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ABSTRACT 1 
 2 
By far the most popular method to account for dependencies in the transportation network analysis literature is the 3 
use of the multivariate normal (MVN) distribution. While in certain cases there is some theoretical underpinning for 4 
the MVN assumption, in others there is none. This can lead to misleading results: results do not only depend on 5 
whether dependence is modeled, but also how dependence is modeled. When assuming the MVN distribution, one is 6 
limiting oneself to a specific set of dependency structures, which can substantially limit validity of results. In this 7 
paper a more flexible, correlation-based approach (where just marginal distributions and their correlations are 8 
specified) is proposed, and it is demonstrated that, in simulation studies, such an approach is a generalization of the 9 
MVN assumption. The need for such generalization is particularly critical in the transportation network modeling 10 
literature, where oftentimes there exists no or insufficient data to estimate probability distributions, so that 11 
sensitivity analyses assuming different dependence structures could be extremely valuable. However, the proposed 12 
method has its own drawbacks. For example, it is again not able to exhaust all possible dependence forms and it 13 
relies on some not-so-known properties of the correlation coefficient. 14 
  15 

16 
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1. INTRODUCTION 1 
 2 
The prevailing assumption in transportation network modeling has been that parameters are deterministically known 3 
(e.g.. Abdulaal and LeBlanc, 1979; Suwansirikul et al., 1987). More recent research recognizes that uncertainty is a 4 
critical consideration (e.g., Peeta and Ziliaskopoulos, 2001; Waller et al., 2001; Ng and Waller, 2009a, b). However, 5 
while this new stream of publications relaxed the assumption of determinism, it imposed a new assumption, namely, 6 
that of statistical independence (Siu and Lo, 2008; Ng and Waller, 2009c). In certain cases, the independence 7 
assumption can be justified (e.g., Lo and Tung, 2003; Ng and Waller, 2009c); in other cases such an assumption is 8 
questionable, if not, clearly unreasonable.  9 
 10 
The ideal method for modeling dependencies is to define a joint probability distribution to characterize the joint 11 
behavior of the random elements under consideration. However, specification and estimation of such a joint 12 
distribution can be a formidable task, especially as the number of random elements increases. Moreover, specialized 13 
algorithms are needed to sample from these case-specific multivariate distributions in simulation studies (see, e.g., 14 
Ghosh and Henderson, 2002). By assuming that the joint probability distribution comes from a particular parametric 15 
family of multivariate distributions, the above difficulties can be overcome. 16 
 17 
In the transportation literature, the assumption of multivariate normality1 is clearly the most popular. For example, 18 
Zhao and Kockelman (2002) investigated the propagation of uncertainty in the classical four-step travel demand 19 
model using a multivariate normal (MVN) distribution to describe demographic inputs. Pradhan and Kockelman 20 
(2002) and Krishnamurthy and Kockelman (2003) performed similar analyses, integrating the added uncertainty 21 
emerging from the application of land-use models. In Clark and Watling (2005) the MVN distribution was used to 22 
model the joint behavior of link flows in a transportation network with uncertain demand in the context of travel 23 
time reliability assessment (Hazelton, 2000). Subsequent papers on traffic assignment and network design adopted 24 
the same assumption (e.g., Sumalee et al., 2006; Lam et al., 2008). The MVN distribution has also proven popular 25 
for trip table estimation problems (e.g., Maher, 1983; Hazelton, 2000; Lo and Chan, 2003). More recently, Duthie et 26 
al. (2009) used the MVN distribution to model correlated travel demand between origin-destination pairs in a 27 
network. They found that neglecting correlation in demand can lead to misleading predictions of system 28 
performance and, hence, suboptimal network improvement decisions. Siu and Lo (2008) also intimated the use of a 29 
MVN distribution to model travel demand in their reliability-based network equilibrium models. In Watling (2006) 30 
the joint behavior of the link travel times was assumed to follow a MVN distribution. Finally, the MVN assumption 31 
is fundamental to the multinomial probit model’s specification (Daganzo, 1979). 32 
 33 
While in certain cases there is some theoretical motivation for the MVN assumption, in many cases there is none. 34 
The MVN distribution is then simply assumed for reasons such as mathematical tractability or the availability of 35 
simple and efficient sampling algorithms. However, this can lead to misleading results, since results do not only 36 
depend on whether dependence is modeled, but also how dependence is modeled (Livny et al., 1993). When 37 
assuming a MVN distribution, one is limiting oneself to a relatively narrow set of dependence structures (see 38 
Section 2), which may limit the validity of the results. 39 
 40 
The modeling of dependence via the specification of marginal distributions (or “marginals”, for short) and their 41 
correlations is very rare in the transportation literature (Chen et al., 2002, 2007). In contrast, such an approach has 42 
been standard in fields like finance (e.g., see Embrechts et al., 2002 and the references therein) and risk analysis (e.g. 43 
Ferson and Burgman, 1995 and the references therein). This paper proposes such a “correlation-based” method as an 44 
alternative to the MVN assumption. The paper also demonstrates how the correlation-based approach is a natural 45 
generalization of the MVN assumption. Consequently, the method is able to represent a much wider range of 46 
dependence structures than the MVN distribution. This is particularly useful in settings like transportation network 47 
modeling, where often there is no or insufficient data to ascertain the most appropriate probability distributions (Ng 48 
et al., 2009d). It seems that only Chen et al. (2002, 2007) have adopted the correlation-based approach to model 49 
dependencies in the transportation literature. However, they presented no unified framework for further applications, 50 
and no mention was made of limitations and potential complexities that can arise. To address this gap in the 51 
literature, this paper presents a unified framework and discusses limitations and complexities of the correlation-52 
based approach in detail. 53 

                                                 
1 For a detailed discussion of the MVN and its properties, please see Rencher (2002). 
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The remainder of this paper is organized as follows. Section 2 briefly reviews some properties of the correlation 1 
coefficient and the MVN distribution. Section 3 introduces the correlation-based approach and illustrates its 2 
flexibility in representing multifarious dependence structures. As the correlation-based approach is not without its 3 
own limitations, Section 4 describes potential complexities. Concluding remarks are provided in Section 5.  4 
 5 
2. PRELIMINARIES 6 
 7 
The parameter that plays a fundamental role here is the correlation coefficient (also known as the Pearson 8 
correlation coefficient, product moment correlation or linear correlation parameter).  Let iX  and jX  be two random 9 
variables with finite expected values (i.e., ∞<∞< )(,)( ji XEXE ) and finite variances (i.e., ,)( 2 ∞<≡ iiXVar σ  10 

∞<≡ 2)( jjXVar σ ). Then their correlation ),( ji XXρ  can be defined as: 11 

ji

jiji
ji

XEXEXXE
XX

σσ
ρ

)()()(
),(

−
= . 12 

Key properties include the fact that ρ must lie between -1 and 1, and, if 1|),(| =ji XXρ , then with probability one, 13 
baXX ij += for some real numbers a and b (with 0>a if 1),( =ji XXρ and 0<a if 1),( −=ji XXρ ). As evident, 14 

the correlation coefficient can be interpreted as a measure of linear dependence between two random variables. 15 
Other well-known properties include that the correlation matrix XΣ , where ( ) ),( jiijX XXρ=Σ , is symmetric 16 
positive semidefinite, with unit diagonals (here ijA)(  is used to denote the value in the i-th row and j-th column of 17 
matrix A). For instance, travel time on link i cannot be positively correlated with those on links j and k, while the 18 
travel times on links j and k are negatively correlated. Furthermore, zero correlation does not imply independence 19 
(while the converse is true), and the correlation coefficient is not invariant under nonlinear monotonic 20 
transformations.  21 
 22 
This paper proposes a method to generalize the MVN assumption in simulation studies (our emphasis on simulation 23 
studies will become clear in Section 3). Figure 1 shows typical ellipsoidal scatter plots resulting from a bivariate 24 
normal distribution for correlation coefficients ranging from 8.0),( −=ji XXρ (top left) to 8.0),( =ji XXρ (bottom 25 
right) in increments of 0.2.  26 
 27 
Figure 1’s plots rely on the most popular normal random vector generation algorithm (as described in Scheuer and 28 
Stoller, 1962): To simulate a MVN random vector ( )ZNZ Σ,~ μ with mean μ and correlation matrix ZΣ , one simply 29 
evaluates CYZ = , where C is a lower triangular matrix such that T

Z CC=Σ (where TC denotes the transpose of 30 
matrix C) and Y a vector of independent and identically distributed standard normal random values.  31 
 32 
More interesting dependence structures, such as those shown in Figure 2, cannot be captured by the MVN 33 
distribution. In the upper figure, the random variable on the y-axis is bounded (whereas a normal random variable 34 
will be unbounded). In the lower figure, the dependence in the left-tail is much stronger than in the right-tail. MVN 35 
distributions cannot capture such asymmetry.  36 
 37 
Before proceeding to the next section, it is important to note that one may argue (Duthie et al., 2009) that one can 38 
vary the correlation coefficient to investigate the “entire” range of possible dependence structures. This type of 39 
sensitivity analysis is particularly popular when there is insufficient empirical data to gain insights into the true 40 
dependence structure. However, from Figures 1 and 2 it is clear that varying the correlation coefficient in a MVN 41 
distribution will not exhaust all conceivable dependence structures. Such limitations can lead to suboptimal 42 
decisions (Livny et al., 1993). 43 
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 1 
Figure 1: Typical bivariate ellipsoidal scatter plots of the MVN distribution for correlation coefficients 2 

ranging from -0.8 (top left figure) to 0.8 (bottom right figure), in increments of 0.2. 3 

 4 
Figure 2: Examples of dependence structures that MVN distributions cannot capture. 5 

 6 
 7 
3. A CORRELATION-BASED APPROACH 8 
 9 
This section introduces a dependence modeling method in which the user only specifies the marginal distributions 10 

)( ii xF and their correlations ).,( ji XXρ This approach has been used in other fields (e.g., Li and Hammond, 1975; 11 
Whitt, 1976; Ferson and Burgman, 1995; Wang and Dhaene, 1998; Embrechts et al., 2002) − fields where there is 12 
considerably more experience with modeling stochasticity, risk, and dependence than in the transportation arena. 13 
 14 
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Clearly, such an approach is less restrictive that the MVN assumption: to specify a MVN distribution, one has to 1 
assume normal marginals, a set of correlation coefficients (the only two ingredients in a correlation-based approach) 2 
and the assumption that the joint distribution is MVN. That is, while the converse is true, normal marginal 3 
distributions do not necessarily imply that the joint distribution is MVN. In addition, the estimation of the individual 4 
marginal distributions is generally an easier task than the estimation of the entire multivariate probability density 5 
function. Indeed, it is easy to see that if one is able to estimate a MVN distribution, then one is able to estimate the 6 
essential elements in a correlation-based approach. Of course, as shown in the next section, the correlation-based is 7 
not perfect either. However, it is demonstrated next that in simulation studies it represents a true improvement of the 8 
MVN assumption, in the sense that the MVN assumption is a special case of the proposed method. 9 
 10 
The correlation-based approach is best introduced by examining the perhaps most popular algorithm to generate 11 
random vectors with prespecified marginals and correlation structure. This algorithm is known as the NORTA (i.e., 12 
NOrmal-To-Anything) algorithm developed by Cario and Nelson (1997). The NORTA algorithm can be 13 
summarized as follows. 14 

 15 
Algorithm NORTA 16 

 17 
Input: Desired marginal cumulative distribution functions )( ii xF and their correlations ),( ji XXρ  18 
Output: Random vector X with marginals )( ii xF and correlation matrix XΣ  19 
 20 
Step 1 Generate a normal random vector ( )Z

T
N NZZZZ Σ≡ ,0~],...,,[ 21  with 1)( =Σ iiZ  such that 21 

( ) ),())(()),(( 11
jijjii XXZFZF ρφφρ =−−  22 
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 24 

where )(xφ and { }uxFxuF ii ≥≡− )(:inf)(1  denote the cumulative distribution function of a standard normal random 25 
variable and the generalized inverse of )( ii xF , respectively. 26 
 27 
The reason for the name NORTA is clear: the algorithm starts with a MVN random vector and transforms it to a 28 
random vector with “any” (see Section 4) desired marginal distributions and correlation structure. To see this, recall 29 
that )( iZφ has a uniform distribution on [0,1], so that ))((1

ii ZF φ− has the desired marginal distribution )( ii xF , e.g., 30 
see Casella and Berger (2001). The crux of the algorithm lies in Step 1, where a suitably chosen correlation 31 
matrix ZΣ ensures that X has the desired correlation structure. Note that if the correlation coefficient were invariant 32 
under nonlinear transformations, Step 1 would be trivial. In particular, to find ZΣ the following equation needs to be 33 
solved: 34 

( ) jijijjiijijiji dzdzzzzFzFXEXEXX
ijZ∫ ∫

∞

∞−

∞

∞−

Σ
−−=+ ),())(())(()()(),( 11 ϕφφρσσ   (1) 35 

where ( )ijZΣϕ denotes the bivariate normal density function. Note that this equation is an equation in one unknown, 36 
namely ( )ijZΣ . By definition, ( ) 1=Σ iiZ and since ZΣ is symmetric, Step 1 amounts to the solution of 2/)1( −NN  37 
single-variable equations. Fortunately, it turns out that (1) behaves nicely: the right-hand side of (1) is continuous 38 
and non-decreasing as a function of ( )ijZΣ under very mild conditions (for details, see Cario and Nelson, 1997). 39 
Consequently, efficient solution algorithms exist (Press et al., 2007). Finally, note that in Step 1 of the algorithm the 40 
vector Z is typically constructed via Scheuer and Stoller’s algorithm. 41 
 42 
As indicated at the beginning of this section, normal marginals do not necessarily imply a MVN distribution. That is, 43 
it is not trivial that adopting normal marginals will result in a MVN distribution as NORTA’s output. Proposition 1 44 
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below demonstrates that normal marginals in conjunction with NORTA does generate MVN data, in the sense that 1 
the output could have been obtained from Scheuer and Stoller’s algorithm.  2 
Proposition 1: When the desired marginal distributions )( ii xF in NORTA are normal, then NORTA is equivalent to 3 
Scheuer and Stoller’s algorithm. 4 
 5 
Proof: Recall that in NORTA 6 
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 7 

 8 
where CYZ = and C is a lower triangular matrix such that T

Z CC=Σ and Y is a vector of independent and 9 
identically distributed standard normal random variables. Next it is shown that one could have obtained vector X 10 
using Scheuer and Stoller’s algorithm with a particular choice of the lower triangular matrix C. To see this, note 11 
that )()( 11 uuF iii

−− += φσμ in case of a normal distribution with mean iμ and standard deviation iσ . Hence, one 12 
can rewrite X as follows: 13 
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 14 

where .iC denotes the i-th row of the matrix C. From this last equation it is clear that X could have been obtained 15 
directly from Scheuer and Stoller’s algorithm using a lower triangular matrix with rows equal to .iiCσ . That is, let 16 
C denote the lower triangular matrix with rows .iiCσ , then YCX += μ and T

X CC=Σ . Q.E.D. 17 
 18 
From Proposition 1 one can make a subtle but important observation. As noted earlier, the MVN assumption 19 
imposes one more restriction than the proposed correlation-based approach: In addition to the marginal distributions 20 
(that are assumed to be normal) and a correlation matrix, the MVN assumption implies that the joint behavior of the 21 
marginals is MVN. In light of Proposition 1, i.e., if using NORTA, it is clear that the correlation-based approach 22 
also implicitly assumes some joint distribution for the marginals. Indeed, as will be seen in the next section, this is 23 
necessary since the specification of marginal distributions and correlation coefficients alone does not uniquely 24 
determine a joint distribution. Hence in some sense the correlation-based approach requires as many assumptions as 25 
the MVN distribution. The only big difference is that the correlation-based approach allows one to relax the 26 
assumption of normal marginal distributions. That is, in simulation studies, there is no reason at all why the 27 
correlation-based approach is not preferred over the MVN assumption! However, as can be expected, no single 28 
method is perfect. Clearly, the correlation-based approach is computationally more intensive than Scheuer and 29 
Stoller’s algorithm (in particular in Step 1 of NORTA). Other potential difficulties and limitations exist and they 30 
will be discussed in the next section.  31 
 32 
To illustrate the versatility of the correlation-based approach, consider Figure 3 that shows four more (Figure 2 has 33 
also been generated using NORTA) dependence structures that the MVN distribution is not able to capture. The top 34 
left figure depicts some nonlinear increasing trend (the correlation coefficient in this case equals 0.63) where the 35 
marginal distributions are distributed according to an extreme value distribution with location parameter 5 and scale 36 
parameter 0.1 and an exponential distribution with mean 1. The top right figure shows a dependence relationship 37 
where dependence is stronger in the right tail than in the left. The marginals underlying this plot were Weibull (with 38 
location parameter 3 and scale parameter 5) and extreme value (with location parameter 10 and scale parameter 1) 39 
with a correlation coefficient of 0.78. In the lower left figure another non-standard dependence structure is depicted 40 
with negative correlation (-0.65) and normal (with mean 10 and variance 1) and beta (with parameters 8 and 1) 41 
marginal distributions. Thus far it might seem that the marginal distributions in NORTA need to be continuous. In 42 
fact, marginals can be discrete in which case one has to interpret (1) slightly differently (for more details, one may 43 
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refer to Cario and Nelson, 1997). The lower right figure in Figure 3 depicts a dependence relation with correlation -1 
0.5, where one of the marginals is exponential (with mean 10) and the other uniform discrete (with mean 5). 2 
  3 

 4 
Figure 3: Examples of dependence structures NORTA can capture.  5 
 6 
 7 
4. SOME LIMITATIONS OF THE CORRELATION-BASED APPROACH 8 
 9 
In the previous section it has been demonstrated that the correlation-based approach is able to represent more forms 10 
of dependence than the MVN can. However, it turns out that it is also not exhaustive. As an example, suppose that 11 
there are two origins generating travel demand. Furthermore, assume that each demand has a normal distribution 12 
with mean 10 and standard deviation 1. Figure 4 depicts their dependence structure (using 5000 samples) with 13 
“weak” dependence in the right tail and “strong” dependence in the left tail2. Since for normal marginals, the 14 
correlation-based approach is equivalent to the MVN assumption (see Proposition 1), it is clear that NORTA is 15 
unable to represent Figure 4’s dependence structure.  16 
 17 
The above discussion implies that marginal distributions together with their correlations do not uniquely specify the 18 
dependence relationship. Indeed, it can be verified that the sample correlation implicit in Figure 4’s bivariate scatter 19 
plot is approximately +0.95. Given normal marginal distributions with means of 10 and standard deviations of 1 and 20 
a desired correlation of +0.95, NORTA would generate the familiar ellipsoidal scatter plot shown in the upper part 21 
in Figure 5. The lower part of Figure 5 repeats Figure 4’s scatter plot for ease of comparison. Clearly, while the 22 
marginal distributions and correlation coefficient are the same, the dependence structures differ substantially. 23 
Therefore, prior to using any pre-coded software that requires as input only marginal distributions and their 24 
correlations, it can be critical that users consult the associated documentation in order to ensure that the desired 25 
dependence structure has been generated. For example, does the software reproduce Figure 5’s lower or upper 26 
dependence structure? 27 
 28 

                                                 
2 Figure 4 was generated using the theory of copulas (e.g. see Srinivas et al., 2006; Bhat and Eluru, 2009; Ng and 
Waller, 2009e), which is outside the scope of this paper. Here, the purpose is to emphasize the fact that the depicted 
marginal distributions are normal random variables. 
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 1 
Figure 4: A dependence structure with normal marginals. 2 

 3 

 4 
Figure 5: Two bivariate distributions exhibiting the same marginal distributions and sample correlation. 5 

 6 
 7 
Now, consider the following reasoning. Suppose that the travel times T1 and T2 on two links are known to be 8 
correlated. Moreover, assume that )1,0(~log 1 NT and ),0(~log 2

2 σNT ; thus, T1 and T2 are lognormal random 9 
variables. The variance of the sum of these two random variables is given by the following: 10 

 11 
)()(),(2)()()( 21212121 TVarTVarTTTVarTVarTTVar ρ++=+  12 
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where eeTVar )1()( 1 −= and 
22

)1()( 2
σσ eeTVar −=  (Johnson et al., 1995). Suppose that one is interested in the 1 

maximum and minimum variability of the sum of these travel times. Since for a given value of 2σ , the individual 2 
variances )( 1TVar and )( 2TVar are fixed, one might argue that the maximum and minimum variances of the sum are 3 
obtained when 1),( 21 =TTρ and 1),( 21 −=TTρ , respectively. In other words: 4 
 5 

2222
)1)(1(2)1()1()( max21

σσσσ eeeeeeeeTTVar −−+−+−=+    (2) 6 
2222

)1)(1(2)1()1()( min21
σσσσ eeeeeeeeTTVar −−−−+−=+    (3) 7 

 8 
This argument is seemingly valid. However, there is a little known and rather surprising property of the correlation 9 
coefficient that explains why the above argument is wrong and even misleading.  10 
 11 
Hoeffding (1940) proved the following property: Depending on the marginal distributions of iX  and jX , it is 12 
possible that maxmin ),( ρρρ << ji XX , where 101 maxmin <<<<− ρρ . Furthermore, the set of all possible 13 
correlations forms a closed interval ],[ maxmin ρρ . That is, the extremal correlations of -1 and +1 may not be 14 
achievable. A failure to recognize this fact can give rise to misleading conclusions. Fortunately, this issue is not 15 
relevant for all distributions. For example, consider the case of two normal random 16 
variables: )1,0(~ NX i and ),(~ 2σμNX j . One can write μσ += VX j where V is some standard normal random 17 
variable. Clearly, the largest possible correlation ),(max ji XXρ is obtained when iXV = , which directly yields 18 
that 1),(max =YXρ . Likewise, setting iXV −= gives the smallest possible correlation 1),(min −=YXρ since in this 19 
case μσ +−= ij XX with probability one. That is, in case of normal marginals, there is no need to worry about the 20 
range of achievable correlations (Duthie et al., 2009). However, for other marginal distributions, care must be 21 
exercised, as demonstrated by the following example due to Embrechts et al. (2002). 22 
 23 
As in the travel time example above, suppose that the travel times on two links of a transportation network have 24 
lognormal distributions, i.e., )1,0(~log 1 NT and ),0(~log 2

2 σNT . One can write VeT =1 where V is some standard 25 
normal random variable. Likewise, it is clear that WeT =2 where ),0(~ 2σNW and )1,0(~/ NW σ . Figure 6 depicts 26 
two instances of the lognormal densities ( 1,0 == σμ and 5,0 == σμ ).  Nothing seems to suggest that the 27 
correlation between these lognormal travel times cannot be any arbitrary value. Next it is shown that the only 28 
theoretically consistent correlation is zero!  29 
 30 
Clearly, the maximum correlation that can be induced between T1 and T2 is when VW =σ/ . Therefore, using the 31 
fact that 2/2

)( σμ+= eUE and 
22 2)1()( σμσ +−= eeUVar  for a lognormal random variable U with parameters μ and 32 

2σ , one can write 33 

)1)(1(

1
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On the other hand, the minimum correlation that can be induced between T1 and T2 occurs when VW −=σ/ . Hence,  35 
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 37 
Figure 7 shows the extremal correlations (4) and (5) as a function of σ . It is readily seen that the range of possible 38 
correlations diminishes very rapidly as σ grows. If 5=σ , then 0maxmin ≈≈ ρρ ! In the travel time example above, 39 
it was assumed that the correlation coefficient could achieve the values -1 and 1. From Figure 7 it is clear that 40 
perfect negative correlation can never be achieved, whereas perfect positive correlation is only (approximately) 41 
achieved for a single value of .σ In other words, the assumption that perfect positive and negative correlation can be 42 
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achieved could lead to overestimates of the maximum variance (i.e., one unnecessarily believes that the variance is 1 
large) and, more importantly, to underestimates (up to 45%) of the minimum variance (i.e., one will falsely believe 2 
that the variance is small). Figure 8 depicts the theoretical lower and upper bounds (4) and (5), together with the 3 
“incorrect” bounds (2) and (3). Note that, strictly speaking, the “incorrect” bounds are valid bounds since they 4 
enclose the entire theoretically feasible region. However, as explained, they provide misleading information. 5 

 6 
Figure 6: Lognormal densities with parameters 1,0 == σμ and 5,0 == σμ . 7 

 8 
  9 
 10 

 11 
Figure 7: Upper and lower bounds on the correlation coefficient between two lognormally distributed 12 
random variables. 13 
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 1 
Figure 8: Theoretical and “incorrect” bounds for the travel time example. 2 

 3 
It is clear that in order to avoid misleading conclusions, it is necessary to ensure that all (theoretically) assigned 4 
correlations lie within the bounds imposed by the marginal distributions under consideration. In other words, they 5 
must be feasible. This issue is particularly relevant when real-life data are not available to support the selection of 6 
feasible correlation coefficients (Duthie et al., 2009). However, a complicating factor is that it might not be tractable 7 
to theoretically derive this feasible range for arbitrary marginal distributions, although complex computational 8 
procedures have been developed to determine the feasibility of correlation matrices (once the correlation matrices 9 
are specified), as discussed in Ghosh and Henderson (2002). To further complicate matters, Ghosh and Henderson 10 
(2002) formally demonstrated that NORTA fails to generate random vectors with certain feasible correlation 11 
matrices. In these cases, the algorithm can only generate a random vector with approximately the given correlation 12 
structure. 13 
 14 
 15 
5. CONCLUSIONS 16 
 17 
The modeling of dependencies is becoming recognized as fundamental to addressing important questions in 18 
transportation network analysis, including traffic forecasting, reliability assessment, investment decision-making, 19 
and transportation planning. Specification of MVN distributions is the primary method for accounting for parameter 20 
and input dependencies, though in many cases there may be no empirical or theoretical motivation for such 21 
assumptions.  22 
 23 
Using the NORTA algorithm, this work demonstrates how a correlation-based approach (with marginal distributions 24 
also specified) offers a generalization of the MVN assumption regularly used in simulation studies. It has been 25 
shown that the correlation-based approach is able to represent more dependence structures than the MVN can. Such 26 
flexibility may be critical in the transportation and urban systems modeling arenas, where interactions are regularly 27 
complex, heteroskedasticity, non-linearities and a variety of other behaviors can emerge – yet there is little data to 28 
empirically illuminate the multivariate nature of various relationships.  As in any complex science, sensitivity 29 
analyses assuming different dependence structures could be extremely useful, and result in more robust network 30 
design, policy making, and operations management decisions.  31 
 32 
Unfortunately, the correlation-based approach is not perfect either.  In particular, examples were provided to 33 
demonstrate that: 34 
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• The correlation-based approach is not able to capture all possible forms of dependence. That is, one effective 1 
discards a whole set of possible dependence structures in any type of sensitivity analysis where the analyst 2 
varies the dependence structure. Nevertheless, it represents a true improvement over the MVN assumption. 3 

 4 
• Marginal distributions and their correlation coefficients do not uniquely determine the dependence structure. 5 

This issue is particularly relevant when using pre-coded random vector generation algorithms in which case it is 6 
critical to consult the associated documentation before its use. In certain cases, a visual inspection of the 7 
resulting scatter plots might also help to ensure that the desired correlation structure has been generated. 8 
 9 

• The range of values a correlation coefficient can assume depends on the marginal distributions involved. This 10 
characteristic of the correlation coefficient is perhaps the least known of all of its properties, even in fields 11 
where the correlation coefficient has been extensively used in modeling dependence. This property is 12 
particularly relevant to the transportation network modeling community where oftentimes real data are not 13 
available to support the selection of appropriate correlations and distributions. An example with lognormal 14 
random variables was provided in which the only theoretically feasible correlation was a singleton. That is, any 15 
other (assumed) correlation would provide misleading results. To complicate matters further, the verification of 16 
the feasibility of the (theoretically assigned) correlation coefficients can be challenging. Finally, NORTA is not 17 
able to generate all theoretically feasible correlated random vectors. In such cases, it only generates random 18 
vectors with approximately the given correlation structure. 19 

 20 
Despite these undesirable properties, the correlation-based approach is a true generalization of the MVN assumption. 21 
It seems there is little reason why the correlation-based approach should not become a more widespread simulation 22 
tool in the transportation community. 23 
 24 
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