| 1  | A MAXIMUM ENTROPY METHOD FOR SUBNETWORK ORIGIN-DESTINATION                                         |
|----|----------------------------------------------------------------------------------------------------|
| 2  | TRIP MATRIX ESTIMATION                                                                             |
| 3  |                                                                                                    |
| 4  | Chi Xie                                                                                            |
| 5  | Research Fellow                                                                                    |
| 6  | Department of Civil, Architectural and Environmental Engineering                                   |
| 7  | The University of Texas at Austin – 6.506 E. Cockrell Jr. Hall                                     |
| 8  | Austin, TX 78712-1076                                                                              |
| 9  | chi.xie@mail.utexas.edu                                                                            |
| 10 | Phone: 512-471-4622 & FAX: 512-475-8744                                                            |
| 11 |                                                                                                    |
| 12 | Kara M. Kockelman                                                                                  |
| 13 | (Corresponding author)                                                                             |
| 14 | Professor and William J. Murray Jr. Fellow                                                         |
| 15 | Department of Civil, Architectural and Environmental Engineering                                   |
| 16 | The University of Texas at Austin – 6.9 E. Cockrell Jr. Hall                                       |
| 17 | Austin, TX 78712-1076                                                                              |
| 18 | kkockelm@mail.utexas.edu                                                                           |
| 19 | Phone: 512-471-0210 & FAX: 512-475-8744                                                            |
| 20 |                                                                                                    |
| 21 | S. Travis Waller                                                                                   |
| 22 | Associate Professor and Clyde E. Lee Fellow                                                        |
| 23 | Department of Civil, Architectural and Environmental Engineering                                   |
| 24 | The University of Texas at Austin – 6.2 E. Cockrell Jr. Hall                                       |
| 25 | Austin, TX 78712-1076                                                                              |
| 26 | stw@mail.utexas.edu                                                                                |
| 27 | Phone: 512-471-4539 & FAX: 512-475-8744                                                            |
| 28 |                                                                                                    |
| 29 | The following paper is a pre-print and the final publication can be found in <i>Transportation</i> |
| 30 | <i>Research Record</i> No. 2196: 111-119, 2010.                                                    |
| 31 | Presented at the 89th Annual Meeting of the Transportation Research Board, January 2010            |
| 32 |                                                                                                    |
| 33 |                                                                                                    |
| 34 |                                                                                                    |
| 35 | Key Words: Trip table estimation, subnetwork analysis, maximum entropy, linearization              |
| 36 | algorithm, column generation                                                                       |
| 37 |                                                                                                    |

#### 1 ABSTRACT

- 2 In the context of sketch planning, it is expected that a simplified network (i.e., an abstracted
- 3 network or subnetwork) model can accurately approximate the travel demand patterns and level-
- 4 of-service attributes obtained from its full-network counterpart. A data prerequisite in this
- 5 approximation process is the trip matrix of the simplified network. This paper discusses a
- 6 maximum entropy method for the subnetwork trip matrix estimation problem, relying only on
- 7 link flow rates (estimated via full-network traffic assignment or as observed link-level vehicle
- 8 counts). A linearization algorithm of the Frank-Wolfe type is devised for problem solutions, in
- 9 which a column generation approach is iteratively used to solve the linearized subproblem
- 10 without path enumeration. Encouraging results from a numerical example suggest that this
- 11 method holds much promise for generating trip matrices that can be used to evaluate traffic flow
- 12 patterns under various network changes.

#### 13 INTRODUCTION

- 14 Transportation planners almost always rely on simplified representations of roadway networks
- 15 for traffic analysis. For example, metropolitan areas often have networks with 10,000 of more
- 16 coded links, yet they ignore most local streets and they simplify intersection signal timing and
- 17 other details. In general, all models are abstractions of reality, and the level of details used
- 18 depends on desired accuracy in model outputs as well as available computational resources.
- 19 When the impacts of changes to a large network (such as that found in an urbanized area or
- 20 across a state) need to be anticipated, sketch planning is often considered as a cost-effective tool.
- 21 A sketch network may be a skeleton topology synthesizing only major arterials in the region (i.e.,
- 22 an abstract network) or may focus on the details of a neighborhood or corridor of larger system
- 23 (i.e., a subnetwork). Such strategies are appealing when evaluation of the regional network
- 24 requires specialized expertise and/or is very computationally demanding, thus prohibiting
- 25 evaluation of one or more scenarios in a limited time frame. These simplified networks provide
- 26 planners with a less complex platform to facilitate quick-response and relatively informed
- 27 decision making early on.
- 28 While a number of studies addressed important theoretical and practical extraction/aggregation
- issues for network abstraction (see 1-8), subnetwork analysis is still quite limited (see 9, 10).
- 30 Given a subnetwork extracted from a larger network, the first task we face is to determine the
- 31 subnetwork's trip table. This is a data prerequisite for any subsequent travel demand analysis.
- 32 Specifically, this work's objective is to derive a consistent origin-destination (O-D) trip matrix
- 33 for the subnetwork so that the travel demand analysis in the subnetwork (under changed network
- 34 conditions) will closely mimic full-network modeling results.

- 1 For a congested<sup>1</sup> network experiencing user-equilibrium (UE) traffic conditions, one certainly
- 2 can estimate any subnetwork's trip table by combining path flows from the full network, using a
- 3 procedure described by Haghani and Daskin (5, 6) and Hearn (11). This approach results in a
- 4 subnetwork trip matrix that can induce a link flow pattern in the subnetwork exactly as the same
- 5 as that in the larger system. However, this approach requires complete information on paths
- 6 taken in the full network and hence the resulting subnetwork trip matrix is dependent on the
- 7 given full-network path flow pattern. In general, unique path flow patterns do not exist in a UE
- 8 context, so this approach does not result in a unique subnetwork trip matrix. Thus, if such a
- 9 matrix were used to evaluate traffic shifts under network modifications (e.g., link additions
- 10 and/or expansion), the resulting flow estimates will likely deviate from full-network results.
- 11 Two complementary approaches may be used to eliminate this non-uniqueness issue, and both
- 12 make use of the entropy maximization principle (see *12*, *13*). The first approach is to estimate a
- 13 most likely, unique path flow pattern in the full network by means of an entropy-maximizing UE
- 14 traffic assignment algorithm (14-18) and then to aggregate corresponding path flows to form a
- 15 subnetwork trip matrix. The second approach requires only a link flow pattern from traffic
- 16 assignment in the full network; the link flows are used as inputs to a maximum entropy (ME)
- 17 method for estimating a most likely, unique O-D flow pattern for the subnetwork.
- 18 While one can debate which of the two procedures generates a more accurate and robust trip
- 19 matrix (in terms of the subnetwork evaluation result), we recommend the second approach, for
- 20 two computational and practical reasons. First, the second approach requires only link flow
- 21 information and conducts its ME optimization on the subnetwork level, which is much less
- 22 computationally demanding than the first approach (which conducts ME over the full network
- and must store and manipulate path flows from the full network. The second reason relates to
- 24 the availability of input data. In cases where large-scale traffic assignment across the full
- 25 network is not feasible, one must rely on other data sources. Almost every traffic management
- agency has a long history of collecting and assembling link-based traffic counts (e.g., for the
- 27 U.S.'s mandated Highway Performance Monitoring System [HPMS]). Thus, the second
- 28 approach is more practical in that it requires just subnetwork flow values, either estimated or
- 29 measured. For this reason, the second approach is the focus of this paper's discussion.
- 30 The following section of this paper provide an overview of existing trip matrix estimation
- 31 methods, with a focus on traffic count-based methods. Next, a subnetwork matrix estimation
- 32 model based on ME theory is formulated and then analyzed, using a small numerical example for
- 33 interpreting the model's optimality conditions. A linearization solution algorithm of the Frank-
- 34 Wolfe type is devised for this convex optimization model, in each iteration of which the
- 35 linearized subproblem is solved by a column generation approach. (This avoids a reliance on
- 36 path enumeration.) The solution method is then applied to a small network with relatively large

<sup>&</sup>lt;sup>1</sup> The network does not really have to be congested, but the method applied here assumes that travel times are flow dependent (so one cannot simply assume all-or-nothing assignments, for example).

1 network changes to assess their performance by comparing the traffic flow patterns generated by

- 2 the subnetwork and full-network traffic assignments. Finally, some modeling extensions are
- 3 suggested and research findings are summarized.

## 4 RELEVANT RESEARCH

- 5 Trip matrix estimation methods may be distinguished in terms of their theoretical basis (e.g.,
- 6 gravity allocation, entropy maximization, and error minimization), traffic routing restrictions
- 7 (e.g., user equilibrium or proportional assignment), and required inputs (e.g., trip productions
- 8 and attractions, traffic counts, travel times, or target trip matrix). Count-based estimation
- 9 problems have been widely investigated and formulated in terms of a few different optimization
- 10 principles, including ME, least squares (LS), and maximum likelihood (ML), among others.
- 11 ME theory (or minimum information theory) was first used by Willumsen (19) and Van Zuylen
- 12 and Willumsen (20) for the most-likely-trip-matrix estimation problem, based on traffic counts.
- 13 By assuming that the underlying traffic flows follow a known proportional routing pattern, these
- 14 models resort to a simple iterative balancing method for solutions. In the same modeling
- 15 framework, Nguyen (21) formulated a ME problem synthesizing both traffic count data and trip
- 16 production and attraction data. While more information can be helpful, potential inconsistencies
- 17 across constraints can result in no feasible solutions. Fisk (22) imposed the UE routing principle
- 18 to a similar matrix estimation problem, resulting in a ME model subject to a variational
- 19 inequality constraint. His contribution is mostly theoretical, rather than practical, however; its
- 20 nonconvex feasible region makes the problem hard to solve.
- 21 Nguyen (23, 24) and others (24-27) pursued an alternative approach, incorporating equilibrium
- 22 traffic flows. Their approach uses minimum travel costs between all O-D pairs as inputs.
- 23 Knowing flows and link cost functions, link travel costs and path travel costs can be readily
- 24 calculated. The model makes no assumption about trip distribution patterns; however,
- 25 alternative optimal solutions may exist. To ensure convergence to a unique matrix solution,
- some extra information (for example, a target trip matrix or the ME assumption) is generally
- 27 needed.
- 28 The joint use of (full or partial) traffic count and target matrix information has resulted in a
- 29 number of other trip matrix estimation methods, such as the Bayesian inference approach (28,
- 30 29), least squares approach (30-33), maximum likelihood approach (34-36, 29), constrained
- regression approach (37), least absolute norm approach (38-40), and integrated squared error
- 32 approach (41). Despite various implicit parameter assumptions and optimization principles, all
- 33 seek a matrix that represents some form of trade-offs between a target trip matrix and observed
- 34 traffic counts. These trade-offs appear in the model constraints or objective functions. Due to
- 35 the above methods' requirement of a target trip table, none applies here.

1 Given the fact that link flows (either estimates or measured counts) are the only data source

2 available in the context under study, we propose an ME model for subnetwork trip matrix

- 3 estimation. This approach is based on the early work of Willumsen (19) and Van Zuylen and
- 4 Willumsen (*20*).

## 5 MAXIMUM ENTROPY MODEL

6 Imagine a subnetwork G = (N, A), where N and A are the node and link sets of the subnetwork,

- 7 respectively. The origin node set *R* and the destination node set *S* are subsets of *N*, (i.e.,  $R \subseteq N$
- 8 and  $S \subseteq N$ ). The proposed model implies two important assumptions, which greatly reduce the
- 9 modeling difficulty. (We later discuss how these assumptions can be removed, thereby
- 10 accommodating more general network conditions.) First, we assume that every node in the
- 11 network is potentially an origin and destination node (i.e., R = N and S = N). If any node r
- 12 cannot be an origin, one simply sets  $x_{rs} = 0$ ,  $\forall s \in S$ ; similarly, if any node *s* cannot be a
- 13 destination, one sets  $x_{rs} = 0$ ,  $\forall r \in R$ . Second, we assume that the to-be-estimated subnetwork
- 14 trip matrix has fixed values. In other words, every O-D flow rate in the matrix is invariant to any
- 15 network change. In reality, all flows with external origin and/or external destination (i.e., outside
- 16 the subnetwork) can well change, as these tripmakers may seek different routes (potentially
- 17 avoiding the subnetwork entirely, or adding trips to the trip table). Thus, the greater the share of
- 18 trips involving origins or destinations outside the subnetwork, the more problematic is this
- 19 second assumption.
- 20 Nevertheless, given a complete set of estimated or measured link flow rates,  $\hat{v}_a$ ,  $a \in A$ , one can
- 21 construct the following ME problem (P1):

$$\max -\sum_{rs} (x_{rs} \ln x_{rs} - x_{rs})$$
(1.1)

or min 
$$\sum_{rs} (x_{rs} \ln x_{rs} - x_{rs})$$
 (1.2)

subject to 
$$\sum_{rs} \sum_{k} f_k^{rs} \delta_{a,k}^{rs} = \hat{v}_a \qquad \forall a \in A$$
 (1.3)

$$f_k^{rs} \ge 0 \qquad \qquad \forall k \in K_{rs}, r \in R, s \in S \tag{1.4}$$

22 where trip rate  $x_{rs}$  is defined as

$$x_{rs} = \sum_{k} f_{k}^{rs} \qquad \forall r \in R, s \in S$$
(1.5)

1 Here  $f_k^{rs}$  is the path flow rate of path k between origin r and destination s.

- 2 This model's functional form is common to the ME specifications used by Willumsen (19) and
- 3 Fisk (22). These models' can all rely on link flow rates as the only input. (Production and
- 4 attraction data or some target O-D flow pattern is not required.) Note that the proposed
- 5 formulation (P1) does not imply any traffic routing assumption (i.e., how the estimated trip
- 6 matrix is assigned to generate the observed flow pattern in the network). In general, an
- 7 appropriate traffic routing principle needs to be specified and incorporated into the matrix
- 8 estimation process. For example, Willumsen's ME model presumes that the proportions of any
- 9 O-D flow rate on traversed links are known a priori (so route choice is independent of
- 10 congestion), while Fisk's model explicitly contains a UE traffic routing component.
- 11 In both Willumsen's and Fisk's models, observed link flows may contain noise and be
- 12 inconsistent with one another (e.g., flow may not be conserved at nodes); moreover, flow
- 13 observations are generally only available on a subset of network links. In the current context, by
- 14 contrast, a complete set of link flow rates is available, and the solution-implied flow rates may be
- 15 error-free, if these rates are produced by a traffic assignment process in the full network. Our
- 16 model does not require an explicit traffic assignment component, since the complete set of link
- 17 flows implies the desirable traffic flow pattern. If the given link flow pattern is achieved via a
- 18 UE traffic assignment in the full network, then the estimated subnetwork trip matrix can replicate
- 19 exactly the same flow pattern through a UE traffic assignment in the subnetwork. In fact, any
- 20 feasible solution of the ME model (P1) holds this conclusion, as proven here now.
- 21 **Property 1**. Assume that both the subnetwork and full-network traffic flow patterns are UE. A
- 22 subnetwork traffic assignment based on any feasible trip matrix solution of P1:  $\{x = x\}$
- 23  $[x_{rs}]: \sum_{rs} \sum_{k} f_k^{rs} \delta_{a,k}^{rs} = \hat{v}_a, \forall a, f_k^{rs} \ge 0, \forall k, r, s, x_{rs} = \sum_{k} f_k^{rs}, \forall r, s \}$  produces the same
- subnetwork flow pattern (in terms of link flows) as the full-network traffic assignment.
- 25 **Proof**. Since the full-network flow pattern is UE, any part of the traffic flow pattern is UE. Let
- us assume that a feasible trip matrix solution  $\mathbf{x}^*$  of P1 is obtained by decomposing  $\hat{v}_a$  into a
- 27 specific set of  $f_k^{rs^*}$  in terms of  $\sum_{rs} \sum_k f_k^{rs} \delta_{a,k}^{rs} = \hat{v}_a$  and then summing up this set of  $f_k^{rs^*}$  for
- 28 each O-D pair *r*-*s*, i.e.,  $x_{rs}^* = \sum_k f_k^{rs^*}$ .
- 29 The UE traffic assignment problem for the subnetwork with this specific trip matrix  $x_{rs}^*$  is:
- 30  $\min_{\mathbf{v}} \{ \sum_{a} \int_{0}^{v_{a}} t_{a}(\omega) d\omega \colon \sum_{k} f_{k}^{rs} = x_{rs}^{*}, \forall r, s, v_{a} = \sum_{rs} \sum_{k} f_{k}^{rs} \delta_{a,k}^{rs}, \forall a, f_{k}^{rs} \ge 0, \forall k, r, s \}.$  It is
- 31 obvious that the specific path flow pattern  $\mathbf{f}^* = [f_k^{rs^*}]$  and thus the link flow pattern  $\mathbf{v}^* = [v_a^*]$
- 32 exactly satisfy the optimality condition of this traffic assignment problem. Because this traffic
- 33 assignment problem has a unique optimal solution (in terms of the link flow pattern), we know
- 34 that it is the link flow pattern  $[v_a^*]$ .

- 1 Fortunately, this result does not mean that the proposed ME model will fail in the face of noisy
- 2 and inconsistent input data. Given the assumption that every node in the subnetwork can be an
- 3 origin and/or destination node, any set of flow rates can serve as an input data set. In other
- 4 words, an arbitrary set of input link flow rates contains some feasible solutions to the maximum
- 5 entropy model (P1). A more formal proof of this is as follows:
- 6 **Property 2**. Assume that every node in the network is potentially an origin and destination node.
- 7 Feasible solutions of P1 always exist given an arbitrary set of positive link flow rates.
- 8 **Proof.** The feasible solution set of P1 is confined by such a system of linear equations:  $\{x = x\}$
- 9  $[x_{rs}]: \sum_{rs} \sum_{k} f_{k}^{rs} \delta_{a,k}^{rs} = \hat{v}_{a}, \forall a, f_{k}^{rs} \ge 0, \forall k, r, s, x_{rs} = \sum_{k} f_{k}^{rs}, \forall r, s\}.$  Its feasibility is
- 10 equivalent to the feasibility of the reduced linear system of  $f_k^{rs}$ : { $\mathbf{f} = [f_k^{rs}]$ :  $\sum_{rs} \sum_k f_k^{rs} \delta_{a,k}^{rs} =$
- 11  $\hat{v}_a, \forall a, f_k^{rs} \ge 0, \forall k, r, s$ . Given that every  $f_k^{rs} \ge 0, \forall r \in R, s \in S, R = S = N$ , exists, the
- 12 optimal solution of a quadratic program:  $\min_{\mathbf{y}} \{ \sum_{a} y_a^2 : \sum_{rs} \sum_{k} f_k^{rs} \delta_{a,k}^{rs} + y_a = \hat{v}_a, \forall a, f_k^{rs} \ge 0 \}$
- 13  $0, \forall k, r, s, y_a \ge 0$  is  $y_a^* = 0, \forall a$ , where  $y_a$  is a slack variable for link a. The validity of this
- 14 least-squares method for checking the feasibility of linear systems can referenced in Carey and
- 15 Revelli (42). Thus, the existence of feasible solutions to P1 is guaranteed.  $\blacksquare$
- 16 Note that, however, if the observed flow rates in the subnetwork are not UE (due to measurement
- 17 errors or other factors), the subnetwork trip matrix estimated from this disequilibrium flow
- 18 pattern will not result in the same flow pattern emerging from UE traffic assignment. The larger
- 19 the measurement errors are, the greater the deviation between the observed and produced traffic
- 20 flow patterns is.
- 21 In cases where traffic flow values on some links are missing, the model still produces a trip
- 22 matrix, except that those O-D flows using a path that fully consists of segments with missing
- 23 flow values will be underspecified. This is because path flows fully traversing segments with
- 24 missing data are unconstrained.
- 25 The optimality conditions of this subnetwork trip matrix estimation problem with an "ideal"
- 26 input data set can be analyzed by using the Lagrangian of the model formulation, incorporating
- 27 the link flow conservation constraint:

$$L(\mathbf{f}, \boldsymbol{\lambda}) = \sum_{rs} (x_{rs} \ln x_{rs} + x_{rs}) + \sum_{a} \lambda_a \left( \hat{v}_a - \sum_{rs} \sum_{k} f_k^{rs} \delta_{a,k}^{rs} \right)$$
(2)

- 28 where  $\lambda_a$  is the Lagrangian multiplier on link *a*'s flow-conservation constraint. Since the first-
- 29 order condition of the Lagrangian with respect to path flow rate  $f_k^{rs}$  is:

$$\frac{\partial L(\mathbf{f}, \boldsymbol{\lambda})}{\partial f_k^{rs}} = \ln x_{rs} - \sum_a \lambda_a \delta_{a,k}^{rs}$$
(3)

1 the optimality conditions of the problem,  $\partial L(\mathbf{f}, \boldsymbol{\lambda}) / \partial f_k^{rs} \ge 0$  and  $f_k^{rs} \partial L(\mathbf{f}, \boldsymbol{\lambda}) / \partial f_k^{rs} = 0$ , can be

2 written as:

$$f_k^{rs} = 0 \Rightarrow \ln x_{rs} \ge \sum_a \lambda_a \delta_{a,k}^{rs}$$
(4.1)

$$\ln x_{rs} = \sum_{a} \lambda_a \delta_{a,k}^{rs} \Rightarrow f_k^{rs} \ge 0 \tag{4.2}$$

3 Note that  $-\ln x_{rs}$  denotes the minimum path "entropy impedance" among all paths connecting O-D pair (*r*, *s*). One can also define  $-\lambda_a$  as the entropy impedance of link a = (i, j) and define 4  $-\sum_{a} \lambda_a \delta_{a,k}^{rs}$  as the entropy impedance of path k between O-D pair (r, s), which is the sum of the 5 entropy impedances of all the links along this path. It becomes readily apparent that  $-\lambda_a =$ 6  $-\ln x_{ii}$ , where link a = (i, j), if  $x_{ii} > 0$ . Note that  $x_{ii}$  is the trip rate between O-D pair (i, j), 7 8 the head and tail nodes of link a, which should not be confused with the link flow rate of link a, 9  $v_a$ . Given these definitions, the optimality conditions of the defined ME problem can be stated 10 as follows.

Property 3. In an ME O-D flow pattern, all used paths (i.e., paths with a positive flow rate) have their path entropy impedance equal to the minimum entropy impedance, and all unused paths (i.e., paths with zero flow) are associated with a path entropy impedance greater than or equal to the minimum impedance value. ■

- 15 This property describes the conditions of the path flow distribution in terms of entropy
- 16 impedance under the estimated ME O-D flows. Such an ME path flow pattern generally differs
- 17 from a UE path flow pattern derived in terms of travel cost, even if their corresponding link flow
- 18 patterns and O-D flow patterns are identical. More generally speaking, the path flow space
- 19 constrained by the ME O-D flow pattern (of the trip matrix problem) differs from the path flow
- 20 space constrained by the UE link flow pattern (of the traffic assignment problem). After all, the
- 21 trip matrix problem and the traffic assignment problem follow different optimality principles,
- 22 which result in different optimality conditions for path flows.
- 23 The solution uniqueness of the problem in terms of O-D flows is apparent thanks to the fact that
- 24 the objective function is strictly convex (i.e., its Hessian matrix is positive definite) and the
- constraints (1.3)-(1.5) forms a convex feasible region. However, in general this ME problem
- 26 does not have a unique path flow solution.

We use a toy network shown in Figure 1 to examine the optimal conditions of the ME problem
 (P1).

Given five potential O-D pairs, (1, 2), (1, 3), (1, 4), (2, 3) and (4, 3), this ME problem is written as follows:

$$\min \quad \sum_{rs} (x_{rs} \ln x_{rs} - x_{rs})$$

5 where  $x_{rs} = x_{12}, x_{13}, x_{14}, x_{23}$  and  $x_{43}$ ,

subject to 
$$f_{1-2} + f_{1-2-3} = 2$$
  
 $f_{2-3} + f_{1-2-3} = 2$   
 $f_{1-3} = 3$   
 $f_{1-4} + f_{1-4-3} = 1$   
 $f_{4-3} + f_{1-4-3} = 1$   
 $f_{1-2}, f_{1-3}, f_{1-4}, f_{1-2-3}, f_{1-4-3}, f_{2-3}, f_{4-3} \ge 0$ 

6 where the O-D flow variables can be decomposed into path flow variables,

$$x_{12} = f_{1-2}$$

$$x_{23} = f_{2-3}$$

$$x_{13} = f_{1-3} + f_{1-2-3}$$

$$x_{14} = f_{1-4}$$

$$x_{43} = f_{4-3}$$

- 7 This numerical problem can be solved analytically as follows: Given  $x_{12} = x_{23}$ ,  $x_{14} = x_{43}$  and
- 8  $x_{12} + x_{13} + x_{14} = 6$ , one can reduce the objective function to  $2(x_{12} \ln x_{12} x_{12}) +$
- 9  $2(x_{14} \ln x_{14} x_{14}) + (6 x_{12} x_{14}) \ln(6 x_{12} x_{14}) (6 x_{12} x_{14})$ . This single-
- 10 objective minimization problem can be readily solved by checking its partial gradient subject to
- 11  $0 \le x_{12} \le 2$  and  $0 \le x_{14} \le 1$ , which results in  $x_{12}^* = 1.791$  and  $x_{14}^* = 1$ . Moreover,  $x_{23}^* = 1.791$
- 12 1.791,  $x_{43}^* = 1$  and  $x_{13}^* = 3.209$  as well.

- 1 If one examines, for example, O-D pair (1, 3), the minimum entropy impedance of this O-D pair
- 2 is  $-\ln x_{13}^* = -1.166$ . There are three paths between O-D pair (1, 3): 1-3, 1-2-3 and 1-4-3. The
- 3 entropy impedance of path 1-3 is just the entropy impedance of link 1-3, which is obviously
- 4 equal to the minimum entropy impedance. The entropy impedance of path 1-2-3 is the sum of
- 5 the impedance values of links 1-2 and 2-3,  $-\ln x_{12}^* \ln x_{23}^* = -1.166$ , which is equal to the
- 6 minimum entropy impedance. However, the entropy impedance of path 1-4-3 is the sum of
- 7 those of links 1-4 and 4-3,  $-\ln x_{14}^* \ln x_{43}^* = 0$ , which is greater than -1.166. This result
- 8 means that between O-D pair (1, 3) there exist positive path flows on paths 1-3 and 1-2-3 while
- 9 no flow on path 1-4-3. In fact, the path flow pattern for O-D pair (1, 3) is  $f_{1-3}^* = 3$ ,  $f_{1-2-3}^* = 3$

10 0.209 and 
$$f_{1-4-3}^* = 0$$

## 11 SOLUTION ALGORITHM

- 12 The Frank-Wolfe algorithm (43) can be adapted for solving the ME problem (P1) defined in this
- 13 text. The modified algorithmic steps for the ME problem are depicted as follows.
- 14 *Step 0* (Initialization): Find an initial feasible O-D trip matrix. One possible initial trip matrix
- 15 can be obtained by setting  $x_{rs} = \hat{v}_a$ , if nodes *r* and *s* are the head and tail nodes of some link *a*,
- 16 i.e., a = (r, s), and  $x_{rs} = 0$ , for all other O-D pairs.
- 17 Step 1 (Direction finding): Find an auxiliary trip matrix  $y_{rs}$ ,  $\forall r \in R$ ,  $s \in S$ , by solving the
- 18 following linearized problem (P2):

$$\min \quad \sum_{rs} y_{rs} \ln x_{rs}^n \tag{5.5}$$

subject to 
$$\sum_{rs} \sum_{k} f_{k}^{rs} \delta_{a,k}^{rs} = \hat{v}_{a}$$
  $\forall a \in A$  (5.6)

$$f_k^{rs} \ge 0 \qquad \qquad \forall k \in K_{rs}, r \in R, s \in S$$
(5.7)

19 where trip rate  $y_{rs}$  is defined as

$$y_{rs} = \sum_{k} f_{k}^{rs} \qquad \forall k \in K_{rs}$$
(5.8)

20 *Step 2* (Line search): Find an optimal  $\alpha$  value for  $0 \le \alpha \le 1$  by solving the following line search 21 problem:

$$\min \sum_{rs} [x_{rs}^n + \alpha(y_{rs} - x_{rs}^n)] \ln[x_{rs}^n + \alpha(y_{rs} - x_{rs}^n)] - [x_{rs}^n + \alpha(y_{rs} - x_{rs}^n)]$$
(6.1)

subject to 
$$0 \le \alpha \le 1$$
 (6.2)

- 1 Step 3 (Solution update): Set  $x_{rs}^{n+1} = x_{rs}^n + \alpha(y_{rs} x_{rs}^n)$ .
- 2 Step 4 (Convergence test): If a convergence criterion is met (for example,  $\sum_{rs} \frac{|x_{rs}^{n+1} x_{rs}^{n}|}{x_{rs}^{n+1}} < \varepsilon$ ),
- 3 stop; otherwise, go to step 1.
- 4 It should be noted that the computational bottleneck of the Frank-Wolfe algorithm in solving the
- 5 ME problem is the linearized ME subproblem formed in step 1. The standard linear
- 6 programming (LP) solution method the simplex method may not be directly applied to this
- 7 linear problem, because an explicit statement and processing of such an LP problem requires
- 8 enumeration of all possible path flows between each O-D pair, which is computationally
- 9 prohibitive for problems of realistic network size. For this reason, an efficient approach that
- 10 avoids path enumeration is required; otherwise, the application of the Frank-Wolfe algorithm for
- 11 the ME problem may be limited to subnetworks of small size only.
- 12 To relax the computational difficulty, this work resorts to the column generation approach,
- 13 which generates path flows only as and when needed within the solution framework of the
- 14 revised simplex method (see, e.g., 44 and 45). Given that the linearized problem is in the form
- of path flows, we label the path set of the network as  $P = \bigcup_{r \in R, s \in S} K_{rs}$ . Since the optimal
- 16 solution of this linearized problem is a basic feasible solution, it is readily known that there are at
- 17 most |A| paths with positive flow rate in the optimal solution.
- 18 For convenience, one can first rewrite the linearized ME problem (P2) into the following path-
- 19 based matrix form:

min 
$$\mathbf{c}^T \cdot \mathbf{f}$$
 (7.1)

where **c** is the negative of the path entropy impedance vector,  $\mathbf{c} = [c_{rs}^n]_{|P|\times 1} = [\ln x_{rs}^n]_{|P|\times 1}$ , and **f** is the path flow vector,  $\mathbf{f} = [f_k^{rs}]_{|P|\times 1}$ ,

subject to 
$$\Delta \cdot \mathbf{f} = \hat{\mathbf{v}}$$
 (7.2)

- $\mathbf{f} \ge \mathbf{0} \tag{7.3}$
- where  $\Delta$  is the link-path incidence matrix,  $\Delta = \left[\delta_{a,k}^{rs}\right]_{|A|\times|P|}$ , and  $\hat{\mathbf{v}}$  is the estimated link flow vector,  $\hat{\mathbf{v}} = [\hat{v}_a]_{|A|\times 1}$ .

Suppose that we are at some iteration of the simplex procedure, where the current basic feasible 1 2 solution contains |A| basic paths of positive flow. The sets of basic paths and nonbasic paths are labeled  $P_B$  and  $P_{\bar{B}}$ , respectively. Suppose that the corresponding basis matrix and cost vector are 3 **B** and  $\mathbf{c}_{\mathbf{B}}$ , where  $\mathbf{B} = \left[\delta_{a,k}^{rs}\right]_{|A|\times|A|}$  and  $\mathbf{c}_{B} = \left[\ln x_{rs}^{n}\right]_{|A|\times 1}$ . Given the simplex multiplier vector 4  $\mathbf{w} = \mathbf{c}_B \mathbf{B}^{-1}$ , one knows that the reduced cost for a nonbasic path flow variable  $f_k^{rs}$  is  $c_k^{rs}$  – 5  $z_k^{rs} = \ln x_{rs}^n - \mathbf{c}_B \mathbf{B}^{-1} \Delta_k^{rs}$ , where  $\Delta_k^{rs}$  is the corresponding column of  $\Delta$  to the nonbasic path k. It 6 is readily known that if all reduced costs  $c_k^{rs} - z_k^{rs} \ge 0$ ,  $\forall k \in P_{\overline{B}}$ , the current basic feasible 7 8 solution is optimal; otherwise, one may increase the path flow rate of a nonbasic path with 9  $c_k^{rs} - z_k^{rs} < 0, k \in P_{\bar{B}}$  from 0 to some positive level so that the objective function value is 10 decreased while the problem feasibility is maintained. In the latter case, a nonbasic path with the 11 lowest reduced cost value may be chosen for this purpose, according to Dantzig's rule. Without 12 enumerating all the nonbasic paths in the set  $P_{\bar{B}}$ , Dantzig's rule can be implemented by solving the following minimization problem: 13

$$\min_{k\in P}\{c_k^{rs} - z_k^{rs}\}\tag{8.1}$$

14 which can be further decomposed into a set of minimization problems by O-D pairs:

$$\min_{r \in R, s \in S} \left\{ \cdots, \min_{k \in K_{rs}} \{ c_k^{rs} - z_k^{rs} \}, \cdots \right\}$$
(8.2)

15 Note that the minimization problem for each O-D pair r-s is essentially a shortest path problem

16 (P4), as follows, given that  $c_k^{rs} = \ln x_{rs}^n$  is fixed for all paths between O-D pair *r*-s:

$$\min \quad -z_k^{rs} = -\mathbf{c}_B \mathbf{B}^{-1} \Delta_k^{rs} \tag{9.1}$$

subject to 
$$k \in K_{rs}$$
 (9.2)

where  $\Delta_k^{rs}$  is the link-path incidence vector of path *k* between O-D pair *r*-*s*, which exists in  $\Delta$  as a column. It is obvious that for this shortest path problem, the negative of the simplex multiplier vector  $-\mathbf{w} = -\mathbf{c}_B \mathbf{B}^{-1}$  specifies the link costs over the network. It should be noted that an arbitrary element in  $\mathbf{w}$  (or  $-\mathbf{w}$ ) (i.e., the cost of an arbitrary link) may be positive or negative, so a shortest path algorithm that prevents negative cost loops is needed.

- 22 After executing the shortest path search for each O-D pair, one can then obtain the entering path
- flow variable (to the basis matrix) with the lowest  $c_k^{rs} z_k^{rs}$  value over all O-D pairs, which
- 24 generates a new column for the basis matrix,  $\Delta_l^{od}$ . The remaining algorithmic issue is to
- 25 determine the value of the entering path flow variable and accordingly identify a leaving path
- flow variable (from the basis matrix). Suppose that the entering path is l between O-D pair o-d

- 1 and its flow rate and the link-path incidence vector are  $f_l^{od}$  and  $\Delta_l^{od}$ , respectively. Then the
- 2 leaving path flow variable is the one that maximizes the  $f_l^{od}$  value while maintaining the
- problem feasibility (i.e., all the basic feasible path flow variables must be greater than or equal to0):

$$\max\{f_l^{od}: \mathbf{f}_B = \mathbf{B}^{-1}\hat{\mathbf{v}} - (\mathbf{B}^{-1}\Delta_l^{od})f_l^{od} \ge \mathbf{0}\}$$
(10)

- 5 where  $\mathbf{f}_B$  is the vector of path flow variables corresponding to the current basis matrix and  $\hat{\mathbf{v}}$  is
- 6 the link flow vector. Since  $\mathbf{B} \ge \mathbf{0}$  (where each element  $\delta_{a,k}^{rs}$  in **B** is equal to 1 or 0), the

7 inequality in (10) is reduced to  $\mathbf{v} - \Delta_l^{od} f_l^{od} \ge \mathbf{0}$ , which in turn results in:

$$\left(f_l^{od}\right)_{\max} = \min\left\{\hat{v}_a / \delta_{a,l}^{od} : \delta_{a,l}^{od} = 1, \forall a\right\}$$
(11)

- 8 This result implies that  $(f_l^{od})_{max}$  should be set to equal the minimum link flow along path *l*.
- 9 Accordingly, the path flow variables in the current basis matrix should be updated by  $\mathbf{f}_B =$

10  $\mathbf{B}^{-1}\mathbf{v} - (\mathbf{B}^{-1}\Delta_l^{od})(f_l^{od})_{\max}$ , in which the path flow variable whose value is decreased to 0 is the 11 leaving variable.

12 The algorithmic steps of the column generation approach described above can be summarized as

13 follows, which synthetically serve as step 1 of the Frank-Wolfe solution framework:

- 14 *Step 1.1* (Initialization): Find an initial, feasible O-D trip matrix for the linearized problem.
- 15 Such an initial trip matrix can be obtained by setting  $f_k^{rs} = \hat{v}_a$  for such a path k between such an
- 16 O-D pair *r*-*s* that nodes *r* and *s* are the head and tail nodes of some link a (i.e., a = (r, s)) and
- 17 path k contains link a only (i.e.,  $\delta_{a,k}^{rs} = 1$ ) and  $\delta_{b,k}^{rs} = 0$ ,  $\forall b \neq a$ , and by setting  $f_l^{rs} = 0$ ,
- 18  $\forall l \neq k$  between O-D pair *r*-*s*. The values of all other path flow variables are set to be 0.
- 19 Step 1.2 (Entering path choosing): Solve a shortest path problem defined in (9) for each O-D pair
- and identify entering path flow variable  $f_k^{rs}$  with the minimum  $c_k^{rs} z_k^{rs}$  value over all O-D
- 21 pairs. If the minimum  $c_k^{rs} z_k^{rs}$  value is greater than or equal to 0, the current basic feasible
- solution is optimal; otherwise, go to step 1.3.

Step 1.3 (Leaving path choosing): Compute the value of the entering path flow variable by  $\begin{pmatrix} f_l^{od} \end{pmatrix}_{max} = \min\{v_a/\delta_{a,l}^{od} : \delta_{a,l}^{od} = 1\}$  and identify the leaving path flow variable whose value is decreased to 0.

- 26 Step 1.4 (Basis matrix updating): Update the basic feasible path flow variables by  $\mathbf{f}_B = \mathbf{B}^{-1}\mathbf{v} \mathbf{v}$
- 27  $(\mathbf{B}^{-1}\Delta_l^{od})f_l^{od}$  and update the basis matrix by inserting the entering path's link-path incidence
- 28 vector and removing the leaving path's link-path incidence vector.

# 1 NUMERICAL EVALUATION

- 2 In this section, the solution method's performance is evaluated using a numerical example (the
- 3 Sioux Falls network). The full network has 24 nodes and 76 links, while the subnetwork
- 4 includes 12 nodes and 34 links (see Figure 2). The subnetwork approximately covers the
- 5 downtown area of the City of Sioux Falls.
- 6 UE traffic assignment over the full network was conducted to estimate a link flow pattern
- 7 (Figure 2), which was then used as input data set for the subnetwork trip matrix estimation model.
- 8 The Frank-Wolfe algorithm with column generation was then applied to generate an EM trip
- 9 matrix with 121 O-D pairs for the subnetwork. The estimation's accuracy was then indirectly
- 10 assessed by applying the estimated subnetwork trip matrix to generate a traffic flow pattern and
- 11 comparing it to that generated by the full-network traffic assignment.
- 12 For evaluation purposes, a list of synthetic network upgrade scenarios was developed, including
- 13 both capacity expansion and link addition cases, as shown in Table 1. The flow pattern
- 14 comparison results for these upgrade scenarios are plotted in Figure 3. Two performance
- 15 measures are used here, to indicate the difference between the full-network and subnetwork flow
- 16 patterns: *R*-squared value  $(R^2)$  from linear regression (of full-network flows following network
- 17 change on subnet estimates) and root mean square error (RMSE). Among these various
- 18 scenarios,  $R^2$  values range from 0.963 to 0.993, indicating a very close match between the full-
- 19 network and subnetwork link flow patterns. Similarly, the RMSE values always like below 10%,
- 20 across all scenarios, implying high accuracy in subnetwork assignment results. These results
- 21 allow us to conclude that such a subnetwork model serves as a good approximation to its
- 22 corresponding full-network model for sketch planning purposes.
- 23 It should be noted that the numerical experiment involves rather significant network upgrades,
- 24 effectively representing what is likely to serve as "worst-case" situations, in terms of model
- 25 performance. In networks of larger or more realistic size, or where upgrades represent less of
- change, one can expect that flow estimates will lie even closer to their full-network counterparts,
- 27 on average, since the impacts of network upgrades will diminish in relation to the larger,
- 28 relatively stable, network topology.

# 29 MODELING EXTENSIONS

- 30 There are important modeling possibilities that relax the two demand generation assumptions
- 31 embedded in the proposed ME model. These are restriction-free demand generation and the
- 32 invariant-demand trip matrix.
- 33 Recall that the first assumption allows any link flow errors or imbalances and inconsistencies to
- 34 be absorbed by relevant O-D pairs without affecting the problem's solution feasibility and
- 35 estimation efficiency. However, in a realistic network, some "intermediate" nodes cannot be

- 1 either an origin or destination node (e.g., the point of an off-ramp from a freeway link). If one
- 2 adds this restriction to the model, it may result in intermediate nodes where in-flow total does not
- 3 match out-flow, thus not satisfying the flow conservation principle. One can use *I* to denote the
- 4 set of such intermediate nodes, where  $I \subset N$ ,  $I \cap R = \emptyset$  and  $I \cap S = \emptyset$ . The following,
- 5 enhanced subnetwork trip matrix model (P3) can accommodate this data inconsistency issue
- 6 while guaranteeing solution feasibility:

min 
$$\sum_{rs} (x_{rs} \ln x_{rs} - x_{rs}) + w \sum_{a} ((y_a^+)^2 + (y_a^-)^2)$$
 (12.1)

subject to 
$$\sum_{rs} \sum_{k} f_k^{rs} \delta_{a,k}^{rs} + y_a^+ - y_a^- = \hat{v}_a \quad \forall a \in A$$
(12.2)

$$f_k^{rs} \ge 0 \qquad \qquad \forall k \in K_{rs}, r \in R, s \in S \tag{12.3}$$

$$y_a^+, y_a^- \ge 0 \qquad \qquad \forall a \in A \tag{12.4}$$

7 where  $x_{rs}$  is defined as

$$x_{rs} = \sum_{k} f_{k}^{rs} \qquad \forall r \in R, s \in S$$
(12.5)

$$\sum_{s} x_{rs} = 0 \qquad \qquad \forall r \in I \tag{12.6}$$

$$\sum_{r} x_{rs} = 0 \qquad \qquad \forall s \in I \tag{12.7}$$

8 In this enhanced model, the added non-negative artificial variables  $y_a^+$  and  $y_a^-$  represent on link *a* 

9 the difference between link a's input flows and its estimated link flow, consistent with the

10 estimated trip matrix. The error-minimizing term added into the weighted objective function,

11  $\sum_{a}((y_a^+)^2 + (y_a^-)^2)$ , seeks to steer the estimated link flow pattern as close as possible to the

12 given link flow pattern, in the form of least squares. Here, w is a weighting coefficient that

13 indicates the relative preference for or strength of the error-minimizing term to the entropy-

14 maximizing term.

- 15 Relaxation of the second assumption (that trip tables are fixed) adds an extra modeling
- 16 dimension—trip generation—into the subnetwork trip matrix estimation problem, which favors a
- 17 more general demand modeling condition. Without loss of generality, one can categorize
- 18 subnetwork trips into four groups, in terms of their departure and arrival locations: 1) internal-

- 1 internal flows; 2) internal-external flows; 3) external-internal flows; and 4) external-internal
- 2 flows. Assuming that the O-D trip matrix in the full network is known and fixed, we know that
- 3 the internal-internal O-D flow rates are also known and the trip production rates of all internal-
- 4 external O-D pairs and the trip attraction rates of all external-internal pairs are known. The
- 5 remaining tasks are how to distribute the internal-external O-D flows to their origins, distribute
- 6 the external-internal O-D flows to their destinations, and distribute the external-external between
- 7 their candidate origins and destinations, where the origins of external-internal O-D flows, the
- 8 destinations of internal-external O-D flows and the origins and destinations of external-external
- 9 O-D flows are the trip entry and egress points to the subnetwork.
- 10 In view of such an O-D flow structure embedded within a subnetwork, we propose a combined
- 11 trip distribution and traffic assignment model, of which the trip distribution is still based on the
- 12 ME theory and the traffic assignment follows the UE principle. Given the input data sets (i.e.,
- 13 internal-internal O-D flow rate  $\hat{x}_{rs}^{(i-i)}, \forall r \in R_i, s \in S_i$ , internal-external production rate  $\hat{o}_r^{(i-e)}$ ,
- 14  $\forall r \in R_i$ , external-internal attraction rate  $\hat{d}_s^{(e-i)}$ ,  $\forall s \in S_i$ , and maximum external-external O-D
- 15 flow rate  $\hat{q}_{rs}^{(e-e)}$ ,  $\forall r \in R_e$ ,  $s \in S_e$ , where  $R_i$  and  $S_i$  are the internal origin and destination node
- 16 sets, and  $R_e$  and  $S_e$  are the external origin and destination node sets, respectively), the combined
- 17 model (P4) is given as follows:

$$\min \sum_{rs} x_{rs}^{(i-e)} \ln x_{rs}^{(i-e)} + \sum_{rs} x_{rs}^{(e-i)} \ln x_{rs}^{(e-i)} + \sum_{rs} \left( x_{rs}^{(e-e)} \ln x_{rs}^{(e-e)} + x_{rs}^{\prime(e-e)} \ln x_{rs}^{\prime(e-e)} \right) + \sum_{rs} \left( x_{rs}^{(e-e)} \ln x_{rs}^{(e-e)} + x_{rs}^{\prime(e-e)} \ln x_{rs}^{\prime(e-e)} \right) + w_{1} \sum_{a} \int_{0}^{v_{a}} t_{a}(\omega) d\omega + w_{2} \sum_{rs} \int_{0}^{x_{rs}^{\prime(e-e)}} u_{rs}^{\prime}(\omega) d\omega$$
(13.1)

subject to

$$\sum_{k} f_{k}^{rs(i-i)} = \hat{x}_{rs}^{(i-i)} \qquad \forall r \in R_{i}, s \in S_{i}$$
(13.2)

$$\sum_{s} \sum_{k} f_{k}^{rs(i-e)} = \hat{o}_{r}^{(i-e)} \qquad \forall r \in R_{i}$$
(13.3)

$$\sum_{r} \sum_{k} f_{k}^{rs(e-i)} = \hat{d}_{s}^{(e-i)} \qquad \forall s \in S_{i}$$

$$(13.4)$$

$$\sum_{k} f_{k}^{rs(e-e)} + x'_{rs}^{(e-e)} = \hat{q}_{rs}^{(e-e)} \quad \forall r \in R_{e}, s \in S_{e}$$
(13.5)

$$f_k^{rs(i-i)}, f_k^{rs(i-e)}, f_k^{rs(e-i)}, f_k^{rs(e-e)}, {x'}_{rs}^{(e-e)} \ge 0$$
 (13.6)

1 where O-D flow rates  $x_{rs}^{(i-e)}$ ,  $x_{rs}^{(e-i)}$ ,  $x_{rs}^{(e-e)}$  and  $x'_{rs}^{(e-e)}$ , and link flow rate  $v_a$  are defined as,

$$\chi_{rs}^{(i-e)} = \sum_{k} f_k^{rs(i-e)} \qquad \forall r \in R_i, s \in S_e$$
(13.7)

$$x_{rs}^{(e-i)} = \sum_{k} f_k^{rs(e-i)} \qquad \forall r \in R_e, s \in S_i$$
(13.8)

$$x_{rs}^{(e-e)} = \sum_{k} f_{k}^{rs(e-e)} \qquad \forall r \in R_{e}, s \in S_{e}$$
(13.9)

$$x'_{rs}^{(e-e)} = d'_{rs}^{(e-e)}(u'_{rs}) \qquad \forall r \in R_e, s \in S_e$$
(13.10)

$$\nu_{a} = \sum_{rs} \sum_{k} f_{k}^{rs(i-i)} + \sum_{rs} \sum_{k} f_{k}^{rs(i-e)} + \sum_{rs} \sum_{k} f_{k}^{rs(e-i)} + \sum_{rs} \sum_{k} f_{k}^{rs(e-e)}$$
$$\forall a \in A$$
(13.11)

Note that  $f_k^{rs(i-i)}$ ,  $f_k^{rs(i-e)}$ ,  $f_k^{rs(e-i)}$ ,  $f_k^{rs(e-e)}$ , and  $x'_{rs}^{(e-e)}$  are decision variables of the model, among which  $x'_{rs}^{(e-e)}$  represents the amount of external-external flows that choose not going through the subnetwork. Moreover, it is assumed that link cost  $t_a$  is a convex, increasing function of link flow rate  $x_a$ , and synthetic external-external O-D cost  $u'_{rs}$  is also a convex, increasing function of the relevant congestion level outside the subnetwork affecting the route choice of potential travelers choosing a path between nodes r and s.

- 8 The validity of these two models can be readily proven by applying standard convex analysis
- 9 techniques. Due to space limitations, detailed analyses are omitted here. However, it is worth
- 10 mentioning here that the increasing complexity of the model's structure can still be
- 11 accommodated by existing solution methods: the enhanced trip matrix estimation problem (P3)
- 12 can be solved by a similar procedure to the linearization algorithm (43) presented in this text,
- 13 while the elastic-demand trip matrix estimation problem (P4) can be solved by the partial
- 14 linearization algorithm (46).

#### 15 CONCLUSIONS AND FURTHER WORK

- 16 In the domain of sketch planning, a network abstraction (or subtraction) process should satisfy
- 17 two criteria: 1) the simplified network should be small enough (in terms of the network size) so
- 18 that it can be managed and processed efficiently; 2) the simplified network should preserve
- 19 important network characteristics and behaviors so that the impacts of any network change can

1 be properly reflected. Here, the focus is on developing a subnetwork trip matrix that provides

18

- 2 link flows consistent with flow observations (from field surveys) or flow estimates (generated by
- 3 a full-network model).
- 4 Here, an ME model was suggested for subnetwork trip matrix estimation and a solution method
- 5 based on the Frank-Wolfe algorithm was devised. The adapted Frank-Wolfe algorithm requires
- 6 efficient solution of a linearized ME problem in each of its iterations. We proposed a column
- 7 generation approach that relaxes the minimum reduced cost search during the course of solving
- 8 the linearized problem to a set of shortest path problems, thus avoiding a computationally
- 9 prohibitive path enumeration process. The modeling philosophy and solution performance are
- 10 illustrated via a numerical example, under multiple network modification scenarios, the results of
- 11 which support the validity and accuracy of our subnetwork modeling methodology for sketch
- 12 planning.
- 13 The basic model and enhancements discussed here are likely to prove useful to much larger scale
- 14 tests, offering an opportunity for thoughtful, real-time network evaluations. Such tools should
- 15 prove helpful not only for quickly evaluating a variety of network improvement projects, but also
- 16 work zone constraints, operations policies, evacuation procedures, and other instances of
- 17 network changes, potentially in a real-time setting.

# 18 ACKNOWLEDGEMENTS

- 19 The authors are grateful for funding support from the Texas Department of Transportation, under
- 20 Research Project No. 0-6235 (titled "Sketch Planning Techniques to Assess Regional Air Quality
- 21 Impacts of Congestion Mitigation Strategies"). They also appreciate the use of Professor Hillel
- 22 Bar-Gera's origin-based computer code for all traffic assignment results in the paper.
- 23
- 24

25

26

27

28

29

30

31

# 1 **REFERENCES**

- 2 [1] Chan, Y. A Method to Simplify Network Representation in Transportation Planning.
- 3 *Transportation Research*, Vol. 10, No. 3, 1976, pp. 179-191.
- 4 [2] Chan, Y., T.S. Shen, and N.M. Mahaba. Transportation Network Design Problem:
- 5 Application of a Hierarchical Search Algorithm. In Transportation Research Record: Journal of
- 6 Transportation Research Board, No. 1251, 1989, pp. 24-34.
- 7 [3] Eash, R.W., K.S. Chon, Y.J. Lee, and D.E. Boyce. Equilibrium Traffic Assignment on an
- Aggregated Highway Network for Sketch Planning. In *Transportation Research Record: Journal of Transportation Research Board*, No. 944, 1983, pp. 30-37.
- 10 [4] Kaplan, M.P., Y.J. Gur, and A.D. Vyas. Sketch Planning Model for Urban Transportation
- Policy Analysis. In *Transportation Research Record: Journal of Transportation Research Board*,
  No. 952, 1984, pp. 32-39.
- 13 [5] Haghani, A.E., and M.S. Daskin. Network Design Application of an Exaction Algorithm for
- 14 Network Aggregation. In Transportation Research Record: Journal of Transportation Research
- 15 Board, No. 944, 1984, pp. 37-46.
- 16 [6] Haghani, A.E., and M.S. Daskin. Aggregation Effects on the Network Design Problem.
- 17 Journal of Advanced Transportation, Vol. 20, No. 3, 1986, pp. 239-258.
- 18 [7] Taylor, M.A.P., W. Young, and P.W. Newton. PC-Based Sketch Planning Methods for
- 19 Transport and Urban Applications. *Transportation*, Vol. 14, No. 4, 1988, pp. 361-375.
- 20 [8] Rogus, M.J. Building Sketch Networks: The Development of Sketch Zones Boundaries and
- 21 Aggregation Process of Detailed Highway Networks. Working Paper No. 96-11, Chicago Area
- 22 Transportation Study, Chicago, IL, 1996.
- 23 [9] Dowling, R.G., and A.D. May. Comparison of Small-Area O-D Estimation Techniques. In
- 24 Transportation Research Record: Journal of Transportation Research Board, No. 1045, 1985,
- 25 pp. 9-15.
- 26 [10] Zhou, X., S. Erdogan, and H.S. Mahmassani. Dynamic Origin-Destination Trip Demand
- 27 Estimation for Subarea Analysis. In Transportation Research Record: Journal of Transportation
- 28 Research Board, No. 1964, 2006, pp. 176-184.
- 29 [11] Hearn, D.W. Practical and Theoretical Aspects of Aggregation Problems in Transportation
- 30 Planning Methods. *Transportation Planning Models*, M. Florian, Eds., North-Holland,
- Amsterdam, The Netherlands, 1984, pp. 257-287.

- 1 [12] Wilson, A.G. *Entropy in Urban and Regional Modeling*. Pion, London, England, 1970.
- 2 [13] Oppenheim, N. Urban Travel Demand Modeling: From Individual Choices to General
- 3 Equilibrium. Wiley, New York, NY, 1995.
- 4 [14] Rossi, T.F., S. McNeil, and C. Hendrickson. Entropy Model for Consistent Impact-Fee
- 5 Assessment. Journal of Urban Planning and Development, Vol. 115, No. 2, 1989, pp. 51-63.
- 6 [15] Bell, M.G.H., and Y. Iida. *Transportation Network Analysis*. Wiley, New York, NY, 1997.
- 7 [16] Janson, B.N. Most Likely Origin-Destination Link Uses from Equilibrium Assignment.
- 8 Transportation Research, Vol. 27B, No. 5, 1993, pp. 333-350.
- 9 [17] Larsson, T., J.T., Lundgren, C. Rydergren, and M. Patriksson. Most Likely Traffic
- 10 Equilibrium Route Flows Analysis and Computation. *Equilibrium Problems: Nonsmooth*
- 11 Optimization and Variational Inequality Models, F. Giannessi Eds., Springer, New York, NY,
- 12 2002, pp. 129-159.
- 13 [18] Bar-Gera, H. Primal Method for Determining the Most Likely Route Flows in Large Road
- 14 Networks. *Transportation Science*, Vol. 40, No. 3, 2006, pp. 269-286.
- 15 [19] Willumsen, L.G. Simplified Transport Models Based on Traffic Counts. *Transportation*,
- 16 Vol. 10, No. 3, 1981, pp. 257-278.
- 17 [20] Van Zuylen, H.J., and L.G. Willumsen. The Most Likely Trip Matrix Estimated from
- 18 Traffic Counts. *Transportation Research*, Vol. 14B, No. 3, 1980, pp. 281-293.
- 19 [21] Nguyen, S. Modèles de Distribution Spatial Tenant Compte des Itinéraries. Publication No.
- 20 225, Centre de Recherché sur les Transports, Univerité de Montréal, Montreal, Canada, 1981.
- [22] Fisk, C.S. On Combining Maximum Entropy Trip Matrix Estimation with User Optimal
   Assignment. *Transportation Research*, Vol. 22B, No. 1, 1988, pp. 69-79.
- 23 [23] Nguyen, S. Estimation an O-D Matrix from Network Data: A Network Equilibrium
- 24 Approach. Publication No. 60, Centre de Recherché sur les Transports, Université de Montréal,
- 25 Montreal, Canada, 1977.
- [24] Nguyen, S. Estimating Origin-Destination Matrices from Observed Flows. *Transportation Planning Models*, F. Florian Eds., Elsevier, Amsterdam, The Netherlands, 1984, pp. 363-380.
- [25] Turnquist, M.A., and Y. Gur. Estimation of Trip Tables from Observed Link Volumes. In
- 29 Transportation Research Record: Journal of Transportation Research Board, No. 730, 1979, pp.
- 30 1-6.

- 1 [26] LeBlanc, L.J., and K. Farhangian. Selection of a Trip Table Which Reproduces Observed
- 2 Link Flows. *Transportation Research*, Vol. 16B, No. 2, 1982, pp. 83-88.
- 3 [27] Yang, H., Y. Iida, and T. Sasaki. The Equilibrium-Based Origin-Destination Matrix
- 4 Estimation Problem. *Transportation Research*, Vol. 28B, No. 1, 1994, pp. 23-33.
- 5 [28] Maher, N.J. Inferences on Trip Matrices from Observations on Link Volumes: A Bayesian
- 6 Statistical Approach. *Transportation Research*, Vol. 17B, No. 6, 1983, pp. 435-447.
- 7 [29] Lo, H.P., N. Zhang, and W.H.K. Lam. Estimation of an Origin-Destination Matrix with
- 8 Random Link Choice Proportions: A Statistical Approach. *Transportation Research*, Vol. 30B,
- 9 No. 4, 1996, pp. 309-324.
- 10 [30] Cascetta, E. Estimation of Trip Matrices from Traffic Counts and Survey Data: A
- Generalized Least Square Estimator. *Transportation Research*, Vol. 18B, No. 4/5, 1984, pp. 289299.
- 13 [31] Hendrickson, C., and S. McNeil. Matrix Entry Estimation Errors. *Proceedings of the 9th*
- *International Symposium on Transportation and Traffic Theory*, Delft, The Netherlands, 1984,
   pp. 413-430.
- 16 [32] Bell, M.G.H. The Estimation of an Origin-Destination Matrix from Traffic Counts.
- 17 Transportation Science, Vol. 17, No. 1, 1991, pp. 198-217.
- 18 [33] Yang, H., T., Sasaki, Y. Iida, and Y. Asakura. Estimation of Origin-Destination Matrices
- 19 from Link Traffic Counts on Congested Networks. *Transportation Research*, Vol. 26B, No. 6,
- 20 1992, pp. 417-434.
- 21 [34] Bell, M.G.H. The Estimation of an Origin-Destination Matrix from Traffic Counts.
- 22 *Transportation Science*, Vol. 17, No. 2, 1983, pp. 198-217.
- 23 [35] Bell, M.G.H. Variances and Covariances for Origin-Destination Flows When Estimated by
- Log-Linear Models. *Transportation Research*, Vol. 19B, No. 6, 1985, pp. 497-507.
- 25 [36] Spiess, H. A Maximum Likelihood Model for Estimating Origin-Destination Matrices.
- 26 Transportation Research, Vol. 21B, No. 5, 1987, pp. 395-412.
- 27 [37] McNeil, S., and C. Hendrickson. A Regression Formulation of the Matrix Estimation
- 28 Problem. Transportation Science, Vol. 19, No. 3, 1985, pp. 278-292.
- 29 [38] Yang, H., Y. Iida, and T. Sasaki. An Analysis of the Reliability of an Origin-Destination
- 30 Trip Matrix Estimated from Traffic Counts. *Transportation Research*, Vol. 25B, No. 5, 1991, pp. 21 251 262
- 31 351-363.

- 1 [39] Sherali, H.D., R. Sivanandan, and A.G. Hobeika. A Linear Programming Approach for
- 2 Synthesizing Origin-Destination Trip Tables from Link Traffic Volumes. *Transportation*
- 3 *Research*, Vol. 28B, No. 3, 1994, pp. 213-233.
- 4 [40] Nie, Y., and D.H. Lee. Uncoupled Method for Equilibrium-Based Linear Path Flow
- 5 Estimator for Origin-Destination Trip Matrices. In *Transportation Research Record: Journal of*
- 6 Transportation Research Board, No. 1783, 2002, pp. 72-79.
- 7 [41] Gajewski, B.J., L.R., Rilett, M.P. Dixon, and C.H. Spiegelman. Robust Estimation of
- 8 Origin-Destination Matrices. *Journal of Transportation and Statistics*, Vol. 5, No. 2/3, 2002, pp.
  9 37-56.
- 10 [42] Carey, M., and R. Revelli. Constrained Estimation of Direct Demand Functions snd Trip
- 11 Matrices. Transportation Science, Vol. 20, No. 3, 1986, pp. 143-152.
- 12 [43] Frank, M., and P. Wolfe. An Algorithm for Quadratic Programming. *Naval Research*
- 13 Logistics Quarterly, Vol. 3, No. 1-2, 1956, pp. 95-110.
- [44] Dantzig, G.B. *Linear Programming and Extensions*. Princeton University Press, Princeton,
   NJ, 1963.
- 16 [45] Bazaraa, M.S., J.J. Jarvis, and H.D. Sherali. *Linear Programming and Network Flows*.
- 17 Wiley, New York, NY, 1990.
- 18 [46] Evans, S. Derivation and Analysis of Some Models for Combining Trip Distribution and
- 19 Assignment. Transportation Research, Vol. 9, No. 12, 1976, pp. 241-246.

| Scenario number | Network upgrading location, type and scale                      |
|-----------------|-----------------------------------------------------------------|
| 1               | Increasing capacity by 50 percent on road segments 4-11-14      |
| 2               | Increasing capacity by 50 percent on road segments 5-9-10-15    |
| 3               | Increasing capacity by 50 percent on road segments 6-8-16-17-19 |
| 4               | Increasing capacity by 100 percent on road segments 4-5-6       |
| 5               | Increasing capacity by 100 percent on road segments 11-10-16    |
| 6               | Increasing capacity by 100 percent on road segments 14-15-19    |
| 7               | Increasing capacity by 50 percent on road segments 10-17        |
| 8               | Adding two road segments 4-9 and 9-11                           |
| 9               | Adding a road segment 10-14                                     |

 TABLE 1
 List of Network Upgrading Scenarios



FIGURE 1 An Illustrative Example For The Maximum Entropy Problem



FIGURE 2 The Sioux Falls Network and Its Subnetwork Traffic Flow Pattern



FIGURE 3 Link Flow Rates Estimated Using Full-Network And Subnetwork Traffic Assignments