leading to
four scenarios in total): a “no information” case, in which the agent is unaware
of the network realization before making the decision, and a “fully informed”
case, in which the agent learns the exact network realization. This information
is assumed to be perfectly accurate and fully trusted by all agents.

For the manager, the “no information” case is identical to one in which
tolls cannot vary from day to day; for this reason, the manager’s information is
denoted as either RT (responsive tolls, for full information) or UT (unresponsive
tolls, for no information or when responsive tolling is impossible). For the users,
the “no information” case implies that the route must be chosen before learning
the network realization and the tolls; the “full information” case implies that the
tolls and network realization are both known. These user information scenarios
are denoted NI and FI, respectively. Thus, the four information scenarios here
are FI/UT, FI/RT, NI/UT, and NI/RT (indicating the users’ information first
and the regulator’s information second):

Fully Informed/Unresponsive Tolls This scenario represents a case in which
users learn the network realization before choosing routes, but tolls cannot
vary in response to their choices or the network realization. This can occur
either because the regulator is unaware of network conditions, or because
the regulator is not allowed to change the tolls. More precisely, users learn
the prevailing travel time functions and their relevant parameters (such as
capacity), and the equilibrium state arising from this common knowledge
is sought. Thus, the flows xω vary according to the network realization,
but the tolls τ do not.

Fully Informed/Responsive Tolls This scenario represents maximum infor-
mation for all decision makers in the problem: travelers learn conditions
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throughout the network before choosing a route, as does the network man-
ager before setting tolls. This is similar to the FI/UT case, except that
the tolls τ are also allowed to vary according to the network realization.

No Information/Unresponsive Tolls This information scenario represents
one in which neither users nor the manager can vary their decisions ac-
cording to the network realization. In this case, although the tolls are
known and fixed from day to day, users are unaware of the network re-
alization when making the routing decision, and thus have no reason to
vary their decision from day to day.

No Information/Responsive Tolls This scenario represents the case in which
users are unaware of the network realization, even though the network
manager can vary the tolls responsively. However, varying tolls cannot
provide any additional benefit to users if they do not learn of them be-
fore they choose a route. Essentially, this scenario is identical to NI/UT,
since the manager cannot induce a superior flow pattern by varying tolls
if users cannot respond in turn. More formally, if travelers are unaware
of tolls when choosing a route, equation (2) must be modified, e.g., uij =
−V OATT × E[t̃ij ] − V OTR × V ar[t̃ij ] − f(τ̃ij ,Ω,Pr) for some function
f (including, for instance, the expected value and variance of the tolls τ̃
which are now perceived as random variables), and let x(τ) represent the
equilibrium link flow vector obtained for tolls τ over all network realiza-
tions. The same flow vector can be replicated under the NI/UT scenario
by defining a random variable υ̃ which takes the values τω

ij with proba-
bilities Pr(ω), and setting tolls τij = f(υ,Ω,Pr). The generalized cost on
each link is the same under this construction as in the NI/RT scenario,
and thus x remains an equilibrium.

Another reasonable information scenario is the case in which users learn the
state and toll of an arc only upon reaching its upstream node, and are allowed
to re-route depending on what they learn. While algorithms exist to model this
behavior at the individual level (Polychronopoulos and Tsitsiklis, 1996; Waller
and Ziliaskopoulos, 2002; Gao, 2005), an efficient algorithm to find a multiuser
equilibrium (let alone optimal tolls) under this behavioral assumption is beyond
the current state of the art and, therefore, not pursued here.

Note that in all of these scenarios, all agents are assumed to know the travel
demand, and the probability distributions governing all link states. This is the
direct analogue of the full information assumption implicit in most equilibrium
models.

4 Solution Methods

This section describes methods for finding tolls that bring the user and system
objectives into alignment, for the three information scenarios FI/UT, FI/RT,
and NI/UT. (As demonstrated in the previous section, NI/RT is a special case
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of NI/UT, and need not be considered separately). All of these are based on
the Pigouvian principle that externalities should be incorporated into user costs
or, equivalently, that average cost equal the marginal social cost. Since the
marginal cost of travel on a link (i, j) is d(xijcij)/dxij = cij + xij(dcij/dxij),
the Pigouvian toll is xij(dcij/dxij) with the cost function appropriate to the
information scenario, and system optimal flows x.

4.1 Fully Informed/Unresponsive Tolls

The FI/UT scenario is the most complicated to solve, for several reasons. First,
the constraint that the tolls must be the same for all network realizations pre-
vents a simple decomposition by network realization. Second, the requirement
that the flows for every network realization be in equilibrium imposes non-
convexity on the toll-setting problem (see, for instance, Labbé et al., 1998), a
problem confounded by the nonlinearity of travel time functions, which makes
it unlikely that a globally optimal solution can be found. Third, since the flows
vary according to the network realization, and since the number of network re-
alizations is very large, computation of the objective function for even a single
set of tolls is nontrivial. Essentially, the desired toll vector solves the program

min
τ

∑
ω∈Ω

Pr(Ω)
∑

(i,j)∈A

tωij(x
ω
ij)x

ω
ij (5)

s.t. τij ≥ 0 ∀(i, j) ∈ A (6)
xω ∈ Eq(V OTT × tω + τ ) ∀ω ∈ Ω (7)

where Eq(V OTT × tω + τ ) represents the set of user equilibrium link flows
for delay functions tω and tolls τ . This is a nonlinear mathematical program
with equilibrium constraints (MPEC), which is known to be difficult to solve,
for the reasons mentioned above. For this reason, approximately optimal tolls
are sought. One option is to use a generic metaheuristic, such as simulated
annealing or tabu search. Another choice is to use problem-specific heuristics,
two of which are described below.

Heuristic 1 (H1) is to use simple averaging: for each scenario ω, first-best
marginal-cost tolls are found, and the final toll vector is obtained by taking an
average of these, weighted according to the probability of each scenario occur-
ring. If the number of scenarios is large, a selection of these can be obtained
using Monte Carlo simulation or another sampling technique. In addition to its
simplicity, this heuristic is also motivated by a result in Lindsey (2008) stating
that, for a single facility, the optimal unresponsive toll is the average of respon-
sive tolls; thus, it is plausible that such tolls may be near-optimal in a network
setting as well.

Heuristic 2 (H2) is somewhat more involved, and allows tolls to vary by
realization, penalizing this variation in the objective function with a positive
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constant M :

min
τ

∑
ω∈Ω

Pr(Ω)
∑

(i,j)∈A

[
tωij(x

ω
ij)x

ω
ij +M(τω

ij − τ ij)2
]

(8)

s.t. τω
ij ≥ 0 ∀(i, j) ∈ A,ω ∈ Ω (9)

xω ∈ Eq(V OTT × tω + τω) ∀ω ∈ Ω (10)

where τ ij is the average toll on arc (i, j) across all realizations. The problem
is then decomposed by realization, and solved approximately by linearizing the
objective function. The realization-specific subproblems are

min
τω

[
tωij(x

ω
ij)x

ω
ij +M(τω

ij − τ ij)2
]

(11)

s.t. τω
ij ≥ 0 ∀(i, j) ∈ A (12)

xω ∈ Eq(V OTT × tω + τω) (13)

which are solved if

d
(∑

(k,`)∈A x
ω
k`t

ω
k`(x

ω
k`)

)
dτω

ij

= −2M(τω
ij − τ ij) (14)

for all (i, j) ∈ A. Applying the chain rule to the left-hand side, an analytical
solution for each τij is obtained:

τω
ij = τ ij −

1
2M

∑
(k,`)∈A

dxk`

dτij

[
tωk`(x

ω
k`) + xω

k`

dtωk`

dxω
k`

]
(15)

where the dxij/dτk`’s are estimated by perturbing the toll on each arc slightly
and observing the resulting change in equilibrium link flows. This suggests an
iterative procedure in which subproblems are successively solved, with increasing
values of the penalty constant M (clearly, as M → ∞ the realization-specific
tolls converge to a common value, which is returned as the solution). This is
shown formally in Algorithm 1, where M0 and ε respectively denote the initial
value of the penalty constant, and the convergence criterion. If |Ω| is large, a
sample of realizations can be used in lieu of the entire set.

4.2 Fully Informed/Responsive Tolls

In the FI/RT scenario, tolls are allowed to vary for different network realizations,
enabling a natural decomposition of the problem: since the variance terms in
the cost function vanish, it suffices to find the system optimal link flows using
the travel time functions from each network realization ω, and the optimal tolls
that they imply.

Although this leads to optimal tolls for every realization, enumerating every
realization is prohibitively difficult for networks of any reasonable size. From
a practical standpoint, this may not be a significant issue since tolls can be
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Algorithm 1 Heuristic 2 for FI/UT
1: {Initialization}
2: for all ω ∈ Ω do
3: τω ← first-best marginal cost tolls for scenario ω.
4: end for
5: τ ←

∑
ω∈Ω Pr(ω)τω

6: M ←M0

7: {Iteration}
8: while max(i,j),ω |τω

ij − τ ij | > ε do
9: for all ω ∈ Ω, (i, j) ∈ A do

10: τij ← τ ij − 1
2M

∑
(k,`)∈A

dxk`

dτij

[
tωk`(x

ω
k`) + xω

k`
dtω

k`

dxω
k`

]
11: end for
12: M ← 2M
13: end while
14: return τ

determined as needed (rather than all calculated beforehand and stored) and/or
optimal toll policies can be determined for the most likely scenarios.

Nevertheless, from the standpoint of research and planning, it is desirable
to make statements about the overall costs to travelers under this information
provision scenario. Although variance disappears when solving the individual
subproblems, it may be useful to calculate an a priori variance, representing
the uncertainty that exists prior to learning the network states on a given day.
To this end, a sampling procedure can be used to approximate these quantities.

4.3 No Information/Unresponsive Tolls

The NI/UT scenario is the simplest case, since only one vector of network flows
and one vector of tolls is needed. Solving for system-optimal link flows and
marginal-cost prices using cost function (2) gives optimal tolls for this informa-
tion scenario.

5 Extensions to the Basic Model

The previous section describes pricing models in a simplified setting to allow the
main points to be made more clearly, and to show that information scenarios
such as NI/UT are inherently difficult to solve even without sophisticated traffic
or behavioral models. Still, this basic framework can be enhanced in several di-
rections, and this section discusses three such extensions: correlated link states,
user heterogeneity, and elastic demand.
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5.1 Correlated Link States

In preceding sections, it is assumed that link states are independent in order to
facilitate computation of path travel time variance. However, this clearly limits
the model’s ability to represent phenomena such as weather, special events, or
even incidents (which create queues which affect multiple links). However, the
independence assumption can be relaxed.

For the FI cases, users’ utility function only depends on path travel times,
obviating the need to calculate variances. Still, in large networks where it is im-
practical to enumerate all network states, a more sophisticated sampling scheme
may be required to account for the dependence between link states. While the
well-known inverse transform sampling procedure (see, for instance, Casella and
Berger, 2002), applied separately to each link, suffices for the independent case,
this method will not simulate dependence. Falk (1999) proposes an approximate
method for generating vectors of uniform random variables with an arbitrary
covariance matrix which should be suitable for this application.

A more serious complication arises for the NI case, in that travel costs are
no longer additive over links. One expects that the cost of a path π should be

Cπ = V OATT × E[t̃π] + V OTR× V ar[t̃π] + τπ (16)

where t̃π and τπ are the (random) travel time and (deterministic) toll experi-
enced on path π. This can be written in terms of link travel times and tolls
as

Cπ =
∑

(i,j)∈A

δπ
ij(V OATT × E[t̃ij ] + V OTR× V ar[t̃ij ] + τij)+

+ V OTR×
∑

(i,j)∈A

∑
(k,l)∈A\(i,j)

δπ
ijδ

π
klCov[t̃ij , t̃kl] (17)

where the latter term cannot be separated by arc. In the independent case, of
course, Cov[t̃ij , t̃kl] = 0 for (i, j) 6= (k, l) and this term vanishes, allowing the
separation in (2).

This is problematic because the network manager’s objective (4) must now
explicitly account for every user’s path choice, instead of simply their link
choices. As the number of paths in realistic-sized networks is much larger than
the number of links, and as user equilibrium solutions are not unique in path
choices, minimizing the sum of user generalized cost becomes difficult. A rea-
sonable and tractable alternative is to minimize the mean and variance of total
system travel time TSTT =

∑
(i,j)∈A xij t̃ij , weighted according to the values of

travel time and travel reliability:

V OATT × E[TSTT ] + V OTR′ × V ar[TSTT ] =

=
∑

(i,j)∈A

V OATT × xijE[t̃ij ] + V OTR′ × x2
ijV ar[t̃ij ]+

+
∑

(i,j)∈A

∑
(k,l)∈A\(i,j)

V OTR′ × xijxklCov[t̃ij , t̃kl] (18)
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Figure 1: Variance in TSTT is not equal to variance in individual travel times.

where V OTR′ is the network manager’s value of reliability in TSTT . V OTR′

has different units than V OTR, indicating that this objective is not exactly the
same as minimizing the sum of users’ travel time and reliability costs. This
point is reinforced in the network and flow pattern shown in Figure 1, where
the two arcs’ costs are perfectly correlated, so that if the cost of one is 1, the
cost of the other is 0. If each link is used by one user, each user experiences
a positive travel time variance, although the variance in TSTT is zero. While
this example is somewhat contrived, it shows that (18) is only an approximation
of (4).

The system-optimal link flows x∗ with respect to this new objective is unique
and easily found, since the covariance matrix is positive definite, implying that
the objective (18) is convex. These link flows can then be decomposed into a
vector of path flows h∗; the remaining question is how to set link tolls so that
users have no incentive to deviate from these path flows. (In general, there is
more than one path flow vector h∗ corresponding to link flows x∗; however, all
such path flow vectors yield the system-optimal link flows and can be considered
equivalent from this perspective.)

For each OD pair (r, s) ∈ D, the set of paths Πrs is thus partitioned into two
sets: Π̂rs, corresponding to paths with a cost no greater than the highest-cost
used path (that is, π ∈ Π̂rs if and only if there exists a path ρ ∈ Πrs such that
hρ > 0 and Cρ ≥ Cπ), and Πrs, corresponding to all other paths. Intuitively,
one can interpret Π̂rs as the set of “competitive” paths, and Πrs as the set of
“non-competitive” paths. Thus, we seek a vector of tolls τ and a vector of OD
costs κ satisfying the following system of linear inequalities:

Cπ +
∑

(i,j)∈A

δπ
ijτ

π ≥ κrs ∀(r, s) ∈ D,π ∈ Πrs (19)

Cπ +
∑

(i,j)∈A

δπ
ijτ

π = κrs ∀(r, s) ∈ D,π ∈ Π̂rs (20)

τij ≥ 0 ∀(i, j) ∈ A (21)

To show that a solution to equations always exists, we introduce an artificial
objective function minτ ,κ 0 · τ + 0 · κ to create a linear program with con-
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straints (19)–(21). The corresponding dual problem is

min
λ,µ

∑
(r,s)∈D

 ∑
π∈Πrs

Cπλπ +
∑

π∈Π̄rs

Cπµπ

 (22)

s.t.
∑
π∈Π

δπ
ijλ

π +
∑
π∈Π̄

δπ
ijµ

π ≤ 0 ∀(i, j) ∈ A (23)

∑
π∈Πrs

λπ +
∑

π∈Π̄rs

µπ = 0 ∀(r, s) ∈ D (24)

λπ ≥ 0 ∀π ∈ Π (25)

with multipliers λ and µ corresponding to constraints (19) and (20), respec-
tively. Note that the constraints (24) imply

∑
π∈Πrs

λπ = −
∑

π∈Π̄rs
µπ. Since

the cost of every path in Π is strictly greater than the cost of every path in Π̂,
and since λπ ≥ 0 for all π, we have

∑
π∈Πrs

λπ +
∑

π∈Π̄rs
µπ ≥ 0 for all OD

pairs (r, s), implying that the objective function (22) is nonnegative and that
the dual problem is not unbounded. Furthermore, the dual problem is feasible:
µ = 0 and λ = 0 satisfy all of the dual constraints. (In fact, this solution solves
the dual problem optimally, but this is irrelevant because the primal objective
function was chosen arbitrarily.) The existence of a feasible solution to the pri-
mal thus follows immediately from strong duality. Solving the corresponding
Phase I linear program will produce a toll vector enforcing the desired flow pat-
tern (for more details, see Bertsimas and Tsitsiklis, 1997); one may also choose
to introduce another objective function at this point, and identify a toll vector
optimizing a criterion such as total toll burden.

Note that this method, as stated, requires path enumeration. In practice,
one can often restrict attention to a set of “reasonable” paths , such as those
satisfying the efficiency condition suggested by Dial (1971), and define the set
Πrs accordingly. Also, in the interest of keeping the toll vectors as small as
possible, the link flow decomposition should ideally utilize low-cost paths. This
is not trivial — when path costs are not an additive function of link costs,
even finding the shortest path involves solving an integer program (Gabriel and
Bernstein, 2000) — and is an interesting topic worthy of further study.

Still, the method presented in this section provides insight on how tolls
should be set to account for disruptive events affecting multiple links, such as
severe incidents or stormy weather.

5.2 User Heterogeneity

Users are not uniform in their valuation of travel time and reliability. Instead,
one can imagine that the parameters V OTT , V OATT , and V OTR can be rep-
resented as (possibly correlated) distributions over the population. The idea
that these parameters vary in the populationis both intuitive, and has been
empirically demonstrated in multiple stated and revealed preference surveys. If
the value of reliability is not considered (or if V OTR is assumed to be an affine
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function of V OATT ), the bicriterion equilibrium and pricing framework pre-
sented in Dial (1996, 1997, 1999a,b) suffices for identifying welfare-maximizing
tolls. For the “full information” cases, where path travel time variance vanishes,
nothing further is needed.

On the other hand, including reliability as a third criterion (alongside toll
and average travel time, as in the “no information” case) introduces a few more
complications. With a few suitable modifications, Dial’s approach can be ap-
plied to the tricriterion case, as described in this section. The basic concept
involves identifying a set of efficient paths and assigning trips accordingly, be-
cause only a small set of paths will be used by travelers regardless of their values
of travel time and reliability. This assignment process is then applied iteratively
to find a user equilibrium and welfare-maximizing tolls.

These assignments are performed using prevailing path attributes. That is,
link tolls, travel time means, and travel time variances are temporarily assumed
to be fixed and independent of traffic flow, and the efficient paths are those
which are least-cost paths with respect to some values of V OATT and V OTR.
Each path π has an associated tricriterion vector Pπ, whose three components
are the toll, mean travel time, and travel time variance on path π. Plotting all
vectors P in the first octant, the efficient paths are seen to be the lower extreme
points of their convex hull.

One can identify efficient paths using several techniques from multiobjec-
tive optimization, such as weighted objective functions (Geoffrion, 1968), the
ε-constraining method (Haimes et al., 1971), and a decomposition method us-
ing the Chebyshev metric (Eswaran et al., 1989). Since our utility functions
are simply linear functions of the path attributes, the weighted objective func-
tion method as adapted by Dial (1996) generates these paths efficiently for the
bicriterion problem.

Dial (1996) speculates that the efficient frontier of the tricriterion problem
is a “triangulated convex surface, with each vertex representing a path.” This
point requires careful definition, since the convex hull of the set of efficient
paths may include faces adjoining more than three vertices. Consider a network
consisting of four paths, whose tolls, mean travel times, and travel time variances
are shown in Table 1. All of these paths are efficient, and their convex hull is a
plane segment with four vertices, as seen in Figure 2. Of course, one can express
this quadrilateral plane segment as the union of triangular plane segments (say,
triangles P1-P2-P4 and P1-P3-P4), in which case the efficient frontier is trivially
seen to consist of a convex union of triangles. This representation is useful
algorithmically, and adopted throughout this section.

Once a set of efficient paths is identified, one must assign heterogeneous
users to these paths. In the bicriterion case, travelers are partitioned according
to their values of travel time, and Dial (1996) shows that each path can be as-
sociated with an interval in R+, and each user chooses the path associated with
the interval containing their own value of travel time. In the tricriterion case,
each path is associated with a region in R2

+; each user chooses the path associ-
ated with the region containing their values of V OATT and V OTR. Figure 3
shows these regions for the paths in Table 1.
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Path τ E[t] V ar[t]
P1 2 0 1
P2 0 0 2
P3 2 1 0
P4 0 2 0

Table 1: Four paths used in tricriterion demonstration

Figure 2: Four efficient paths and their convex hull

Figure 3: Regions of V OTT -V OTR space corresponding to each efficient path
(the “dual graph”)
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Note that the vertices in Figure 2 correspond to regions in Figure 3, and
vice versa; thus, these two graphs can be considered dual to each other. For
instance, the point (2, 2) in Figure 3 is adjacent to the regions corresponding to
all four paths, indicating that when V OATT = V OTR = 2, these paths have
equal costs. The corresponding region in Figure 2 is the plane segment P1-P2-
P4-P3. One can verify that the vector [τ, E[t], V ar[t]] = [2, 4, 4] is normal to this
plane segment, suggesting that the plane segment represents (V OTT, V OTR) =
(4/2, 4/2) = (2, 2), thus demonstrating the correspondence with the dual graph.

A general procedure for identifying efficient paths can now be described.
Given a triangular plane segment with vertices {P1,P2,P3}, the corresponding
values of V OATT and V OTR can be obtained from a vector normal to the
segment (a normal vector can easily be found by taking the cross product of
P2 − P1 and P3 − P1). The least-cost path π for these particular values
of V OATT and V OTR are identified, along with the corresponding criterion
vector Pπ; if this path is not already part of the efficient set, add it, and divide
the plane segment into three new segments: {P1,P2,Pπ}, {P1,P3,Pπ}, and
{P2,P3,Pπ}. These new plane segments are then recursively examined in the
same way, until all efficient paths have been identified. It is worthwhile to update
the dual graph at the same time, by eliminating the point corresponding to the
original plane segment, adding the three points corresponding to the new plane
segments, and updating the edges so that adjacent plane segments in the primal
are directly connected in the dual.

One must be careful in initializing this algorithm. For the bicriterion case, it
suffices to identify the least-cost and least-time paths, and use the slope of the
line connecting their bicriterion vectors to begin the recursion. However, for the
tricriterion case, this may cause difficulties due to tiebreaking. Continuing with
the example in Table 1, if one initializes the algorithm with paths P1, P2, and
P4 (least-mean time, least variance, and least-cost paths, respectively), path P3
(which is also a least variance path) will never be identified. This difficulty is
avoided by creating three artificial tricriterion vectors (M, 0, 0), (0,M, 0), and
(0, 0,M), for a large scalar M , and using their convex hull as the initial plane
segment.

Once the efficient paths have been generated, travelers must be assigned to
each path based on their values of travel time and reliability. The number of
travelers choosing a path is equal to the double integral of the joint density
functions for V OATT and V OTR, taken over the corresponding region in the
dual graph. If the density function is difficult to integrate, an alternate method is
to use a Monte Carlo method to generate points (V OTT, V OTR), and applying
a point-in-polygon algorithm (see, for instance, Preparata and Shamos, 1985,
pp. 41–67) to identify the appropriate path.

Given (fixed) tolls, mean travel times, and travel time variances, this proce-
dure can be used to assign trips to users with varying values of time and reliabil-
ity. The equilibrium algorithms presented in Dial (1996, 1997) can then apply
this assignment procedure repeatedly to find a user equilibrium with heteroge-
neous users (the remaining modifications to account for three criteria, rather
than two, are straightforward). Following Dial (1999a), system-optimal link
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flows and first-best tolls can then be found using this equilibrium procedure, by
defining link tolls as a function of link flows:

τij(xij) = xij(V OATT ij
dE[tij ]
dxij

+ V OTRij
dV ar[tij ]
dxij

) (26)

where V OATT ij and V OTRij are the mean values of average travel time and
reliability for all users on link (i, j). With this toll function, a tricriterion user
equilibrium coincides with the system-optimum.

By accounting for variation in user preferences, the model more accurately
represents traveler decision-making, and thus allows more accurate selection of
toll levels.

5.3 Elastic Demand

Demand for travel is not independent of travel cost — rather, elasticity is ob-
served as increasing travel costs result in decreased demand. Accounting for
this is especially important in pricing applications, where travel costs may be
substantially raised relative to the “no-toll” scenario. This can be represented
by replacing the fixed OD demands drs with functions drs = ψrs(κrs) mapping
the cost κrs of the cheapest r-s path to the demand for travel between r and s.
For independent arc states, the system-optimal traffic assignment problem with
elastic demand can be written

min
x

∑
(i,j)∈A

xij(V OATT × E[t̃ij ] + V OTR× V ar[t̃ij ])−
∑

(r,s)∈D

∫ drs

0

ψ−1
rs (z)dz

(27)

s.t.
∑

π∈Πrs

hπ = drs ∀(r, s) ∈ D (28)

hπ ≥ 0 ∀π ∈ Π (29)
drs ≥ 0 ∀(r, s) ∈ D (30)

for the no-information scenario, following a well-known formulation of this prob-
lem (see, for instance, Sheffi, 1985). The full-information scenarios can be
represented by setting V ar[t̃ij ] to zero for all links, and V OATT = V OTT .
From the objective function, it should be clear that a set of link flows and OD
demands solving this program maximizes consumer surplus. Once the system-
optimal link flows and OD demands are known, the appropriate toll vector can
be found using the methods described in the previous sections with the demand
fixed at the optimal levels.

6 Application of the Basic Model

The impacts of different information scenarios and users’ valuation of reliability
were studied using the well-known Sioux Falls test network, containing 24 nodes,
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76 links, and assigning 360,600 vehicle trips (Figure 4), as obtained from Bar-
Gera (2007). The basic model developed in Sections 3 and 4 is applied —
in the interest of space and clarifying the main impacts of uncertain supply,
the extensions in the previous section are not considered here. The capacity on
freeway links was made random, equal to its nominal value with probability 0.90,
and reduced to a third of its nominal value with probability 0.10 (representing
a major incident occurring one day out of ten). A $10/hr value of travel time
was assumed, for both V OTT and V OATT .

In the absence of data to calibrate the V OTR parameter directly, a rough
estimate is made based on the results of Small et al. (2005), whose revealed
preference data showed travelers were willing to spend $19.56/hr to reduce
the difference between 80th- and 50th-percentile travel times, compared to a
$21.46/hr value of travel time; with our V OTT assumption, one expects that
our travelers would pay $9.11 for the same, the proportionate amount. Since
their experiment most closely resembled the NI/UT scenario (although tolls
changed dynamically, this was done in response to recurrent congestion, rather
than incidents), the basic model was initially run with V OTR = 0 and the
average travel time found. Assuming a normal distribution on trip travel time,
the difference between the 80th- and 50th-percentile travel times for the NI/UT
scenarios is 1.46 minutes, indicating that our travelers would pay $0.22 to elim-
inate this uncertainty; with a variance of 2.97 minutes squared, this implies a
$0.074/min2 V OTR.

A sample of fifty network realizations was drawn, and each of the solution
methods in the previous section was applied to the appropriate information
scenario. For comparison with heuristics H1 and H2 for the FI/UT scenario,
the simulated annealing (SA) metaheuristic, developed by Kirkpatrick et al.
(1983), was also applied to generate an approximately optimal toll vector; for
SA, solution neighbors were obtained by perturbing arc tolls by up to fifty cents
each. Additionally, for comparison, “no-toll’ scenarios were evaluated for the
NI and FI user information scenarios. Note that the NI and FI scenarios are
still commensurable despite the difference in cost functions, since the FI cost
function is simply a special case of the NI cost function with zero variance in
travel times.

Tables 2 and 3 compare the mean and standard deviation of trip durations
and toll charges under the different information scenarios, along with the com-
putation time needed for each solution method. Table 2 compares “average”
trip characteristics; that is, the mean and variance of each traveler’s day-to-day
travel times and tolls were first calculated, and averages of these values were
taken across all travelers. Table 3 also lists the numerical value of the manager’s
objective function, representing the total burden due to travel time and travel
variability. Note that the standard deviations shown represent the variation
seen over a period of many days — although travelers experience no uncer-
tainty within a given day for the fully informed cases, there still is variation
between days in their experienced travel times and toll expenses.

Several observations are apparent. First, providing users with pre-trip infor-
mation on system conditions provides a substantial reduction in average travel
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Figure 4: Sioux Falls test network; dashed lines indicate degradable (freeway)
links.

Table 2: Comparison of average trip characteristics for all information scenarios
Users Operator Travel time (min) Toll paid ($) Run

Mean Std. Dev. Mean Std. Dev. time (s)

NI No Toll 23.60 0.74 0 0 —
UT 23.55 0.70 9.82 0 5

FI

No Toll 21.51 0.87 0 0 —
RT 20.15 0.48 6.83 0.01 702

UT - H1 20.21 0.60 6.86 0.01 385
UT - H2 20.21 0.60 6.86 0.01 3446
UT - SA 20.21 0.60 6.86 0.01 891
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Table 3: Comparison of system states for all information scenarios
Users Operator Total travel time (veh-hr) Toll revenue ($ ×103) Objective

Mean Std. Dev. Mean Std. Dev. ($ ×103)

NI No Toll 141851 4418 0 0 1433
UT 141558 4198 3542 0 1429

FI

No Toll 129286 5253 0 0 1313
RT 121093 2091 2462 110 1217

UT - H1 121450.0 3588.7 2474 797 1224
UT - H2 121449.8 3589.0 2474 799 1224
UT - SA 121450.3 3588.7 2474 794 1224

times, on the order of ten to fifteen percent. Second, marginal-cost tolls are
higher when users do not have access to information on the network state. This
occurs because the effect of a potential incident must always be incorporated
into the toll price — since an incident result in large delays, a large toll is needed
to correct the situation. Responsive tolling and providing users information al-
low more finesse: if users are aware of an incident, many will choose alternate
routes on their own, even without a high toll; and responsive tolling allows
levying a high toll only when warranted by an incident. A more mathematical
reason is the Pigouvian toll must include a term representing the marginal loss
in reliability in addition to the marginal increase in average travel time, unless
information is provided.

Third, congestion pricing has a greater impact in improving average travel
times (as compared to the no-toll case) when users have information, but the
marginal-cost tolls are much higher on average. For the responsive tolling sce-
narios, this occurs because the tolls on degraded links can be selectively in-
creased, providing additional disincentive for using such links — without tolling,
the increased travel times also discourage use of these links, but prices allow for
an even greater reduction in total system travel time. Even for the unrespon-
sive tolling scenarios, high tolls appear to be needed, perhaps to prevent users
from “overcorrecting” when they learn of reduced capacity on their original path
choice, creating additional congestion on a secondary route even as their own
travel time decreases.

Finally, as is common with marginal-cost tolling, the levied tolls are greater
in magnitude than the reduction in travel disutility. Nevertheless, since toll
revenues are assumed to be returned to travelers in some fashion, as long as
the cost of implementing and administering the toll system is smaller than the
reductions in disutility indicated in Table 3, a net social benefit still obtains.

For finding tolls in the FI/UT case, simple averaging (H1) appears to work
just as well as the alternate heuristic H2, or simulated annealing, while requiring
far less computation time; it would be interesting to see whether this result
occurs in larger networks as well.

More insight is obtained by examining differences among individual link con-
ditions under these different scenarios. As base cases for comparison, Figures 5
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< 0.75 

Figure 5: Untolled volume-to-capacity ratios for no-information case

and 6 respectively show average link volume-to-capacity (v/c) ratios for the
no-information and full-information cases when no tolls are present. Note that
although arterials are substantially congested (almost all have v/c > 1), freeway
links are generally underutilized, as a result of their uncertain capacity. When
travelers have information, freeways are used more, especially in the southern
part of the network where congestion becomes apparent. Higher freeway usage
is also present in the northern part of the network, but spare capacity remains.

Figures 7, 8, and 9 show the change in v/c ratios when tolls are applied in
the NI/UT, FI/RT, and FI/UT cases, compared with the untolled base cases.
For the uninformed (NI/UT) scenario, the general effect of the tolls is to shift
flow onto less congested routes, such as the northern freeways. Increased free-
way usage is especially apparent in the informed (FI/RT and FI/UT) scenarios,
where the combination of information provision and tolls are effective in per-
suading travelers to use less-congested freeways to the north and west, leading
to gains in system-wide operations.
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Figure 6: Untolled volume-to-capacity ratios for full-information case
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Figure 7: Change in v/c ratios under tolling (NI/UT); average link tolls shown
in dollars
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Figure 8: Change in v/c ratios under tolling (FI/RT); average link tolls shown
in dollars
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Figure 9: Change in v/c ratios under tolling (FI/UT); average link tolls shown
in dollars
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7 Conclusion

This paper considers first-best pricing problems in the presence of network un-
certainty and user valuation of travel time reliability. As with any stochastic
model, the question of information is key. Four information provision scenarios
are developed, accounting for both network managers and users, although one
of these is shown to be a special case of another: from the standpoint of en-
couraging system-optimal behavior, there is no value in varying tolls if users do
not learn of the network realization. Solution methods are presented for each
of these scenarios, which were then tested on the Sioux Falls network.

Perhaps the most noteworthy conclusion is that unresponsive tolls must be
set higher than responsive tolls, since the network manager must always hedge
against rare events to ensure the convergence of system optimal and user optimal
behavior. This suggests that unresponsive tolling should not be used to address
nonrecurring congestion, but instead be limited to recurring, predictable con-
gestion. Responsive tolls, however, do not suffer from this weakness, assuming
full information on behalf of network managers and travelers.

There are many interesting extensions to this work that are worthy of future
study. For instance, the use of a network including real data on capacity varia-
tions, with the V OTR parameter estimated directly from traveler choices, rather
than estimated from another model, would do much to illuminate whether the
numerical results can be generalized. From a theoretical standpoint, perhaps
the best way to account for uncertainty is to allow adaptive route choice, where
information on tolls and network conditions is learned while a trip is in progress,
and accounting for this would greatly increase the realism of this model. Fur-
ther, additional information scenarios can be studied, including the possibility
of imperfect or costly information. Finally, perhaps the most significant limi-
tation of the current approach is its static nature: the advantages of dynamic
traffic assignment are well-known, and are capable of modeling network disrup-
tions with greater realism. All of these extensions are of interest for further
explorations of the problem of network pricing under uncertainty.
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