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27 
28 ABSTRACT 

29 
30 This work explores the application of kriging methods for prediction of average daily traffic 

31 counts across the Texas network.  Results based on Euclidean distances are compared to those 

32 using network distances, and both allow for strategic spatial interpolation of count values while 

33 controlling for each roadway’s functional classification, lane count, speed limit, and other site 

34 attributes.  Universal kriging is found to reduce errors (in practically and statistically significant 

35 ways) over non-spatial regression techniques, though errors remain quite high at some sites, 

36 particularly those with low counts and/or in less measurement-dense areas.  Interestingly, the 

37 estimation of kriging parameters by network distances showed no enhanced performance over 

38 Euclidean distances, which require less data and are much more easily computed. 

39 
40 INTRODUCTION 
41 
42 Traffic flow volumes represent key information for proper transportation engineering and 

43 planning decisions.  Sampling, tracking, interpolating, and extrapolating Annual Average Daily 

44 Traffic (AADT) counts is fundamental to road construction and maintenance scheduling, as well 

45 as to demand modeling and validating estimates of network activity.  However, assembly of 

46 accurate and robust traffic counts is not straightforward, due to difficulties in measurement and 
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calculation.  To obtain counts at a sample of specific sites across extensive road networks, 47 
departments of transportation (DOTs) tend to use a set of permanently located automatic traffic 48 
recorders (ATRs) in league with portable traffic counters (PTCs, for short-term count samples).  49 
(FHWA 2005) While a U.S. state DOT may have 100 ATRs across its network, it is likely to 50 
sample at tens of thousands of short-period traffic count (SPTC) sites, for two or three days each, 51 
typically. Overall, spacing between count sites can easily average 5 miles or more, due to limited 52 
resources and competing interests (see, e.g., Wang and Kockelman 2009).  53 
 54 
The U.S. Federal Highway Administration’s (FHWA’s) standards state that interstates and other 55 
high-volume roads must be measured on a maximum three-year cycle, while other highways’ 56 
count can be sampled up to every six years.  Day-of-week averages are calculated for ATR sites 57 
each month.  These are averaged over the months for each day’s AADT and then all averaged to 58 
get a single AADT for that site.  In the case of SPTC sites, data collection over at least 48 59 
consecutive hours in a measurement cycle is recommended.  Seasonal, day-of-week and month-60 
of-year adjustments (to adjust SPTC values to AADT values) are calculated as ratios of ATR-site 61 
counts in the relevant time period to the year’s count, based on average adjustments from groups 62 
of ATRs at similar/matched locations. (FHWA 2005)  63 
 64 
The FHWA (2005) Highway Performance Monitoring System suggests that AADT estimates 65 
should lie within ± 10 percent of actual AADT values with a 90% confidence interval on urban 66 
arterials and 80% interval on all other roadway types. Using Minnesota and Florida ATR counts, 67 
Gadda et al. (2007) estimated that average errors in AADT estimation using one- and two-days’ 68 
counts  produced estimates that, on average, fell within 10 to 20 percent of actual counts, when 69 
using own-site adjustment factors (i.e., best-case scenario). The 95% confidence interval notion 70 
would suggest an even wider range, generally

1
, particularly as one relies on other sites for the 71 

adjustment factors. Of course, modelers must also anticipate counts at locations wholly 72 
unobserved by ATRs and PTCs, where average error rates can rise quickly to 100% or above. 73 
(Gadda et al. 2007) 74 
 75 
As discussed below, standard regression techniques, geographic weighted regression (GWR), 76 
and geostatistical methods have been used to estimate traffic counts at unmeasured locations.  77 
This paper endeavors to harness known local conditions that influence count and road network 78 
spatial information about measured locations using a geostatistical technique known as universal 79 
kriging.  Kriging essentially involves spatial interpolation, and universal kriging makes use of 80 
local information (such as lane count and population density) while also drawing on residuals in 81 
prediction from nearby sites.  Such methods cannot replace counting entirely, but can reduce the 82 
need, if spatial interpolation errors are low.  Furthermore, this methodology is also useful for 83 
real-time count and speed and other predictions (to anticipate and avoid congestion via ITS 84 
techniques, for example), as well as demographic prediction (e.g., population densities, annual 85 
household travel distances, and/or vehicle ownership levels throughout a region – based on a 86 
sample of sites or households). 87 
 88 

                                                        
1
 If the average is 15 percent error in prediction, then there are probably many errors falling well beyond the 15-

percent average – far more than 5 percent of the estimates will tend to fall out there.  Perhaps the 70 percent 

confidence interval is on the order of 10 to 20 percent error. 



Kriging’s origins lie in the prediction of mineral contents by mining engineer D.G. Krige in the 89 
early 1950s.  Mathematician George Matheron outlined kriging for geostatistics, using a 90 
“semivariogram” variance function (for latent effects or prediction residuals) that depends on the 91 
distance between data points.  In general, there are three types of kriging: simple kriging, 92 
ordinary kriging, and universal kriging.  In simple kriging, the value of interest at a location is 93 
predicted directly from nearby values, based on the semivariogram and a known global mean 94 
value.  Ordinary kriging is slightly more complicated, requiring the process to estimate an 95 
unknown mean as well as the semivariogram.  Universal kriging is used when a global-meal 96 
assumption cannot be used, and combines the distance-based variance with a trend, such as a 97 
linear, parametric function, as pursued here (following Box-Cox transformation of the traffic 98 
count [AADT] response variable).  99 
 100 
EXISTING WORK 101 
 102 
A variety of techniques have been implemented to estimate traffic counts. Each method takes 103 
known counts and uses additional information (e.g., local land use data, time-steps, road 104 
attributes, and nearby sites’ residuals in count prediction) to make a prediction.  These can be 105 
divided into future-year (or future-period) prediction and same-year prediction methods.  Future 106 
year prediction uses current and past traffic data to estimate counts at the same locations at future 107 
dates.  This is important for many applications, including planning maintenance or capacity 108 
increases on roadways, as well as real-time transportation systems management decisions (like 109 
signal timing, ramp metering, and variable tolling).  In contrast, current-year prediction methods 110 
estimate counts at locations whose traffic flow have not been measured, using data from nearby 111 
locations during the same time period.  This paper’s applications center on current-year 112 
prediction only, but there is insight to be gained from both streams of work. 113 
 114 
Future Year Prediction 115 
 116 
Tang et al. (2003) tested and compared the Box-Jenkins, neural network (NN), nonparametric 117 
regression (NPR), and Gaussian maximum likelihood (GML) methods for short-term (less than 118 
one year into the future) prediction with data from densely urban Hong Kong.  Their Box-119 
Jenkins used autoregressive integrated moving average (ARIMA) specifications, which require 120 
an evenly-spaced time series data set.  Their NNs iteratively adjusted a network of weighted 121 
sigmoidal equations using past-year traffic counts.  Their NPR approach predicted counts by 122 
calculating similarity indices between the current state and prior states with known counts.  123 
Finally, their GML method used both flows and flow increments.  They found the Box-Jenkins 124 
and NN methods to require considerably more calibration work, while producing higher errors.  125 
The GML and NPR techniques were easier to implement and performed better for their data sets.  126 
 127 
Recently, Castro-Neto et al. (2009) implemented a “support vector regression with data-128 
dependent parameters” for Tennessee’s highway counts.  This approach has similarities to 129 
standard least-squares regression techniques as well as NN methods.  Its objective is to keep all 130 
residuals below a certain value, rather than minimizing the global sum of squared errors.  This is 131 
useful when a modeler desires a certain level of accuracy for all points rather than maximum 132 
overall accuracy. They compared it to “Holt exponential smoothing” and found superior for 133 
longer prediction time steps and seasonal data.  134 



 135 
Jiang et al. (2006) used a growth factor in conjunction with satellite images to enhance future 136 
year predictions.  Satellite photos were reviewed for visible vehicles and adjusted by factors for 137 
time and season.  The image-based estimates were then averaged with estimates from growth 138 
factor methods (using weights based on estimated variances of the two methods).  Results 139 
suggested a great improvement in accuracy.  140 
 141 
Current Year Prediction 142 
 143 
Zhao and Chung (2001) used local employment and population attributes along with roadway 144 
details for current-year predictions across Broward County, Florida by ordinary least squares 145 
(OLS) regression.  They compared several models and found that number of lanes, functional 146 
classification, regional access to employment, employment in an adjacent buffer zone (ranging 147 
from 0.25 to 3 miles on either side of the highway, based on road type), and direct access to 148 
expressways (via an indicator variable) worked best in predicting their data set’s AADT values 149 
(with n = 816).  66 to 83 percent of the variability was explained by these variables, particularly 150 
the number of lanes and functional class.  On their top performing model, they saw a mean 151 
squared error (MSE) of 50,000 vehicles per day and a bias of +0.25%. 152 
 153 
Zhao and Park (2004) pursued a similar study, using geographically weighted regression (GWR) 154 
in place of OLS.  This regression calculates local parameters using a distance-based weighting 155 
function (with a separate regression around each data point, essentially).  The expectation is that 156 
variables have effects that may differ by location.  Table 1 shows the variables included in their 157 
(and another’s) model.  The GWR specification was clearly better in terms of MSE, maximum 158 
error in prediction (136%), and error distributions, over the OLS method for the same data.   159 
 160 

Zhao and Park (2004) Eom et al. (2006) 

Lanes 

Direct access to expressway 

(binary) 

Employment in buffer zone 

Population in buffer zone 

Job accessibility index (by 

travel time) 

Lanes 

Suburban (indicator) 

Urban (indicator) 

Median income  (Census block 

level) 

Functional class (indicators) 

Table 1: Explanatory variables used in two previous studies 161 
 162 
Wang and Kockelman (2006) used ordinary kriging functions built into ESRI’s ArcGIS to 163 
estimate AADT counts, thus offering the advantage of being easily replicated by anyone with 164 
this popular software package.  However, ordinary kriging does not allow the analyst to control 165 
for point-specific characteristics.  Their findings suggested that given limited information, 166 
ordinary kriging can provide estimates of counts of unmeasured sites throughout a network, 167 
though errors can be significant.  Their median (non-absolute) errors were 33%, meaning half of 168 
all predictions were more than 33% over the actual value. They also found ArcGIS to be very 169 
limiting.   170 
 171 



Eom et al. (2006) used universal kriging to predict Box-Cox transformed AADT counts (as 172 
discussed below) on non-freeway facilities in Wake County, North Carolina.  They tested three 173 
semivariogram models (Gaussian, exponential, and spherical) and four estimation methods 174 
(OLS, weighted least squares, maximum likelihood, and restricted maximum likelihood 175 
(REML)).  Their results suggest that universal kriging improved prediction overall, particularly 176 
in urban locations.  REML and WLS performed well in terms of errors, with REML slightly 177 
ahead.  Improvements over non-spatial methods were more pronounced in the urban areas, where 178 
denser placement of measurement locations provides more nearby data points.  179 
 180 
This study expands on the work of Wang and Kockelman (2006), Eom et al. (2006), and Zhao 181 
and Park (2004) by modeling AADT counts in Texas via a universal kriging model to distances 182 
measured on a network.  183 
 184 
METHODOLOGY 185 
 186 
In this work universal kriging was used with a Box-Cox transformation of all traffic counts.  187 
Box-Cox is a likelihood-maximizing power transform that gives skewed data a more normal 188 
distribution, thereby stabilize variation.  It is performed by maximizing the likelihood function 189 
over a power variable,.  The transformation equation is: 190 
 191 

      
           

      
         (1) 192 

 193 
’s estimation was performed during the data set’s pre-processing, using an in-built STATA 194 
software command.   195 
 196 
The following kriging theory and implementation were derived from content in Schabenberger 197 
and Gotway (2005) and Cressie (1993).  WLS was chosen over REML techniques for relative 198 
ease of implementation, as well as comparable performance seen in Eom et el.’s (2006) work.  199 
Moreover, WLS does not require the assumption of the error term’s distribution.  The general 200 
equation for universal kriging is as follows: 201 
 202 
                      (2) 203 
 204 
where (xi) typically is a linear function of explanatory variables at location i, i is a spatially 205 
dependent error term, zi is the dependent variable, and i={1,2,…,N}.  206 
 207 
WLS can be applied to this with the matrix notation: 208 
 209 
                 (3) 210 
 211 
where z is the vector of response outcomes (e.g., AADT or Box-Cox-transformed AADT 212 
values), and X is an N by (K+1) data matrix, interacted with the linear parameters ().   213 
 214 
The variances of the N error terms () are assumed to follow a semivariogram relation, (hij), as a 215 
function of distances (hij) between the locations of data points i and j.  Here, such distances were 216 



calculated both using Euclidean distances (the standard approach) and network distances, to see 217 
whether the latter enhances prediction.  The semivariogram’s parameters can be estimated with 218 
mean or trend removed using WLS – or simultaneously with mean parameters when using 219 
REML.  Three types of theoretical semivariogram functions, each with parameter set  = {c0, ce, 220 
as}, were tested, to ascertain the best performance (Cressie 1993): 221 
 222 

Gaussian                                 
 

   223 

Spherical                                           
 
   (4) 224 

Exponential                                    225 

 226 
Feasible generalized least squares (FGLS) regression was used to recognize heteroskedasticity in 227 
error terms (but neglecting spatial autocorrelation across pairs of points), and enhanced estimates 228 
of AADT residuals.  After performing the two-step FGLS estimation process, the squares of 229 
differences in all residuals were used in the Cressie-Hawkins robust estimator.  This estimator 230 
divides the distances between points into a series of bins, from 0 miles to some maximum 231 
distance, and creates an empirical semivariogram using the following equation (Schabenberger 232 
and Gotway’s [2005] Eq. 4.26): 233 
 234 

        
                        

 

            
            (5) 235 

 236 
where H is the distance bin, N(H) is the number of ij pairs in that bin and ei is the FGLS residual 237 
from point i. 238 
 239 
An iterative least-squares approach converges on the values for c0, ce, and as that minimize the 240 
sum of squared residuals (between observed/empirical and smoothed/theoretical semivariogram 241 

values).  In equation form, the objective was  2

0 ),,;()(~min se accHH   with respect to c0, ce, 242 

and as. 243 
 244 
The covariance matrix for kriging, Cdd, is then estimated from the theoretical semivariogram and 245 
the FGLS error-term variance, 2

.  Additionally, a vector of covariances, cd0, for error terms 246 
across all known-response locations and all target (predicted) locations can be estimated. Each 247 
value in these two matrices is given by the following equation: 248 
 249 

                                       
                    (6) 250 

 251 
With the inverse of the covariance matrix, Cdd, as the weight matrix, the  values can be re-252 
estimated using a full-matrix-weighted least-squares regression, and response predictions (of Z) 253 
can be derived at all “new” locations x0 as follows (Schabenberger and Gotway 2005): 254 
  255 
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         (7) 257 
 258 



where X0 is the data matrix for the predicted locations and 0Ẑ is their predicted Box-Cox 259 

transformed value.  260 
 261 
All these equations were coded into MATLAB software, and the run time was under 20 seconds 262 
for the largest data subset described here (i.e., 4,979 known-count locations, and 1281 263 
new/unknown-count locations [with AADT values available for all sites, and used for predictive-264 
model validation purposes]). 265 
 266 
Comparison of Results 267 
 268 
The model parameters were estimated using a randomly selected collection of the data points 269 
from each regional sample analyzed.  The remaining 10 to 20 percent of count sites, from each 270 
subset, were used for model validation. The prediction errors were measured using MSE and 271 
averages of absolute percentage errors. Though the model uses Box-Cox transformed AADT 272 

values, the reverse transformation was used to work directly with AADT estimates, iẐ , before 273 

generating the MSE and percentage errors shared here. 274 
 275 
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       (9) 277 

 278 
In both equations there is a known value for each traffic count, Z(si), from the data and an 279 

estimated count from the model, )(ˆ
ii sZ . Results are given as median percentage error and 280 

average absolute percentage error.  281 
 282 
As noted earlier, both shortest-path network distances and Eucliean distances were used for h.  283 
Their prediction errors were compared to determine the value, if any, of using network distance.  284 
In each case all three semivariogram functions – linear, spherical, and exponential – were used.  285 
As a point of comparison, an aspatial FGLS approach (reflecting heteroskedasticity in count 286 
volume residuals) was used with the same. 287 
 288 
MODEL INPUTS 289 
 290 
All traffic counts and highway data used here come from the year 2005 in Texas, the U.S.’s 291 
second largest state (in population and area). Texas contains a number of major metropolitan 292 
areas, including Houston and Dallas-Fort Worth, as well as large swaths of sparsely populated 293 
land. AADT values vary tremendously across the state DOT’s geocoded 79,000+ centerline-mile 294 
network. The sampled counts come from all types of roads, from local roads to interstates 295 
freeways, in both highly urban and very rural settings.  Figure 1 shows where SPTCs are 296 
concentrated, with an average of 111.3 count sites per county (or one count site every 10 square 297 
miles, or every 3 miles of highway centerline, on average) in this particular data set (and a 298 
standard deviation of 70.8 sites per county).    299 
 300 



 301 
Figure 1: Number of annual count locations in each county  302 

 303 
Data Sets 304 
 305 
Traffic counts were derived by the Texas Department of Transportation (TxDOT) using ATR 306 
and short counts.  Their annual count data set includes over 28,000 geocoded locations in 2005.  307 
Road information, (including number of lanes, functional class, and speed limits) was given in a 308 
GIS file of roads, represented as lines, with associated data from the TxDOT RHINO database.  309 
Population files contained block-group level data from the US Census.  Employment data from 310 
the Department of Labor Statistics was collected and then geocoded into a map of county level 311 
polygons.   312 
 313 
All data were spatially merged using ESRI’s ArcGIS. Points with very or erroneously low traffic 314 
counts (less than 200 vehicles per day) were removed  This resulted in 25,183 data points 315 
representing locations where counts were taken.  These were divided into smaller, regional data 316 
sets for more local kriging to reduce computational demands on a standard PC. It is unnecessary 317 
and time consuming to, for example, include points from El Paso when predicting values in 318 
Houston, 700 miles away.  A subset of 3,145 points from 24 counties around the southeastern, 319 
Gulf coast region of Texas, including the Houston Region

2
 were evaluated in one set of models, 320 

followed by another set of 667 points for the 5-county Austin region.  Both sets were selected by 321 
hand, with boundaries guided by areas of sparse point coverage, and included all functional 322 
classes of roads.  Additionally, regressions were performed on point subsets with interstates only 323 
(n=1053), urban-classification only

3
 (n=6,256), minor roads only (n=3,532), and the Houston 324 

Region only with interstates removed (n=3,017).     325 
 326 
The resulting count concentrations (0.16 counts per square mile for the Houston region and 0.21 327 
for the Austin region) are noticeably lower than those enjoyed by Eom et al. (2006) and Zhao 328 
and Park (2004)  (at 1.35 and 0.65 counts per square mile, respectively). The more closely 329 

                                                        
2
 The Houston Region subset has 0.162 counts per square mile, and the average distance to each count site’s three 

nearest neighbors is 3.06 miles, which is rather sparse. 
3
 The Urban subset of sites is spread across the state (such that a density measure [in count per square mile] is not 

very meaningful here), but the average distance to each site’s three nearest neighbors is relatively low, at 2.32 miles. 



located data points are, the lower the resulting errors are likely to be, following spatial 330 
interpolation, ceteris paribus. Nevertheless, intelligent application of kriging remains a key tool 331 
of interest, particularly as data become costly and, typically, more sparse.  332 
 333 
Variables Used 334 
 335 
The speed limit, number of lanes and functional class were taken from the road segment 336 
associated with the count location using the overlay function in ArcGIS.  The high values for 337 
median and average speed limit (55 and 56 mph, respectively, as shown in Table 2) hint at the 338 
fact that relatively few count sites lie in the city and town centers. The population and 339 
employment densities were derived for the county in which each count was taken. This is a very 340 
coarse measure of local density, of course, but does help reflect some of the longer distance 341 
travel that many regularly take (e.g., the NHTS 2005 data suggest that the average one-way 342 
commute trip in the U.S. is 12 miles long, while the average “radius” of a Texas county is 18 343 
miles [if one were to form circles with the area of land present in Texas’ 254 counties]).  All 344 
variables’ summary statistics, for only the data points included in the subsets, are given in Table 345 
2. 346 

 347 
 Mean Std. Dev. Min Max 

AADT 2005 (vehs/day) 17,843 33,601 210 341,940 

Speed Limit (mph) 53.6 10.4 20 80 

Lanes (number) 3.18 1.48 1 12 

Persons / Acre 0.251 0.503 2.73E-4 2.55 

Jobs / Sq Mile 0.576 0.962 1.04E-3 4.22 

Rural Interstate (indicator) 0.049 - 0 1 

Rural Major Road 0.188 - 0 1 

Urban Interstate 0.047 - 0 1 

Urban Principal Arterial 0.058 - 0 1 

Local & Collector Roads*  0.658 - 0 1 

Number of data points = 10,978 

* Used as base case in regression 

Table 2: Summary statistics of model variables of data in all subsets 348 
 349 
Fourteen functional classes of highway exist in Texas (as designated by TxDOT), with seven 350 
being rural in designation and seven urban. As shown later (and noted in Table 3), these were 351 
combined into six categories, based on regression results that indicated a lack of statistical 352 
distinction on coefficients for certain classes. 353 
 354 
Not considered here is the measurement-type (ATR or PTC) for the counts. The dataset 355 
provided has no such distinction, so it was not an option in these analyses.  In other data 356 
contexts, weighting by measurement type could be used to give more consideration to 357 
counts from permanent counters (ATR), thanks to their added reliability as known traffic 358 
count values.   359 



Rural Urban 

Functional Type Frequency Functional Type Frequency 

Interstate
 

533 Interstate
 

520 

Principal Arterial
1 

315 

Principal Arterial 

(Freeway/Expressway)
2 

630 

Minor Arterial
1 

491 Principal Arterial (Other)
 3
 2889 

Major Collector
1 

1250 Minor Arterial
3
 1768 

Minor Collector
3 

2108 Collector
3
 438 

Local
3 

25 Local
3
 11 

1
 Rural Major Road, 

2
 Urban Principal Arterial, 

3
 Minor Road 

Table 3: Frequency of traffic counts by functional class for data used in all subsets 360 
 361 

Distance Measures 362 
 363 
In previous applications of kriging for AADT count estimation, only Euclidean distances have 364 
been used (to estimate covariances via the semivariogram).  Many experts would expect actual 365 
travel distance or impedance (time plus cost) to be a better indicator of count relationships; 366 
however, computing the hundreds of thousands of inter-point distances is challenging (if not 367 
impossible) for software like ArcGIS. Here, TransCAD travel demand modeling software was 368 
used to obtain shortest-path distances. (This activity required 7 hours to produce almost 800 369 
million distance calculations across the Texas network.)  Euclidean distances were calculated 370 
using the Vincenty formula for great circle distance. (Thomas and Featherstone 2005)   All 371 
estimates and model performances are described below. 372 
 373 
RESULTS  374 
 375 
Tests on the various subsets of data show a marginal preference for the exponential 376 
semivariogram. Table 4 shows semivariogram parameter estimates under a variety of 377 
specifications for the Houston region subset and the minor roads subset (which traverses the 378 
entire state of Texas).  Though there is some variability in the range parameter, it has different 379 
meanings for each equation, and there was no clear winner (in terms of error) for function 380 
choice.   381 
 382 
  383 



 

Semivariogram 

function 

Parameters 
Performance of model 

using these specifications 

Nugget, c0 Sill, ce Range, as 
MSE 

Avg abs. 

% error 

H
o

u
st

o
n

 R
eg

io
n

 

Network 

Distance 

Spherical 4.03 5.44 12.81 4.70E+08 63.9% 

Exponential 3.12 6.65 5.19 3.97E+08 62.5% 

Gaussian 4.91 4.59 6.41 5.07E+08 64.7% 

Euclidean 

Distance 

Spherical 4.41 5.31 12.56 4.70E+08 63.0% 

Exponential 3.42 6.57 4.97 4.12E+08 62.6% 

Gaussian 5.26 4.49 6.27 5.28E+08 63.7% 

M
in

o
r 

R
o

ad
s Network 

Distance 

Spherical 4.93 6.28 17.41 6.77E+07 62.8% 

Exponential 3.73 7.89 6.81 5.97E+07 60.4% 

Gaussian 5.74 5.44 8.24 7.06E+07 63.9% 

Euclidean 

Distance 

Spherical 5.23 5.89 16.76 7.35E+07 60.5% 

Exponential 4.22 7.34 6.83 6.56E+07 59.0% 

Gaussian 6.01 5.10 8.01 7.82E+07 61.6% 

Table 4: Semivariogram parameter estimates 384 
 385 

Figure 2 shows how the parameterized semivariogram function estimates compare to each other 386 
as a function of distance.  The functions flatten at different points relative to their ranges, as, such 387 
that they are very close (despite a factor of two difference in their range estimates).  Given that 388 
the effect tapers off at such a far distance (about 12 miles), it seems that this method, with this 389 
data, captures local effects, but not traffic flow effects from nearby highways  390 
 391 

 392 
Figure 2: Estimated semivariogram functions 393 

 394 
The other regional data sets similarly showed no strongly favored model.  Each one has a slightly 395 
lower error for the exponential model but neither distance measure was consistently favored.  396 



This was unexpected, because the network distances contain more information relating to the 397 
effective separation between points.  Contrary to what may be expected, taking the interstate 398 
highways out of the data set produced a slight increase in average errors. (This was not expected 399 
since interstates have dramatically higher traffic counts [and thus higher variance values, 400 
whereas kriging assumes homoskedastic error terms] and may carry a lot of through traffic 401 
[offering less correlated information for sharing with neighboring sites].) 402 
 403 
Table 5 shows the range of results which can be seen in the different data sets.  The median 404 
percentage errors suggest an inconsistent bias hovering on either side of zero.  The average 405 
absolute errors are very high for many of the subsets.  The Houston and urban-road regressions 406 
exhibit the highest absolute average errors, though the latter offers the densest point structure. 407 
However, urban regions and facilities can be quite a bit more complex in their flow variation 408 
over space (thanks to land use diversity and network complexity).  Lower percentage errors were 409 
associated with sites of higher count and higher count density, thanks, presumably, to a higher 410 
correlation between traffic flow and lane numbers (capacity) on larger facilities and the benefits 411 
of more information from nearby points.  412 
 413 

  

Austin 
Region 

Houston 
Region 

Houston 
Region, No IS 

Minor 
Roads Interstates 

Urban 
Roads 

N
et

w
o

rk
 MSE 2.62E+08 3.97E+08 2.66E+08 5.97E+07 2.84E+08 3.68E+08 

Avg abs err 53.9% 62.5% 63.7% 60.4% 19.4% 62.4% 

Median err -2.8% 5.6% 5.2% 1.5% -4.6% -3.1% 

Best Model Spherical Exponential Exponential Exponential Exponential Spherical 

E
u

cl
id

ea
n

 

MSE 2.72E+08 4.12E+08 2.71E+08 6.56E+07 3.24E+08 4.11E+08 

Avg abs err 54.4% 62.6% 63.6% 59.0% 20.3% 62.2% 

Median err -3.6% 5.1% 4.5% 1.3% -2.7% -2.8% 

Best Model Spherical Exponential Exponential Exponential Exponential Exponential 

F
G

L
S MSE 4.20E+08 7.98E+08 6.79E+08 1.48E+08 1.14E+09 5.37E+08 

Avg abs err 115.3% 103.0% 103.6% 114.0% 38.4% 80.6% 

Median err -8.6% 9.1% 8.5% 6.8% -10.9% -3.4% 

Table 5: Errors in prediction for all six data subsets  414 
 415 

Interstates performed relatively well, as a modeled subset, perhaps as a result of the nearby count 416 
locations often being on the same route.  With the lowest number of nearby count locations and a 417 
steep semivariogram function, the interstate count estimates were influenced  by counts of only 418 
the nearest 7 (on average)  count sites (compared to roughly 30 or more nearby sites for other 419 
data sets analyzed here).   420 
 421 
While each model’s percentage errors in prediction on the hold-out samples are significant, they 422 
are a dramatic improvement over non-spatial FGLS techniques, averaging between 19 and 62 423 
percentage points lower.  The greatest improvement from kriging application was seen in the 424 
Austin data set, as well as those with lower traffic counts in general (i.e., minor roads).  Figure 3 425 
illustrates error comparisons for the Houston data sets.  Unfortunately, all three models have a 426 
number of severe outliers.  However, kriging’s improvement is still quite apparent. 427 

 428 



 429 
Figure 3: Comparison of percentage prediction errors for aspatial (FGLS) versus kriging 430 

techniques, using the Houston data set 431 
  432 
Figure 4 illustrates the errors at Houston’s 473 hold-out (prediction) locations.  The vast majority 433 
of extreme outliers (i.e., those with the highest error percentages lie among low-count sites.  434 
These are generally rural non-interstate roads and some small urban roads with two lanes.  Count 435 
prediction along Houston’s interstates and urban arterials performed far better.  The map shows 436 
that estimates at points closer to Houston’s downtown tend to be lower errors, but there are few 437 
strong, regional geographic trends seen.  438 
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 440 
Figure 4: Errors in Houston Area using universal kriging with network distances 441 

(Note: Small points indicate "known" locations.) 442 
 443 

Table 6 provides the estimated parameter values for each model type using the Houston area data 444 
set, along with adjusted R

2
 values.  As shown in Table 6, and earlier, in Table 5, the network- 445 

and Euclidean-based kriging models performed almost identically.  Some coefficient values vary 446 
a fair bit between the spatial and aspatial models (e.g., those on the number of lanes and the 447 
indicator for Rural Major Road), but very little between the two kriging models (with Euclidean 448 
and network distances).  The kriging methods show a decisive improvement in the amount of 449 
variance explained by the variables (as exemplified by the adjusted R2 values). 450 

  451 



 

FGLS Network Euclidean 

 

Beta t-stat Beta t-stat Beta t-stat 

Constant 10.66 23.63 7.72 17.11 7.85 17.40 

Speed 0.0004 0.05 0.0276 4.04 0.0339 4.96 

Lanes 2.01 32.99 1.49 24.47 1.55 25.32 

Employment / Acre -9.47 -10.14 -8.71 -9.33 -7.48 -8.01 

Population / Acre 5.57 12.24 5.55 12.18 4.62 10.16 

Rural Interstate 5.16 12.70 7.39 18.18 7.25 17.84 

Rural Major Road 0.52 3.28 2.08 13.12 2.09 13.21 

Urban Interstate 3.79 7.76 4.79 9.81 4.68 9.58 

Urban Arterial 3.57 9.81 3.71 10.20 3.65 10.04 

 

Adj R
2
 = .674 Adj R

2
 = 0.971 Adj R

2
 = 0.970 

Table 6: Coefficient estimates and results from FGLS and kriging with the exponential model for 452 
Houston subset 453 

Note: Values apply to Box-Cox transformed AADT values.  454 

 455 

One final issue deserving attention relates to the covariance matrices used here.  When non-456 
Euclidean distances are used in kriging, the covariance matrix may not be positive semi-definite 457 
(PSD), a condition necessary for mode validity (Curriero, 2006). In the cases when this occurred 458 
here, the estimates’ errors could be consistent with those of the other models or wildly high.  459 
Interestingly, the data subsets that had this problem exhibited it for just one or two – but not all 460 
three – semivariogram models.  Since the Euclidean-distance methods used here perform nearly 461 
as well as their network-distance counterparts (and are far easier to estimate in practice), it seems 462 
wise to simply use Euclidean distances. 463 

 464 

CONCLUSIONS  465 
This study has shown that universal kriging can provide more accurate traffic count estimates 466 
than aspatial regression, across a variety of road types in Texas. Moreover, Euclidean distance-467 
based kriging fared just about as well as network-based metrics, suggesting that the latter’s 468 
complexity is not warranted in such applications.  Universal kriging reduced error by controlling 469 
for local attributes and recognizing distance-based correlation structures that exploit information 470 
found in nearby residuals.  Recognition of such covariates resulted in average absolute error 471 
reductions between 16% and 79% here, depending on the data set and model specification used. 472 
Both the spatial and aspatial methods examined here offered their lower error percentages in the 473 
Austin application, and, in particular, on the interstate system’s data point subset.  Errors tended 474 
to be lower at locations with higher counts and more nearby count locations, though the urban 475 
set, which was above average for both, offered substantial count variation and thus was amongst 476 
the highest in overall errors. 477 
 478 
It was interesting to find that network distances offered little improvement to models’ predictive 479 
performance than Euclidean distances.  This was the case for every subset of data tested.  It is 480 
possible that with a more dense set of count locations the model would benefit more from the 481 
additional information provided in network distances, but with TxDOT’s current data, this is the 482 



limit.  Given the number of links and sites of interest in large networks, like the ones used here, 483 
calculation of shortest path distances is probably unwarranted (especially since it can be very 484 
computationally intensive and requires additional information on network structures). 485 
 486 
The issue with non-PSD covariance matrices makes network distances even less compelling.  To 487 
combat or work around this problem, some solutions have been suggested, including spatial 488 
moving averages (Ver Hoef et al., 2006) and low-rank thin plate splines (Wang and Ranalli, 489 
2007).  Cressie and Johannesson’s (2008) “fixed rank kriging” scheme uses scales of spatial 490 
dependence to create the covariance matrix, which they show is always positive semi-definite. 491 
 492 
As a way of exploiting spatial information (while capitalizing on local attributes), universal 493 
kriging is worthy of application in a variety of transportation and other contexts.  Opportunities 494 
to improve upon universal kriging, to better reflect heteroskedasticity in response variability, 495 
would be useful.  Though the implementation here included the Cressie-Hawkins method and 496 
FGLS (as opposed to only OLS), estimation of the covariance matrix, Cdd, still relies a constant-497 
variance assumption.  An interesting alternative to be considered, for future work, involves 498 
calculation of covariances as a function of inter-site distances and other attributes using site-pair 499 
interaction variables (such as indicators for similarity in road type and lane counts).  To do this, 500 
an expanded logistic function (to ensure estimates within the [-1,+1] range) may be used for 501 
correlations, with variance estimates coming from the FGLS procedure’s estimates (as used in 502 
this work). A full (non-diagonal) variance-covariance matrix that does not presume 503 
homoskedasticity and does allow for interesting spatial (and other) effects could then be applied, 504 
providing more information in the spatial interpolation process for AADT estimation – and for 505 
myriad other spatial application contexts that analysts across a variety of disciplines may be 506 
studying (e.g., pavement quality, population densities, home values, vegetative cover, soil 507 
quality, and water chemistry). Spatial data surround us, and more specifications (and data 508 
contexts) should be evaluated. 509 
 510 
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