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ABSTRACT 

Land use patterns are key determinants of traffic conditions, as well as energy consumption and 

greenhouse gas emissions. This work describes the modeling of year-2030 land use patterns of 

the Austin, Texas region using UrbanSim, an open-source model for microscopic simulation of 

land development, location choices and land values, at fine spatial resolution (typically 150 m x 

150 m grid cells). An accompanying travel demand model was run every five years, resulting in 

accessibility indices for use in UrbanSim location choice models. A business-as-usual trend 

scenario was compared to urban growth boundary (UGB) and added transport-cost-sensitivity 

scenarios (TCS), expanded highway capacity scenario (EXPAN), and added state highway 130 

(SH 130) scenario in order the appreciate UrbanSim’s performance and the potential land use 

and travel impacts of such policies. As expected, several land use results (e.g., population 

densities), travel patterns and energy consumption results responded to scenario contexts. Local 

access variables (within 600-meter Euclidean distances) also enjoy significant relevance in this 

implementation of UrbanSim. 

While UrbanSim specification limitations are multiple and its data requirements are serious (and 
may be impossible for almost any planning agency to meet − even after substantial effort), the 

model does run reasonably fast and may make good sense over the longer term for  interested 
regions with sophisticated planning staff on board to pursue. Enhancements in the newer version 
of UrbanSim rendered the model to be more user-friendly.
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INTRODUCTION 
With an annualized population increase of 3.5% per year over the past 10 years, Austin is one of 
the fastest growing mid-size regions in the U.S. Such shifts, coupled with major transportation 
investments (including several new tolled highways and a commuter rail line) and variations in 
transport, land use, and energy policies significantly impact the region’s future land use patterns, 
traffic conditions, greenhouse gas emissions (GHG), housing affordability, environmental 
encroachment, and other key facets of community life.  Such changes are evident in most 
regions, as population pressures, rising incomes, and evolving markets necessitate change. This 
change regularly sparks strong interest in land use forecasting, in synch with travel demand 
modeling and transportation planning. 
 
The U.S. is the world’s leading producer of greenhouse gases (emitting over 6 billion metric tons 
of CO2-equivalents annually, and accounting for 22.2% of the world’s emissions) (EIA, 2007). 
Home energy use accounts for 21% of the nation’s GHG emissions, and transport accounts for 
32% (EIA, 2006). Building energy use altogether accounts for 47% of the nation’s GHG 
emissions (EIA 2007), but transport sector emissions are rising faster than the total (24% versus 
13%, between 1990 and 2003, according to Brown et al. [2005]).  While UrbanSim does not yet 
output estimates of all building sizes, the addition of modeling equations to anticipate square 
footage of various home types allows this work to anticipate energy demands as a function of 
both transport and buildings.  This study evaluated the ease of UrbanSim’s implementation in 
Austin, Texas and the model’s sensitivity to various transport and land use policy scenarios. 
 
URBANSIM OVERVIEW 
A variety of land use models (LUMs) now exist1. Most are mathematically and behaviorally 
based, while others are more normative in nature.  While most LUMs rely on aggregations of 
space and agents (such as traffic analysis zones [TAZs] and all low-income households) 
(Dowling et al. 2000), UrbanSim emphasizes relatively small grid cells (and, more recently, 
parcels) while tracking the cell locations of individual households and jobs.2 A 150 m x 150 m 
grid cell is 5.56 acres, while the average Austin TAZ is 1691 acres − or 300 times larger. Though 
various models ignore constraints on land use and built-space availability, UrbanSim emphasizes 
these key facets of urban form (Waddell et al. 2003).  
 
Of course, land use modeling is a complex endeavor, and the UrbanSim modeling system, like 
any abstraction of reality, exhibits many limitations.  For example, households and firms do not 
evolve, workers are not linked to job sites, jobs are not linked to firms, economic interactions are 
neglected, and job growth and economic conditions are exogenous. Moreover, the travel demand 
modeling process is external (with only a relatively weak link, through regional accessibility 

                                                      
1 Relatively common LUMs include Putman’s (1983, 2005) gravity-based ITLUP, Waddell’s (2003) UrbanSim, and 
models based on spatial input-output specifications, like de la Barra’s (1989, 1984) TRANUS, Hunt and Abraham’s 
PECAS (2003), Kockelman et al.’s (2004) RUBMRIO, and Echenique’s (1990, 1969) MEPLAN.  Others include, 
Simmond’s (2001, 1999) DELTA, Martinez’s (1996) MUSSA, and Landis and Zhang’s CUF (1998a, 1998b). 
Suitability models assign new development to highest scoring sites, and include What If? (Klosterman, 1996, 2007) 
and UPlan (Johnston et al., 2003). 
2 Other microsimulation-based LUMs are Landis and Zhang’s (1998a, 1998b) California Urban Futures (CUF) 
model, Miller et al.’s (2001) Integrated Land Use, Transport and Environment (ILUTE) model, Timmermans’ 
(2000) ALBATROSS model, and portions of Hunt and Abraham’s (2003) PECAS model.  



terms that may or may not make it into the location choice specification), the land price model is 
not generally fully estimated (since dynamic land price and vacancy data are so difficult to come 
by), and jobs and households are assigned one by one and do not compete for space in any given 
year3. In practice, UrbanSim’s location choice models are typically calibrated using cross-
sectional data sets (rather than those of recent movers) and population synthesis is up to the 
analyst. However, the package is evolving and many of these issues can be addressed in near-
term and future versions. 
 
There also are many computing challenges for new users of UrbanSim, and data set acquisition 
always poses a major issue for such detailed models. Nevertheless, UrbanSim pays attention to 
many important land market features; and, once it is running properly, it runs quickly.  
Moreover, UrbanSim permits estimation of most sub-model parameters within the Opus 
environment, rather than requiring that users enter the model with parameters in hand.  
 
UrbanSim uses independent logit models to simulate the relocation decisions of existing 
households and firms, place households and jobs in grid cells4, and anticipate grid cell-level 
changes in development type (Waddell 2004). Ordinary least squares (OLS) methods for 
parameters of continuous logistic expressions provide estimates of residential land shares across 
zones, and land price estimates are based on a hedonic regression equation (estimated using 
OLS)5. New transport infrastructure and local use restrictions are coded in at proper time points 
over the multi-year modeling process.  Monte Carlo techniques are then used to simulate future 
year forecasts of location choices (by developers, workers, and households). Figure 1 of Waddell 
(2007) illustrates UrbanSim’s sub-model and data set interactions, along with user-specified 
events (such as road building and changes in zoning policy) and scenario details.  
 
DATA SETS USED 
As described below, calibration and application of the UrbanSim model is a highly data intensive 
process, particularly for a large multi-county region. UrbanSim can simulate land use patterns at 
any resolution (Waddell, 2001); a typical resolution is 150 m × 150 m and so was used here.  
Many assumptions had to be made, in placing and defining individual households and buildings 
at the grid cell level, in order to get the model to run. Few regions are likely to have such data 
and will need to resort to some sort of reasonable rules for data generation.  
 
Household and Employment Data  
UrbanSim’s household data set consists of a list of all households, with current locations (by 
gridcell), household size (number of members), age of the household head, race, and number of 
workers, children and autos. Household data was synthesized using iterative proportional fitting 
techniques at the level of year-2000 Census block groups (as described in Lemp et al. [2007] and 
McWethy [2006]).  

                                                      
3 Market response emerges via a land price shift in the following year, based on prior year vacancy rates in each cell. 
4 According to Waddell (2008), the number of sampled alternatives is user defined, and is available as an option in a 
new version of UrbanSim. They believe that allocation results generally stabilize by around 30 alternatives. 
However, in reality, locators are likely to consider alternatives far more strategically than simply 30 randomly-
drawn sites (out of hundreds of thousands of cell alternatives). 
5 UrbanSim uses the predicted means of land prices and residential shares (rather than random, simulated values) 
(Waddell, 2008). 



 
Exogenous regional household control totals were obtained from Capital Area Metropolitan 
Organization (CAMPO) and used as model inputs. Annual relocation probabilities for 
households and the vacancies in residential units were imported from Eugene data sets and 
assumed to hold for Austin. These range from 63 percent (for those under 24 years of age) to 2.4 
percent per year. 
 
The employment data consists of a list of all jobs (by sector), their cell locations, and building 
type occupied. This data set was generated from a file of firm point locations6 provided by 
CAMPO. Annual relocation rates (for each job type) and non-residential vacancies also are 
required inputs, but had to be imported from Eugene data sets.  

 
Built Space and Transportation Data 
The Travis County Appraisal District (TCAD) provided residential unit locations (and year-built 
information), as well as square footage (and year-built information) of all commercial and 
industrial establishments within the region’s central county. These data were used to estimate the 
proportions of each type of residential unit, square footage, and age distributions for buildings in 
the Hays and Williamson counties (which hold what 19.6% and 27.3% of the region’s jobs and 
housing, respectively), using logistic and OLS regression equations 
 
UrbanSim requires network travel times to the region’s CBD and major airport from each TAZ 
centroid, along with Euclidean distances to the nearest arterial and freeway from TAZ and 
gridcell centroids.7 These values were computed using CAMPO’s 1997 network.  
 
Energy Data 
2005 Residential Energy Consumption Survey data (RECS, 2001) and 2003 Commercial 
Buildings Energy Consumption Survey data (CBECS, 2003) were obtained from the Energy 
Information Administration (EIA) and used to estimate energy per square foot , to apply to 
UrbanSim’s year 2030 outputs. 
 
MODEL SPECIFICATION  
Future land use patterns depend on household and job location choices, which in turn depend on 
the supply, quality, and price of built space, access to jobs and other destinations, household 
income, industry sector, and so forth. The following discussion describes the model estimation 
process for key sub-models. 
 
Household Location Choice Model (HLCM) 
 
UrbanSim’s household location choice sub-models are based on a transition model and a 
relocation model. The transition model generates a list of households to be added to or subtracted 
from the set of existing households. These shifts can result from various demographic processes, 
like aging, marriage, divorce, births, and deaths, and are provided as exogenous control totals for 
                                                      
6 Point locations of employment data were obtained as GIS layers from the Texas Workforce Commission via the 
Texas DOT and then cleaned by CAMPO. 
7 Interestingly, UrbanSim does not call upon network files directly; all distances must be computed externally and 
provided (or coded internally by the analyst).  This is an opportunity for relatively easy model improvement. 



future years. The household relocation model generates vacant spaces when households are 
selected to move and adds all movers to the list of unplaced households. While the probability 
that a household moves should depend on the relative attractiveness of available alternatives, as 
compared to the current dwelling; this presently is controlled by exogenous relocation 
probabilities, as pre-defined by UrbanSim users. 
 
The set of unplaced households are placed into grid cells via a multinomial logit (MNL) model 
of household location choice, based on the composite utility of 30 alternative grid cells (each 
having at least one vacant housing unit at the time the household is allocated). Explanatory 
variables affecting location choice can reflect elements of urban economic theory and sociology 
(CUSPA 2006), including regional and local accessibilities, race, incomes, and land rents 
(Waddell 2002). 
 
Table 1 shows the HLCM’s estimation results.  These suggest that increases in housing and land 
costs and the share of land in residential use negatively impact a cell’s residential location utility, 
everything else constant. In contrast, variables such as income of current cell residents, open 
space in the cell, proximity to arterials and highways, accessibility to regional jobs, local 
employment, population, and travel time to the region’s CBD are predicted to have a positive 
impact on a cells’ utility. Also, households with similar income levels and races tend to attract. 
The positive signs on distances to arterials and highways and on CBD travel times are not 
intuitive, but these are more than offset by the positive benefits of the regional jobs accessibility 
values of all almost all locations.  
 
Employment Location Choice Models (ELCMs) 
 
UrbanSim’s employment location choice model (ELCM) is analogous to its household location 
choice model. A transition model generates or removes the newly created jobs in each sector, 
depending upon the growth or decline of employment in that sector (as compared to the prior 
year). Such input assumptions are exogenously obtained from state economic forecasts and/or 
commercial and in-house sources (CUSPA 2006). An employment relocation model then 
determines which individuals will change jobs in any given year. Employment relocation 
probabilities are determined exogenously and given as inputs to UrbanSim. 
 
Removed and relocating jobs are noted in the database of job-site vacancies, and jobs created via 
the employment transition and relocation models are added to the database of unplaced jobs. The 
unplaced jobs are allocated into the gridcells by sector, based on the composite utilities of each 
gridcell. UrbanSim assumes that every job is independent of the other and moves separately. 
Though, this assumption simplifies the modeling procedure, it is an important limitation of 
UrbanSim since most job relocation is based on relocation of firms. The employment location 
choice model is also based on a multinomial logit specification.  
 
The only difference between household and employment location choice models is that the latter 
allocates jobs using sector-specific preference functions (MNL model estimates), while all 
households are allocated using a single MNL specification − with indicator variables for 



variables like race and income, to accommodate some forms of preference variation.  The sectors 
considered in this study are industrial, commercial and home-based employment8.  
 
The Industrial Employment Location Choice Model locates new and relocating industrial jobs 
based on the relative values of all grid cells’ composite utilities. Estimation results presented in 
Table 1 suggest that increases in home and work accessibility values, presence of industrial 
square feet, and the presence of high-income households have a positive effect on gridcells’ 
locational utilities. In contrast, increases in distance to the nearest highway and in travel time to 
the CBD have negative impacts. All parameters have intuitive signs except that for the presence 
of higher-income households (perhaps both high income households and industries are attracted 
to similar properties). 
 
The Commercial Employment Location Choice Model locates commercial jobs seeking locations.  
Table 1’s estimates suggest that increases in commercial and industrial square footage, distance 
to the nearest highway, number of service sector jobs within “walking distance” (600 meters, 
Euclidean from gridcell centroid), access to population, and number of high-income households 
positively impact a cell’s attractiveness. In contrast, the cost of land and the number of retail jobs 
have a negative impact. While the positive impact of highway distance and the negative impact 
of local retail jobs are not intuitive, these can be counteracted by semi-collinear variables (like 
square footage, service job access, and population access).  
 
UrbanSim requires data on home-based jobs in order to run. However, Austin does not yet have 
such data, so this data set had to be manufactured (using a two-percent-of-jobs-per-zone 
assumption). Table 1 shows the results of this Home-based Employment Location Choice Model, 
which indicates a preference for older, more expensive residences in denser, low-vacancy 
locations, close to other home-based jobs. While many parameters appear reasonable, others may 
be at odd with actual trends, because these job sites were randomly selected. This model should 
not affect the overall forecasts much because only 2% of the modeled population works from 
home (Bayles, 2002). 
 
Modeling Land Prices 
 
UrbanSim’s Land Price Model provides a key input to the land development, household and 
employment location choice models. Land price is modeled using hedonic regression on 
attributes such as land use type (including 8 mixed use types, 8 residential, 3 commercial, 3 
industrial, 1 government use, vacant and undeveloped land uses), site characteristics, access 
variables, and neighborhood and zoning characteristics. UrbanSim implicitly assumes that 
households, businesses and developers are all price takers, and annual price and development 
adjustments help match aggregate supply and demand over time. (CUSPA 2006) Moreover, as 
cell-level vacancy rates fall below a user-specified long-term structural vacancy rate, land price 
increases and vice versa (DiPasquale 1996). Land price estimates are updated annually, after all 

                                                      
8 Buildings for workers are classified into industrial, commercial, governmental and home-based buildings. 
Industrial employment refers to jobs located in industrial buildings. Commercial employment refers to jobs located 
in commercial buildings. And home-based jobs are those where workers work from home. Government jobs are 
assumed to maintain their locations, so there is no choice model for these. 



the construction and development is undertaken and vacancy rates have been computed, 
according to the following equation: 
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where Pilt is the land price per acre of development type i at location l and time t, Vi

s is the long-
term structural vacancy rate, Vit

c is the current vacancy rate (at time t), Xilt is the vector of site 
attributes, and α, β, and δ9 are parameters to be estimated. However, grid-cell-level or building-
level vacancy rates can be quite difficult for analysts to avoid, particularly vis-à-vis property 
prices over time, in order to estimate a parameter like δ.  Thus, users may often find themselves 
importing (or guessing at) this key parameter. This is a key concern for the model, though most 
users may not rely on UrbanSim for land price information. Either way, current year price 
estimates are used to estimate the next year’s market activities, including land development and 
location choices (Waddell et al. 2003).  
 
Land Price estimation results (Table 1) suggest that an increase in commercial square feet, total 
employment, population density, access to population, percentages of commercial and developed 
lands, and high-income households (within walking distance) are associated with higher land 
prices (as assessed by the Travis County Appraisal District), whereas the presence of industrial 
space, open space and residential land use within walking distance of a cell (600 meters) are 
associated with lower land prices, ceteris paribus. Such signs are consistent with behavioral 
expectations. 
 
UrbanSim’s Residential Land Share Model is used to compute the residential land share in a 
gridcell, as follows: 
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where y is residential land use shares in each grid cell. Essentially, the model assumes a logistic 
specification for the fractional shares, but ordinary least squares is used for estimation of 
parameters (β). 
 
From Table 1, it can be observed that residential land share predictions tend to rise with the 
number of residential units in a cell, and job access, but fall with jobs counts, non-residential 
built space and travel time to the CBD, as expected. 
 
UrbanSim also uses MNL models to place new development of residential, industrial and 
commercial structures, based on composite utilities. These model parameters, for development 
location choices, can be found in Kakaraparthi (2009). 
  
 

                                                      
9 Due to a lack of occupancy rate data for two time points across zones, δ could not be estimated and was simply set 
equal to 1.0 here, to be able to run the model and evaluate performance.  



INCORPORATION OF A TRAVEL DEMAND MODEL (TDM) 
 
According to Opus (2006) workshop documents, UrbanSim has been used with TDMs based in 
TP+, MinUTP, EMME/2, and other systems. Here, Caliper’s TransCAD software was used, and 
outputs of both models manually transferred by the user. 
 
Using 1996/1997 Austin Travel Survey (ATS) data, Lemp (2007) estimated the parameters of 
and coded (in TransCAD’s GIS-DK) details of the fairly standard TDM employed here.  
Regression models are used for trip generation, at the household level for home-based trips and 
at the zonal level for non-home-based trips.  An MNL model of destination choice is used for trip 
distribution, and includes a logsum parameter measuring the maximum expected utility achieved 
over all modes and times of day (TODs).  A joint MNL model of mode choice (drive alone, 
shared ride, transit, and bike/walk) and four TODs is also used. Separate models were applied for 
each of four trip types (home-based work, home-based non-work, non-home-based work, and 
non-home-based non-work). Finally, deterministic network assignment routines were used in 
each TOD, and 25 feedback iterations (from network-equilibrium travel times and costs to trip 
distribution) were performed, in order to obtain estimates of interzonal travel times, trip 
distances and travel costs − specific to each of the four modes at each of the four TODs10.  
 
Using this information, logsum accessibility indices were computed and then input into 
UrbanSim, in order to anticipate the next five years’ land use patterns. The logsum values are 
computed as follows (see, e.g., Ben-Akiva and Lerman [1985]): 
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And these are used in somewhat simplistic accessibility indices, as proscribed by UrbanSim 
documentation (CUSPA, 2006): 
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where i and j index origin and destination zones, n indicates trip type (e.g., HBNW), m indicates 
mode, t denotes TOD, β1nmt is the alternative specific constant from the joint mode-TOD choice 
model, βGC is the coefficient of generalized trip costs, TT is travel time, VOTT is the assumed 
value of travel time ($9 per person-hour for work trips and $4.50 per person-hour for non-work 
trips), and COST indicates trip cost (assumed to be $0.20 per vehicle-mile). 
 
For purposes of TDM feedback to UrbanSim in this study, accessibility indices (AI’s) were 
computed only for home-based work (HBW) trips made during the AM peak period, for zero-

                                                      
10 CAMPO's estimates of commercial and external trips were constant throughout the forecast period and added to 
TOD-specific trip tables before traffic assignment.  While not ideal, such methods are not uncommon and provide a 
simple way for dealing with commercial travel, so the research team could focus on the land use model’s operations. 



vehicle and 1+-vehicle-owning households, separately11.  As expected, these twin AI values were 
highly correlated, and would be highly correlated with other AIs at other times of day by other 
modes, so only the zero-vehicle-household AI values were controlled for in the location choice 
models described earlier. 
 
As mentioned earlier, UrbanSim was run every year, for 30 years (2001 through 2030), the TDM 
was applied six times (2005 through 2030, at five-year intervals). The TDM on an average took 
about 4.5 hours and UrbanSim forecasted land use patterns at the rate of 0.5 hours/year on a 3.5 
GB RAM, 2.66 GHz Dual Core processor. The runs provided household and job locations, and 
square footage of commercial establishments, in year 2030, along with network travel 
conditions. Such information was converted into energy estimates, as described in the next 
section. 
 
ENERGY CONSUMPTION ESTIMATES 
The OLS regression model estimates developed using the nation’s RECS and CBECS data sets 
to estimate energy consumption per square foot of built space in Austin can be found in 
Kakaraparthi (2009). Variables pertaining to household location and attributes, home type and 
age, price of electricity and gas, and number of heating/cooling degree days served as covariates. 
The resulting estimates were applied to UrbanSim’s results, with proportions of different home 
types (single-family, mobile homes, and multi-family dwelling units [MFDUs]) based on Travis 
County Appraisal District shares, by zone, in the year 2000 (since UrbanSim does not predict 
home type). Logarithmic regression equations were used to estimate the proportions of each type 
of dwelling unit in Williamson and Hays counties, and the results of these can be found in 
Kakaraparthi (2009). The square footage per residential unit (by type) was allowed to pivot off 
year 2000 values (at the TAZ level), simply by adding 20 square feet/year (to recognize the 
nation’s average home size growth. 
 
RESULTS AND DISCUSSION 
Several scenarios were implemented to test the sensitivity of UrbanSim to various policies. 
These scenarios include (1) a No Travel Demand Model (NoTDM) scenario, in which UrbanSim 
ran continuously for 30 years, without TDM integration (so travel costs stay constant over the 
forecasting horizon and accessibility indices do not vary as much as they would with a TDM in 
place [though they do reflect new home and job land use distributions that come out of 
UrbanSim]),  (2) a Business as Usual (BAU) scenario (with Austin’s 1997 network held constant 
over the forecast period), (3) an Urban Growth Boundary (UGB) scenario (where new 
development was not permitted in zones outside Figure 2’s boundary), (4) a doubled Travel-Cost 
Sensitivity (TCS) scenario (5) an expanded network (EXPAN) scenario, where capacities of 
three major arterials were doubled, and (6) addition of a 49.2-mile bypass freeway (SH130) to 
the network. Figures 3 and 4 present the plots of household and employment densities in all these 
scenarios.  
 

                                                      
11 While the TDM was not segmented on the basis of vehicle ownership levels, transit and bike/walk mode choice 
model specifications were used for the zero-vehicle households’ accessibility index calculations and drive times 
were used for the 1+ vehicle-owning households’ index.  



Figure 1 suggest a decentralizing behavior for households under the BAU scenario once the 
TDM is integrated with UrbanSim – relative to the NoTDM case. In other words, lower density 
population development becomes evident once travel times are permitted to rise (as the network 
congests, to accommodate population and jobs growth). To understand this somewhat 
unexpected result, the practical significance of all variables in the household location choice 
model was investigated by looking at the utility change corresponding to a one standard 
deviation change in each explanatory variable. Relatively low land prices in the peripheral TAZs 
attracted the development, resulting in this somewhat unexpected decentralizing behavior. 
However, travel times to the CBD and accessibility indices are key covariates for the jobs 
location models, so jobs were predicted to centralize (locate closer to the region’s CBD) once the 
TDM was added to the modeling process. Better linkage of jobs and households (as the Puget 
Sound Regional Council is pursing with UrbanSim) may help slow this somewhat incompatible 
decentralization/centralization pattern that can emerge in applications of UrbanSim. Moreover, 
the fact that calibration of UrbanSim parameters is based on cross-sectional data sets is 
problematic, and can result in such predictions. (The model predicts current land use patterns, for 
movers and non-movers, rather than the location choice behaviors of new households, new 
jobs/firms, new developments and recent movers.) 
 
Figure 1’s UGB scenario results show unexpected and excessive land development predictions in 
the northern cities of Williamson County (i.e., Georgetown, Taylor and Florence), which are 
inside the UGB and just inside the three-county region’s border. Though of low density in year 
2000, these northern zones were contiguous with zones that met the UGB’s 2-job-equivalents-
per-acre density threshold. (It should be noted that 453 of the region’s 1074 TAZs or 40% of the 
three-county area falls outside the UGB, which is a set of five zone clusters − the largest located 
centrally.) This behavior can be attributed to the lower land prices (which households prefer) and 
high land availability in those zones.  However, jobs continued to prefer the region’s center, 
thanks to higher accessibility indices and lower CBD travel times (which are key predictors of 
the cross-sectional data set’s land use patterns in year 2000). Recognition of jobs-worker 
connections, as discussed above, may result in a different outcome.  It also should be noted that 
odd model behaviors, in multiple disciplines, often emerge at border areas. Thus, a halo of 
zones/counties could be very useful for achieving a stronger sense of the future in these border 
zones.  In reality, many of these households would likely just leave the region (by skipping over 
the county border) if growth restrictions were not in place elsewhere.  
 
In the TCS scenario, travel cost sensitivity is doubled, so accessibility indices fall everywhere 
and households and jobs move closer towards the CBD (as compared to the BAU scenario), in 
order to reduce their transport costs. This behavior was expected and resembles the shifts 
emerging from increased gasoline prices. In the EXPAN and SH 130 scenarios, households and 
jobs shift towards the expanded corridors but at lower densities (than in the BAU case), thanks to 
improved travel conditions along the corridor. These are expected results, but pictures cannot tell 
the whole story.  Useful summary metrics of all scenario results include region-level statistics, 
and estimates of GHG emissions, as discussed below. 
 
Table 2 presents count-weighted household and employment densities for the region, city center 
accessibility indices, and annual VMT values. Interestingly, with the exception of the UGB 
scenario, percentage differences in these various indices across different scenarios are less than 



5%, as compared to the BAU.  Such outcomes seem unusually moderate, particularly when 
compared to results of other land use models for the Austin region.   
 
Zhou and Kockelman (2009) applied a gravity-based land use model (G-LUM) for the region, 
and Tirumalachetty and Kockelman (2009) rely on microsimulation models for their results. 
Though calibrated with much of the same data and applied over essentially the same period to 
many of the same scenarios, their UGB results suggest 17% and 14% reductions in region-wide 
VMT (rather than the 10% found here). The increases in count-weighted household densities 
were roughly a striking 1900% (almost 20-fold) and 200%, rather than the 50% increase seen 
here, using UrbanSim’s predictions. 
 
It seems UrbanSim’s results are unusually “stable” here, across distinctive scenarios − with the 
exception of the jump in population at the region’s northern edge under the UGB scenario.  Such 
stability is better than having wildly changing results (which can emerge quickly in 
unconstrained gravity model applications [see, e.g., Zhou and Kockelman 2009]). This property 
no doubt emerges from UrbanSim’s tight connections between land, buildings, and space users 
(jobs or households). But it may be an indication that the model (as calibrated for Austin) is 
inadequately sensitive to policy changes. 
  
As a result, energy consumption estimates also did not vary much across scenarios, though these 
were lowest in the UGB and TCS scenarios and highest in the EXPAN scenario, as expected. 
Centralizing tendencies evident in the UGB and TCS scenarios result in less travel and smaller 
dwelling units, due to a shift toward MFDUs. More MFDUs are built in the UGB and TCS 
scenarios due to reduced land availability in the more popular/accessible locations.  
 
In contrast, population decentralization clearly observed in the EXPAN, BAU and SH 130 
scenarios is predicted to encourage the development of single-family units over MFDUs, 
resulting in higher energy demands via housing and travel. Commercial energy estimates were 
highest in the UGB and TCS scenarios, because CBECS estimates increased energy consumption 
values with the increase in workers per square feet. Therefore, scenarios which predicted denser 
land use patterns showed increased commercial energy consumption. Also, shared walls in the 
multi-storied commercial structures which actually reduce the energy consumed were not 
captured by the model. Relatively little variation in industrial building energy consumption 
emerged across scenarios, in part because industrial jobs’ location are largely independent of 
access considerations.  
 
CONCLUSIONS 
 
This work describes the UrbanSim modeling results of 5 distinctive land use and transport 
scenarios for year-2030 land use patterns in Austin, Texas at fine (150 m cell) spatial resolution.  
As evident, UrbanSim is data intensive software. Key stages of UrbanSim use are data 
acquisition and assembly, model estimation, scenario development and forecasting; and these 
required roughly 60%, 20%, 5% and 15% of the research team members’ time. It took 
approximately two person-years to apply UrbanSim to the Austin region, yet various data and 
model enhancements are still desired. 
 



While the greatest challenges for UrbanSim users lie in acquisition, assembly and management 
of data, a variety of challenges also lie in the model estimation process. For example, 
multicollinearity in various access indices can result in a lack of statistical and practical 
significance, and/or odd behavioral implications. Analysts need to be wary of what covariates 
make it into the final model selections.  
 
In the Austin case study, variations in scenario results were quite moderate, but potentially 
realistic as compared to results derived from other land use models developed for the same 
region (using highly similar data sets and scenarios). These moderate results also were reflected 
in energy implications of the various scenarios. 
 
UrbanSim exhibits a variety of strengths and limitations. Key strengths include its freely 
available open-source code with some technical support forthcoming via a growing user listserv 
(frequented by UrbanSim developers). The program is designed to compute land use patterns at 
any level of resolution, and every household and job is tracked. It uses a dynamic disequilibrium 
approach but turns to cross-sectional data sets for parameter estimation (though dynamic 
behaviors could and probably should be used for calibration, where feasible). As multiple as its 
many sub-models are, it is efficiently programmed, requiring only a 25-minute run time per year 
for the Austin simulations.  
 
Key computing issues include UrbanSim’s installation, which requires numerous supporting 
packages (including Enthought Python, Numpy and Scipy) and a variety of optional packages 
(such as MySQL and dbfpy, along with household and jobs synthesizers and a travel demand 
model). UrbanSim use requires relatively high-end computers, with 3.5 GB RAM, a 2.66 GHz 
Intel Core 2 Duo processor running on Windows XP. Documentation does not yet specify the 
changes in the code needed for running UrbanSim with a csv database, as opposed to MySQL.  
 
A key concern related to Austin’s data assembly involves estimating grid-cell-level land use 
patterns from TAZ, block and block group data; but much of this may be avoided via a switch to 
parcel-level data.  Acquiring residential and non-residential target vacancies in future years is 
also challenging, if not impossible.  
 
UrbanSim presently calls for cross-sectional data for estimation of model parameters, which is an 
important limitation.  The pace and nature of land use change, and the preference of recent 
movers (rather than the siting of all agents currently located in a region) are key behaviors that 
require additional or different data structures (e.g., a survey of recent movers/locators). Such 
modeling work should enhance future implementations and may not be difficult given the data 
sets users would have to have on hand (and the data acquisition efforts most MPOs already 
engage in). 
 
Other concerns include the use of just 30 random choices (chosen from 328,000 alternatives in 
the Austin example) for estimating MNL models of location choice, and later evaluation of just 
30 alternatives before placing a household or job in a suitable gridcell. Such defaults can and 
should be changed.  Reliance on simply AM peak travel times and costs (from travel demand 
model outputs) can pose a serious limitation for certain analyses (e.g., when one seeks to 
appreciate the local land use effects of a new transit line).  The lack of residential square footage 



forecasts, constant area-per-worker assumptions, lack of household and job evolution, neglect of 
firm (versus job) dynamics, and reliance on exogenously specified control total and standard, 
aspatial MNL models are also concerns. Of course, modeling urban systems is an incredibly 
complex endeavor, and no model can address all issues.  The opportunity is simply to advance 
the state of the art and practice. This work offers a window into the challenges that lie ahead.  
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Table 1: Estimation Results of Sub-models Used in UrbanSim 

  HLCM ELCM - 
Industrial 

ELCM - 
Commercial 

ELCM – Home-
based Jobs Land Price Residential Land 

Share 

Explanatory Variables Coef. t-stats Coef. t-
stats Coef. t-

stats Coef. t-stats Coef. t-stats Coef. t-stats 

Constant  -- --   -- --   -- --   -- --  13.256 454.9 2.114 55.41 

Ln(housing cost in cell -0.192 -24.75  -- --   -- --   -- --   -- --   -- --  

Acres of open space (in cell 0.175 9.54  -- --   -- --   -- --   -- --   -- --  
Average income ($ per household 
per year? Of HHs in cell  3.18E-06 8.38  -- --   -- --   -- --   -- --   -- --  

Ln(miles to nearest arterial) 0.12 6.69  -- --   -- --   -- --   -- --   -- --  

Ln(miles to nearest highway) 0.0852 5.34 -0.0328 -1.64 0.0594 3.5  -- --   -- --   -- --  
Ln(home access to employment 
for households with one car) 0.721 10.06 4.09E-04 1.04 0.0183 0.43  -- --  0.11 27.4 3.35E-03 5.22 

Ln (total land value in cell -0.03 -4.01  -- --  -0.1902 -5.38  -- --       -- --  

Number of jobs (in cell) 5.25E-04 1.79  -- --   -- --   -- --  0.233 123.21  -- --  

Number of retail jobs (in cell)  -- --   -- --  -2.33E-03 -
22.32  -- --   -- --   -- --  

% residential land in cell -0.0161 -20.26  -- --   -- --   -- --  -0.00322 -28.02  -- --  

Population (in cell 3.63 12.49  -- --   -- --   -- --   -- --   -- --  
Number of high income 
households (in cell  -- --   -- --  0.023 3.02  -- --   -- --   -- --  

Travel time to CBD (on network, 
in AM peak period 0.029 7.27 -0.028 -2.94  -- --   -- --   -- --  -0.016 -7.55 

% high income households within 
600 m if household is high 
income 

0.0252 20.64  -- --   -- --   -- --   -- --   -- --  

% low income households within 
600 m if household is low income 

0.0523 23.11  -- --   -- --   -- --   -- --   -- --  

% mid income households within 
600 m if household is mid income  

0.0243 21.41  -- --   -- --   -- --   -- --   -- --  

% minority households within 600 
m if household is non-minority 

-0.045 -10.32  -- --   -- --   -- --   -- --   -- --  



Ln(work access to jobs for 
households with 0 cars)  -- --  0.244 2.77  -- --   -- --   -- --   -- --  

Indicator for cell’s average 
income being high income  -- --  0.209 2.83  -- --   -- --   -- --   -- --  

Ln(industrial SF in cell)  -- --  0.0948 7.43 0.0132 3.79  -- --   -- --   -- --  

Ln(commercial SF in cell)  -- --  0.0448 2.3  -- --   -- --  0.048 35.36  -- --  

Total non-residential SF in cell  -- --   -- --  3.32E-08 5.09  -- --   -- --   -- --  
Ln(service sector employment 
within 600 m)  -- --   -- --  0.1438 6.82  -- --   -- --   -- --  

Building age (years)  -- --   -- --   -- --  0.102 2.47  -- --   -- --  

Ln(total value of the cell)  -- --   -- --   -- --  0.2 1.77  -- --   -- --  

Residential density (HHs/acre)  -- --   -- --   -- --  9.287 13.61  -- --   -- --  
Vacant home-based job space ( in 
cell?)  -- --   -- --   -- --  -1.69 -13.41  -- --   -- --  

Vacant residential units in cell  -- --   -- --   -- --  -
0.0102 -5.58  -- --   -- --  

Ln(same sector employment 
within 600 m)  -- --   -- --   -- --  0.329 3.36  -- --   -- --  

Ln(Industrial SF within 600 m)  -- --   -- --   -- --   -- --  -0.0163 -23.12  -- --  

% commercial SF within 600 m  -- --   -- --   -- --   -- --  0.0138 43.76  -- --  

% developed land within 600 m  -- --   -- --   -- --   -- --  0.0103 117.64  -- --  
% high income households within 
600 m  -- --   -- --   -- --   -- --  0.00229 27.73  -- --  

% open space within 600 m  -- --   -- --   -- --   -- --  -0.0129 -50.39  -- --  

Population density (Persons/acre) 0.0876 96.88  -- --   -- --   -- --  0.0876 96.88  -- --  
Average residential value per 
housing unit within 600 m  -- --   -- --   -- --   -- --   -- --  -1.31E-

07 -3.47 

Ln(basic sector jobs within 600 
m)  -- --   -- --   -- --   -- --   -- --  -0.0527 -8.06 

Ln(retail sector jobs within 600 
m)  -- --   -- --   -- --   -- --   -- --  -0.0298 -4.82 

Number of residential units (in 
cell)  -- --   -- --   -- --   -- --   -- --  1.68E-03 13.35 

Sum of industrial & commercial  -- --   -- --   -- --   -- --   -- --  -1.72E- -3.24 



SF in cell  07 

Developable maximum 
commercial SF  -- --   -- --  --  --   -- --   -- --  -1.44E-

07 -23.11 

Adj. likelihood ratio index 0.091 0.00561 0.03194 0.521  -- --   -- --  

Adj. R- square  -- --   -- --  0.566 0.0362 

 
 
 
 



 
 

Table 2: Overall Land Use and Transportation Results across All Scenarios 

Scenario 
Daily 

VMT (in 
millions) 

Average 
Count-

Weighted 
Household 

Density 

Average 
Count-

Weighted 
Jobs 

Density 

Average 
Regional 
AI* for 

HHs 

Average 
Regional 
AI* for 

Jobs 

VMT 
Weighted 
v/c Ratios

VMT 
Weighted 
Average 
Speeds 

NoTDM 71.64 1,317 9,356 94,814 309,642 0.5671 37.176 
BAU 73.59 1,303 9,422 94,947 313,708 0.5759 36.746 
UGB 67.18 1,992 10,237 116,030 334,821 0.5278 36.937 
TCS 70.84 1,335 9,524 98,057 323,697 0.5866 36.347 

EXPAN 77.67 1,290 9,412 95,079 314,203 0.5422 39.695 
SH130 72.57 1,264 9,446 95,007 316,428 0.563 36.68 

*Note: AI = Accessibility index = ∑Count of Jobs or HHsi/ Network distance from zone i to CBD 

 

 

 

 

 

 

 

 



Table 3: Energy Results  
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NoTDM kWh 6,972 3,514 5,402 15,889 13,967 2,797 11,620 
31,274 ccf 196.95 121.5 146.93 465.38 274.94 60.02 

BAU kWh 7,395 3,647 5,084 16,127 13,962 2,797 11,946 
31,629 ccf 209.71 126.05 139.58 475.35 274.82 59.99 

UGB kWh 6,597 3,448 5,562 15,607 14,108 2,797 10,990 
30,799 ccf 181.49 118.13 148.12 447.75 275.14 59.99 

TCS kWh 7,027 3,881 5,217 16,126 13,977 2,797 11,510 
31,441 ccf 198.14 134.29 143.01 475.45 274.8 60.02 

EXPAN kWh 7,471 3,675 5,040 16,187 13,976 2,797 12,720 
32,043 ccf 212.22 127.09 138.31 477.62 275.07 59.99 

SH130 kWh 7,473 3,705 5,028 16,208 13,977 2,797 11,744 
31,619 ccf 212.19 128.21 138.06 478.46 275.07 60.00 

 

 

 



 
Figure 1: Household Densities in Year 2030 in NoTDM, BAU, UGB, TCS, EXPAN and SH 130 

Scenarios 



 
Figure 2: Employment Densities in Year 2030 in NoTDM, BAU, UGB, TCS, EXPAN and SH 

130 Scenarios 
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