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35 ABSTRACT 
36 
37 As tour-based methods for activity and travel participation patterns replaces trip-based methods, time- 
38 of-day (TOD) choice modeling remains problematic. In practice, most travel demand model systems 
39 handle tour scheduling via joint-choice multinomial logit (MNL) models, which suffer from the well- 
40 known independence of irrelevant alternatives (IIA) assumption. This paper introduces a random utility 
41 maximization (RUM) model of tour scheduling called the bivariate multinomial probit (BVMNP). This 
42 specification enables correlations across TOD alternatives, both outbound and return (on a tour) and 
43 over time slots (in a day). The model is estimated in a Bayesian setting on work-tour data from the San 
44 Francisco Bay Area (with 28 time slots). Empirical results suggest that a variety of individual, household, 
45 and tour characteristics have reasonable effects on scheduling behavior. For instance, older persons 
46 typically pursue work tours at earlier times of day, part-time workers pursue their work tours later, and 
47 those with additional activities and tours tend to arrive slightly later and leave much earlier than those 

mailto:jlemp@camsys.com
mailto:kkockelm@mail.utexas.edu
mailto:paul.damien@mccombs.utexas.edu


undertaking only a single tour, everything else constant.  The model out-performs a comparable MNL, 48 
while offering reasonable implications under a variety of road-tolling scenarios.   49 
 50 
 51 
1. INTRODUCTION 52 
 53 
Activity scheduling is a key determinant of temporal variations in travel demand patterns.  Yet this 54 
dimension of behavior is often greatly simplified in model specifications, particularly as compared to 55 
other choice dimensions, such as mode and destination (as noted in Vovsha et al. [2005] and TRB 56 
[2007]).  As transportation policies become more focused on congestion and demand management (see, 57 
e.g., AASHTO 2007), behavioral variations across times of day are increasingly important.  This is 58 
particularly the case when examining variable-pricing policies (Schofer 2005), which can shift travelers’ 59 
time-of-day (TOD) choices to off-peak and shoulder periods.   60 
 61 
Existing TOD models can be categorized into two broad groups:  continuous and discrete.  Continuous 62 
models generally rely on hazard-based specifications (see, e.g., Wang 1996 and Bhat and Steed 2002, 63 
among others) and allow for all times of day. As Bhat and Steed (2002) point out, discrete-choice 64 
methods rely on interval boundaries, usually set rather arbitrarily, and discretization always results in a 65 
loss in temporal resolution.  Nonetheless, such methods typically are based in random utility 66 
maximization (RUM) theory, which provides a defensible and econometrically rigorous connection to 67 
microeconomic theories of behavior.  Current travel demand model systems rely heavily on RUM for 68 
other travel choices (such as destination and mode), often integrating such choices in a behaviorally 69 
consistent fashion (via logsums, for example [see, e.g., PB Consult 2005]).  Moreover, utility models offer 70 
a basis for calculating consumer surplus change (see, e.g., de Jong et al. 2007 or Kockelman and Lemp 71 
2009), which is useful for policy and project evaluation (including, for example, environmental justice 72 
concerns).  In addition, existing continuous methods do not appear capable of consistently incorporating 73 
the two-plus timing features of a tour (with possible exception of the continuous cross-nested logit 74 
model [Lemp et al. 2010]).  75 
 76 
Most of the earliest TOD models used discrete choice methods.  For example, in the context of work trip 77 
timing, Abkowitz (1981) and Small (1982) used the multinomial logit (MNL), while Chin (1990) turned to 78 
the nested logit and Small (1987) developed the ordered generalized extreme value (OGEV) model (to 79 
alleviate the independence of irrelevant alternatives (IIA) assumption).  In each case, however, the 80 
choice spectrum was limited to the AM peak period, rather than the entire day.  For large-scale demand 81 
systems, temporal variations across the entire day are needed.  82 
 83 
Several researchers have modeled TOD choice for the entire day (with MNL and OGEV model 84 
specifications), using broad alternative intervals of 3 or more hours (see, e.g., Bhat 1998 and Steed and 85 
Bhat 2000).  Recent advances in activity-based modeling (where the unit of travel is the tour, rather than 86 
the trip) have led to the application of several two-dimensional TOD choice models (since a tour has at 87 
least two timing components: outbound and return legs).  Vovsha and Bradley (2004), Abou Zeid et al. 88 
(2006), and Popuri et al. (2008) modeled tour timing in this way, using joint MNL specifications, each 89 
with relatively short (30-minute or 1-hour) alternatives.   90 
 91 
While discrete choice methods offer several advantages over continuous methods, most applications of 92 
two-dimensional TOD choice models in large-scale travel demand model systems use MNL specifications 93 
(see, e.g., PB Consult 2005).  This is partly because it offers closed-form choice-probability expressions, 94 
but also because it can be estimated with relative ease, even with large numbers of alternatives.  When 95 



relatively short TOD choice intervals are considered (e.g., 1 hour or 30 minutes), the number of joint 96 
choice alternatives grows quickly in two dimensions.  However, one would expect error term 97 
correlations to exist between alternatives close in time, and the MNL cannot accommodate such 98 
correlations.   99 
 100 
To address the various issues described above, this paper describes a type of two-way autoregressive 101 
error term correlation structure for a multinomial probit (MNP) model of tour TOD choices.  The model 102 
is estimated on work tour data from the 2000 San Francisco Bay Area Travel Survey (BATS).  To 103 
accommodate the open-form probability expressions of the MNP, Bayesian estimation techniques are 104 
employed.  And, to avoid the large number of alternatives that emerge with short time intervals (of 30 105 
minutes, as used here) across two timing dimensions, a bivariate MNP (BVMNP) specification is used, 106 
where each commuter chooses exactly two (rather than one) alternatives, one from each timing 107 
dimension. 108 
 109 
The next section specifies the BVMNP model, while Section 3 discusses the Bayesian estimation 110 
procedures used.  Section 4 introduces the data set, Section 5 presents analytical results, and Section 6 111 
offers some concluding remarks.  112 
 113 
2. BIVARIATE MULTINOMIAL PROBIT FORMULATION 114 
 115 
Like the MNL, the multinomial probit (MNP) relies on a latent random utility specification.  However, the 116 
random error terms follow a normal distribution (rather than a type I extreme value, or Gumbel, 117 
distribution).  The normality results in open-form expressions for alternative probabilities (unlike the 118 
MNL), which is why the MNP has not been utilized to a greater extent in the literature.  Thanks to 119 
Bayesian and other sophisticated statistical methods, one need not assume error terms are independent 120 
and identically distributed with the MNP.  In this section, a bivariate MNP (BVMNP) model specification 121 
for tour TOD choice is formulated, where the twin variables of interest are a tour’s home-to-work arrival 122 
time and work-to-home departure time.   123 
 124 
2.1 Random Utility Framework and Model Specification 125 
 126 
Each alternative in an MNP model has a (latent) random utility, and the decision-maker always chooses 127 
the alternative offering the greatest underlying utility value.  Since the MNP model developed here 128 
seeks to reflect two-dimensional travel-timing, the choice context needs special attention.  One 129 
reasonable way to approach the problem is to consider it in a single dimension.  Instead of choosing tour 130 
arrival times and tour return times, one may assume that individuals jointly choose tour arrival and 131 
return times, and the analyst need only consider a single choice dimension.  For instance, consider the 132 
following joint utility specification: 133 
 134 
,௔ݐ)ܷ  (௥ݐ = ଵܸ(ݐ௔) + ଶܸ(ݐ௥) + ଷܸ(ݐ௥ − (௔ݐ + ௔௥ߝ      (1) 135 
 136 
Here, ଵܸ is the systematic utility component related to arrival time ݐ௔, ଶܸ is the component related to 137 
return time ݐ௥, and ଷܸ is the component related to duration ݐ௥ −  ௔.  A key difficulty with this approach 138ݐ
is that one is usually interested in rather small time intervals as alternatives; and, in two dimensions, the 139 
number of alternatives can become quite large.  For instance, if 30-minute intervals are used, one has 140 
1,176 alternatives.  For an MNP model, this produces a covariance matrix of size 1,176 x 1,176, 141 
presenting a number of computational difficulties in model estimation.  With this in mind, a bivariate 142 
multinomial probit (BVMNP) model is developed here, where tour arrival time represents one choice 143 



dimension and tour return time represents another.  While the BVMNP model has been used in previous 144 
studies (see, e.g., Golob and Regan 2002 and Zhang et al. 2008), no previous work has investigated 145 
choice contexts with more than three or four alternatives.  In addition, the estimation procedure used 146 
here varies from traditional methods, in order to accommodate the large number of alternatives.  In this 147 
bivariate context, one must specify two separate utility functions (one for tour arrival and another for 148 
tour return), as follows: 149 
 150 
 ܷ௔௝ = ௔ܸ௝ + ௔௝ߝ          (2) 151 
 ௥ܷ௟ = ௥ܸ௟ + ௥௟ߝ           (3) 152 
 153 
Here, ܷ௔௝  and ௥ܷ௟  denote latent utilities for arrival and return time alternatives j and ݈, ௔ܸ௝  and ௥ܸ௟  are 154 
systematic utility components, and ߝ௔௝  and ߝ௥௟  are random error components.  The set of arrival time 155 
alternatives is identical to the set of return time alternatives, with arrival time alternatives indexed by 156 ݆ = 1, … , ࣤ and return time alternatives indexed by ݇ = 1, … , ࣤ.  While this specification does not allow 157 
for a utility component specifically related to tour/activity duration, it does significantly reduce the 158 
number of choice alternatives.  For instance, if time-of-day is modeled in 30-minute intervals over the 159 
24-hour day period (as it is here), this results in 96 alternatives (and utility values), rather than the 1,176 160 
needed for the joint choice model.   161 
 162 
2.2 Error Correlation Structure 163 
 164 
Since one cannot reasonably assume independence of alternatives, the correlation structure of the error 165 
components deserves some attention.  While it is theoretically feasible to estimate the entire covariance 166 
matrix without imposing any pre-specified structure, there is a clear ordering of alternatives, which 167 
evokes certain expectations for covariance properties.  With this in mind, a specific structure is imposed 168 
here. 169 
 170 
One can imagine a variety of correlation structures.  Here, a pseudo-AR specification of covariance 171 
components is pursued.  Components of the covariance matrix are formulated directly, with the upper 172 
left and lower right quadrants taking on forms similar to a typical AR1 process (though it is worth noting 173 
that the formulation cannot be directly interpreted as an AR1 process).  Off-diagonal quadrants are 174 
formulated slightly different, due to bivariate interactions between work arrival and return times, 175 
though covariance components appear similar to those of an AR1 process.  The covariance matrix is 176 
specified as follows: 177 
 178 

 Σ = ൤ ௔ࣱ ࣝࣝ′ ௥ࣱ൨          (4) 179 

 ௔ࣱ = ൥इ௔ଵଵ ⋯ इ௔ଵࣤ⋮ ⋱ ⋮इ௔ࣤଵ ⋯ इ௔ࣤࣤ൩ , इ௔௣௤ =  ௔ଶ      (5) 180ߪ௔ห௧೛ି௧೜หߣ

 ௥ࣱ = ൥इ௥ଵଵ ⋯ इ௥ଵࣤ⋮ ⋱ ⋮इ௥ࣤଵ ⋯ इ௥ࣤࣤ൩ , इ௥௣௤ =  ௥ଶ      (6) 181ߪ௥ห௧೛ି௧೜หߣ

 ࣝ = ൥ࣷଵଵ ⋯ ࣷଵࣤ⋮ ⋱ ⋮ࣷࣤଵ ⋯ ࣷࣤࣤ൩ , ࣷ௣௤ = ቊ                0                                for ݌ > ݌ ௗห(௧೜ି௧೛)ି൫ఓభାఓమ௧೛൯หାଵ  forߣ௥ߪ௔ߪݍ ≤  182 (7)   ݍ

 183 



Here, ௔ࣱ and ௥ࣱ are covariance matrices defining the error structure within the arrival time dimension 184 
and within the return time dimension, and ࣝ and ࣝ′ are the covariance matrices defining the error 185 
structure across arrival and return times.  Arrival time- and return time-specific variances are denoted 186 
by ߪ௔ଶ and ߪ௥ଶ, respectively, ߣ௔ and ߣ௥ are correlation coefficients of arrival and return utility 187 

components separated by 1 hour, and ߣௗห(௧೜ି௧೛)ି൫ఓభାఓమ௧೛൯หାଵ
 is the correlation coefficient between 188 

arrival and return utility components.    One last item needing attention here is the role of ߤଵ and ߤଶ 189 
(which define the “baseline” duration on which elements of ܥ are based).  Essentially, the model posits 190 
that some activity duration may be highly desired (e.g., 8 hours for full-time workers arriving at work 191 
around 9 am), and this term allows correlations across arrival and return time utilities to be highest for 192 
such durations.  The “baseline” duration is equal to some constant, ߤଵ, plus an additional term that 193 
varies over the work arrival time, ߤଶݐ௣.  Of course, it is not reasonable to view ߤଵ and ߤଶ as two fixed 194 
values, since one expects differences across individuals or classes of individuals.  This is particularly 195 
important since work duration is not reflected in the systematic utility equations.  Here, ߤଵ and ߤଶ are 196 
taken to be two separate parameters each, two for full-time workers making no additional tours during 197 
the day (1ߤ,full and 2ߤ,full) and two for part-time workers and/or those making additional tours (1ߤ,part 198 
and 2ߤ,part), adding a layer of observed heterogeneity to the model.1  Of course, one may expect 199 
preferred durations to vary with other traveler attributes, and one could control for those too.  The 200 
reason ߤଵ and ߤଶ are differentiated here only between full-time workers (with no additional tours) and 201 
part-time workers (and/or those making additional tours) is that this distinction seems most important.  202 
If ߤଵ and ߤଶ differed for each individual, Σ would also differ for each individual, requiring computation of 203 
distinct Σ’s for each observation, which can be computationally expensive.  By allowing ߤଵ and ߤଶ to vary 204 
over only two traveler groups, the estimation process is streamlined, with only two covariance matrices, 205 Σfull and Σpart, thus facilitating demonstration of the model here.   206 
 207 
In this paper, 30-minute time intervals serve as the choice alternatives.  Since there are very few 208 
individuals choosing times very early in the day and very late in the day (for both arrival and return 209 
choice dimensions), boundary alternatives were needed, essentially grouping many 30-minute 210 
alternatives into a single alternative.  Since these boundary intervals may exhibit very different 211 
properties than non-boundary alternatives, their variances and correlations adjusted, as described 212 
below. 213 
 214 
First, each of the four boundary alternatives’ error terms is allowed to have its own variance parameter, 215 
denoted by ߪ௔ଵଶ ௔ଶࣤߪ , ௥ଵଶߪ , , and ߪ௥ଶࣤ .  Second, correlation coefficients between utility components are 216 
assumed to be inversely related to each alternative’s interval size.  More specifically, these parameters 217 
are assumed to vary across each pair of alternatives as follows: 218 
 219 

 Corr(݌௔, (௔ݍ = ௔ห௧೛ೌି௧೜ೌหߣ ቀ size೛sizedefቁିఛೌೝ ቀ size೜sizedefቁିఛೌೝ
      (8) 220 

 Corr(݌௥, (௥ݍ = ௥ห௧೛ೝି௧೜ೝหߣ ቀ size೛sizedefቁିఛೌೝ ቀ size೜sizedefቁିఛೌೝ
      (9) 221 

 Corr(݌௔, (௥ݍ = ௗห௧೜ೝି௧೛ೌି൫ఓభାఓమ௧೛ೌ൯ାଵหߣ ቀ size೛sizedefቁିఛ೏ ቀ size೜sizedefቁିఛ೏
     (10) 222 

 223 

                                                            
1 The distinction here was chosen because average travel durations for full-time workers in the data sample were 
found to be about 8.2 hours, while average travel durations for both part-time workers and those making 
additional tours during the day were found to be about 6 hours. 



Here, sizedef is 30 minutes (the default interval size), and size௣ and size௤ are the interval sizes of 224 
alternatives p and q (measured in minutes).  ߣ௔, ߣ௥, and ߣௗ are the same as described above, and ߬௔௥  225 
and ߬ௗ are two new (non-negative) parameters to be estimated.  The assumption of non-negativity 226 
presumes that correlations between boundary alternatives and other alternatives are smaller than those 227 
across non-boundary alternatives.  It should be clear that the size terms only come into play when one 228 
or both of the alternatives are boundary alternatives.  Moreover, these size terms reduce to the original 229 
model specification if ߬௔௥  or ߬ௗ is zero.  Finally, it is worth noting that ߬௔௥  affects both the correlations 230 
across arrival alternatives and those across departure alternatives.  Thus, it is assumed that the way in 231 
which the interval size affects correlation patterns across arrival times is the same as the way it affects 232 
correlation patterns across return times.  233 
 234 
2.3 Systematic Utility Construction 235 
 236 
Finally, the systematic utility specifications for arrival time and return time utilities take the forms shown 237 
in equations 3.2 and 3.3.  Since each alternative represents a discrete time interval, the t in the utility 238 
equation is taken to be the midpoint of the time interval.  For notational convenience, the systematic 239 
utilities for arrival time and return time alternatives are rewritten as follows: 240 
 241 
 ௜ܸ,௔௝ = ௜ࣲ௝ߚ௔ + ∑ ௣࣪ୀଵ(௝ݐ)௔௣݃௜,௔௣ߟ        (11) 242 
 ௜ܸ,௥௟ = ௜ࣲ௟ߚ௥ + ∑ ௣࣪ୀଵ(௟ݐ)௥௣݃௜,௥௣ߟ        (12) 243 
 244 
Here, ݃௜,௔௣(ݐ௝) and ݃௜,௥௣(ݐ௟) represent network characteristics of type p (such as travel time and 245 
reliability) for arrival and return time intervals ݐ௝  and ݐ௟; and ߚ௔, ߚ௥, ߟ௔, and ߟ௥  are parameters to be 246 
estimated.  Similar to MNL and other choice models, covariates that do not vary over time alternatives 247 
(e.g., an individual’s gender or age) cannot be introduced in the normal way.  One can imagine any 248 
number of continuous forms to use in this context.  Here, ௜ࣲ௝  and ௜ࣲ௟  represent row vectors of 249 
individual-specific attributes interacted with cyclical functions (like the utility formulations of Abou Zeid 250 
et al. 2006 and Popuri et al. 2008).  That is, ௜ࣲ௝  and ௜ࣲ௟  have the following forms: 251 
 252 

 ௜ࣲ௝ =

ێێۏ
ێێێ
ێێێ
ێێێ
ۍێێ ௜ܺଵsin(2ݐߨ௝/24)௜ܺଵsin(4ݐߨ௝/24)⋮௜ܺଵsin(2ܳଵݐߨ௝/24)௜ܺଵcos(2ݐߨ௝/24)⋮௜ܺଵcos(2ܳଵݐߨ௝/24)௜ܺଶsin(2ݐߨ௝/24)⋮௜ܺଶcos(2ܳଶݐߨ௝/24)⋮௜ܺ௄sin(2ݐߨ௝/24)⋮௜ܺ௄cos(2ܳ௄ݐߨ௝/24)ۑۑے

ۑۑۑ
ۑۑۑ
ۑۑۑ
ېۑۑ

ᇱ

,   ௜ࣲ௟ =

ێێۏ
ێێێ
ێێێ
ێێێ
ۍێ ௜ܺଵsin(2ݐߨ௟/24)௜ܺଵsin(4ݐߨ௟/24)⋮௜ܺଵsin(2ܳଵݐߨ௟/24)௜ܺଵcos(2ݐߨ௟/24)⋮௜ܺଵcos(2ܳଵݐߨ௟/24)௜ܺଶsin(2ݐߨ௟/24)⋮௜ܺଶcos(2ܳଶݐߨ௟/24)⋮௜ܺ௄sin(2ݐߨ௟/24)⋮௜ܺ௄cos(2ܳ௄ݐߨ௟/24)ۑۑے

ۑۑۑ
ۑۑۑ
ۑۑۑ
ᇱېۑ

,    253 

  254 



௜ࣲ =
ێێۏ
ۍێێ ௜ࣲଵ⋮ 00 ݃௜,௔(ݐଵ)   0⋮   0௜ࣲࣤ0 0ࣲ௜ଵ ݃௜,௔(ࣤݐ) 00 ݃௜,௥(ݐଵ)00 ⋮ࣲ௜ࣤ   0 ⋮  0   ݃௜,௥(ࣤݐ)ۑۑے

 ېۑۑ

 255 

 ൤ ௜ܸ,௔௜ܸ,௥ ൨ = ௜ࣲ ൦ߚ௔ߚ௥ߟ௔ߟ௥ ൪        (13) 256 

 257 
 258 
The number of individual-specific attributes is ܭ, with each individual attribute interacted with 2ܳ௞  259 
cyclical functions (ܳ௞ for sine functions and ܳ௞ for cosine functions).  Some covariates may be interacted 260 
with fewer than 2ܳ௞  cyclical functions by restricting the applicable elements of ߚ௔ and ߚ௥  to be zero.  261 
There are a couple of reasons for selecting this utility form.  First, it allows utility to take on a rich 262 
assortment of shapes, including multimodal ones.  In addition (and as pointed out be Abou Zeid et al. 263 
2006 and Popuri et al. 2008), 24 hours is a multiple of each cyclical function’s period, which offers day-264 
to-day consistency in the utility function (e.g., utilities at 0 and 24 hours are identical).  And by 265 
construction, the systematic utilities are linear in unknown parameters.   266 
   267 
3. BVMNP PARAMETER ESTIMATION 268 
 269 
Estimation of the BVMNP model can be performed via MCMC simulation.  Bayesian techniques are 270 
particularly well-suited for estimation of the BVMNP (or any MNP for that matter) since classical 271 
methods generally rely on simulated maximum likelihood estimation (MSLE) to avoid numerical 272 
evaluation of multi-dimensional integrals involved in the likelihood (McFadden 1989 and Geweke et al. 273 
1994).   274 
 275 
In the standard Bayesian construction of the MNP model (see, e.g., Albert and Chib 1993, McCulloch and 276 
Rossi 1994, and Zhang et al. 2008, among others), one need not evaluate choice probabilities at all.  For 277 
the MNP model, the dependent variable, ௜ܻ, can take on values 1, 2, …, ࣤ, where ௜ܻ’s value simply 278 
indexes the chosen alternative.  With the latent random utility specification of the model, the 279 
probability of ௜ܻ taking on a value q is given by the following: 280 
 281 
 ܲ( ௜ܻ = (ݍ = ܲ( ௜ܷ௤ ≥ max௣∈ࣤ ௜ܷ௣)       (14)  282 
 283 
In other words, the choice probability of alternative q is equivalent to the probability that the latent 284 
utility associated with alternative q is the maximum utility value.  Here, ௜ܷ is treated as a random 285 
(nuisance) parameter to be estimated and is normally distributed (under the MNP model specification), 286 
with mean given by the systematic utility, ௜ܸ, and variance given by Σ.  For the BVMNP model, ௜ܻ is 287 
simply taken to be bivariate, with joint choice probability of arrival time ݍଵ and return time ݍଶ given by 288 
the following: 289 
 290 
 ܲ( ௜ܻ = ሾݍଵ, (ଶሿݍ = ܲ( ௜ܷ,௔௤భ ≥ max௣∈ࣤ ௜ܷ,௔௣ ∩ ௜ܷ,௥௤మ ≥ max௣∈ࣤ ௜ܷ,௥௣)   (15) 291 
 292 



The joint choice probability of arrival time ݍଵ and return time ݍଶ is equivalent to the probability that the 293 
latent utility associated with arrival time alternative ݍଵ is the maximum utility across all arrival time 294 
alternatives and that the latent utility associated with return time alternative ݍଶ is the maximum utility 295 
across all return time alternatives.  Bayesian estimation proceeds via a three-step Gibbs sampler as 296 
follows: 297 
 298 

Step 1:  Draw ௜ܷ  | ௜ܸ , Σ௜, ௜ܺ , ௜ܻ  ∀ ݅ 299 
Step 2:  Draw ߣ, ,ߤ ,ߪ ߬| ௜ܷ , ௜ܸ , ௜ܺ , ௜ܻ  ∀ ݅ 300 
Step 3:  Draw ߚ௔, ,௥ߚ ௜ܷ | ߟ , Σ௜, ௜ܺ , ௜ܻ  ∀ ݅ 301 

 302 
The Gibbs sampler does not generate draws for ߪ௔ଶ or ߪ௥ଶ (the variances of non-boundary alternatives) 303 
here.  It is well known that the MNP requires one element of Σ to be fixed for identification purposes 304 
(see, e.g., McCulloch and Rossi 1994).  However, with the BVMNP, one element of Σ must be fixed for 305 
each nominal measure (Zhang et al. 2008).  Thus, ߪ௔ଶ or ߪ௥ଶ are fixed at 1 for identification purposes, 306 
though boundary alternative variances are estimated.   307 
 308 
In step 1, a normal random walk Metropolis-Hastings (MH) step (see, e.g., Gamerman and Lopes 2006) is 309 
used to draw an individual’s utility values simultaneously.  The proposal density for the MH step is a 310 
multivariate normal, with mean equal to the current utility values, and covariance given by ࣽΣ௜.  Here, 311 Σ௜ is the utility covariance matrix for individual i, computed from the current values of covariance 312 
parameters, and ࣽ is a deflation factor to increase the probability of proposal acceptance.  The deflation 313 
factor was set to ࣽ = 0.05, after calibrating the parameter to achieve approximately 25% proposal 314 
acceptance.  It was found that this MH algorithm is much more computationally stable than the typical 315 
Gibbs sampling algorithm, and it reduces computation time per iteration by nearly one half.  316 
Unfortunately, since utility values are more restricted in their movements from one iteration to the 317 
next, the algorithm is slow to converge.   318 
 319 
In the second step of the Gibbs sampler, a draw of the covariance matrix parameters is generated.  320 
Priors on ߣ௔, ߣ௥, and ߣௗ are specified to be independent uniform distributions over the interval from 0 321 
to 1, reflecting a belief that there should be positive correlation across alternative utilities.  Priors on 322 1ߤ,full and 1ߤ,part are specified to be independent normal distributions with means of 9 and 6 (hours), 323 
respectively, and variances of 2 each, while priors on 2ߤ,full and 2ߤ,part are specified to be normal 324 
distributions, each with means and variances of 0 and 1, respectively.  Independent gamma priors are 325 
employed for ߪ௔ଵଶ ௔ଶࣤߪ , ௥ଵଶߪ , , and ߪ௥ଶࣤ , each with shape and scale parameters of 2 and 1, respectively, 326 
while ߬௔௥  and ߬ௗ are assumed to follow independent gammas with shape and scale parameters of 1 327 
each in the prior.  The gamma prior restricts these parameters to be positive.  Thus, the full conditional 328 
posterior distribution of the variance parameters can be written as follows2: 329 
 330 

                                                            
2 When conditioned on ௜ܷ and ௜ܸ, ߪ ,ߤ ,ߣ௔ଵଶ ௔ଶࣤߪ , ௥ଵଶߪ , ௥ଶࣤߪ , , and ߬ are independent of ௜ܺ and ௜ܻ. 



,ߣ)݌  ,ߤ ,ߪ ߬ | ௜ܷ , ௜ܸ  ∀ ݅) ∝  ଶ        (16) 331ܪଵܪ
where, 332 

ଵܪ  = |Σfull|ି௡full/ଶหΣpartหି௡part/ଶexp ൬− ଵଶ ൫∑ ( ௜ܷ − ௜ܸ)ᇱΣ௜ିଵ( ௜ܷ − ௜ܸ)௜ ൯൰ 333 

ଶܪ  = ൫ߪ௔ଵଶ ௔ଶࣤߪ ௥ଵଶߪ ௥ଶࣤߪ ൯exp ൭− ଵଶ ቆ∑ ൫ఓ೜ିఓഥ೜൯మఙ೜మସ௤ୀଵ ቇ − ൫ߪ௔ଵଶ + ௔ଶࣤߪ + ௥ଵଶߪ + ௥ଶࣤߪ + ߬௔௥ + ߬ௗ൯൱ 334 

 ∑ ൫ఓ೜ିఓഥ೜൯మఙ೜మସ௤ୀଵ = ൫ఓ1,fullିଽ൯మସ + ൫ఓ1,partି଺൯మସ + ൫2ߤ,full൯ଶ + ൫2ߤ,part൯ଶ
 335 

 336 
Since the density here is not in any standard form (with respect to the parameters), a MH step is used to 337 
draw these parameters.  The proposal density is assumed to be normal, with mean given by the current 338 
draw of the parameters (i.e., a normal random walk) and variance initially taken to be very small and 339 
updated during the estimation process to aid in generating good proposals (see, e.g., Holden et al. 340 
2009).   341 
 342 
In the last step of the Gibbs sampler, a draw of ߚ௔, ߚ௥, and ߟ is generated from the full conditional 343 
posterior distribution.  For notational convenience, write ߚ = ሾߚ௔′, ,′௥ߚ  ሿᇱ.  Here, the prior for these 344′ߟ
parameters is chosen to be multivariate normal with mean ̅ߚ and covariance matrix Σఉ.  Thus, the full 345 
conditional posterior is proportional to the following3: 346 
 347 
௜ܷ | ߚ)݌  , Σ௜, ௜ܺ  ∀ ݅) ∝ 348 

 exp ൬− ଵଶ ቀ൫ߚ − ߚ൯ᇱΣఉିଵ൫ߚ̅ − ൯ߚ̅ + ∑ ( ௜ܷ − ௜ࣲߚ)ᇱΣ௜ିଵ( ௜ܷ − ௜ࣲߚ)௜ ቁ൰   (17) 349 

 350 
Suppose Ω and Λ are given by the following: 351 
 352 
 Λ = Σఉିଵ̅ߚ + ∑ ௜ࣲᇱΣ௜ିଵ ௜ܷ௜         (18) 353 

 Ω = ൫Σఉିଵ + ∑ ௜ࣲᇱΣ௜ିଵ ௜ࣲ௜ ൯ିଵ
        (19) 354 

 355 
Expression 17 suggests that ߚ is proportional to a multivariate normal distribution with mean given by 356 ΩΛ and covariance matrix Ω.  Thus, ߚ is drawn from a multivariate normal distribution.  Here, vague 357 
prior parameters are specified, with ̅ߚ taken to be a vector of zeroes, off-diagonal elements of Σఉ taken 358 
to be zeroes, and diagonal elements of Σఉ set to be very large.  Since each network variable should 359 
affect utilities negatively, the normal prior distributions for ߟ were truncated above at zero.  That is all 360 
that is needed to generate the MCMC draws for this BVMNP model. 361 
 362 
4. DATA DESCRIPTION 363 
 364 
The data used here come from the 2000 San Francisco Bay Area Travel Survey (BATS).  The survey 365 
collected travel information for roughly 17,000 households over a 2-day period.  The observational unit 366 
is the travel tour (over 100,000 recorded tours), with network attributes provided for each of five TOD 367 
periods and seven modes.  In addition, each record was coded with a variety of demographic and travel 368 
information.  Since the analysis is focused on work-related travel, the sampling frame was restricted to 369 
the first home-based work tour made on a weekday for an individual (over the 48-hour survey period), 370 
limiting the sample to about 18,000 tours.   371 

                                                            
3 Note that conditional on Σfull, Σpart, ௜ܷ, and ௜ܺ, ߚ is independent of ௜ܻ. 



 372 
Model estimation is very computationally burdensome due to the large number of utility values that 373 
must be drawn for each individual (one for each alternative).  So, an n = 997 random sample of tours 374 
was used in model estimation.    375 
 376 
Since time-varying network variables (as shown in equations 11 and 12) are not contained in the data 377 
(though the data does contain network information across 5 broad time-of-day periods), regression 378 
equations were developed to impute average travel time and its variance.  A similar methodology to 379 
that of Popuri et al. (2008) was used to this end.  For brevity, the results of these models are not 380 
presented here, though it should be noted that the models appropriately predict travel times and 381 
variances to be highest during typical AM and PM peak periods.  Lemp (2009) provides more details on 382 
these results. 383 
 384 
5. EMPIRICAL RESULTS 385 
 386 
Given the nature of the full conditional distribution for the random utilities, the Gibbs sampler was very 387 
slow to converge. It is well-known that in high-dimensional utility choice models convergence could be 388 
an issue due to poor mixing; however, researchers supplement this by ensuring that the resulting 389 
estimates are contextually reasonable, which is the approach we adopted. (For details, see Rossi et al. 390 
2005, and the many references therein.)  It is important to note that maximum likelihood estimates are 391 
also difficult to obtain in these models. There is simply no guarantee of obtaining global maxima when 392 
the likelihood surface is as complicated (i.e., highly multimodal) as the one in this paper.   393 
 394 
The utility function utilizes eight individual-specific variables plus a constant.  These variables include an 395 
indicator for males, age of the individual, an indicator for part-time workers, an indicator for high 396 
income households (over $75,000 per year), household size, the number of tours undertaken by the 397 
individual over the entire day (excluding the modeled tour), travel distance to the destination, and a 398 
variable indicating whether the destination zone is coded as central business district (CBD).  Table 1 399 
presents the estimation results. 400 
 401 



Table 1:  Model Estimation Results 402 

Variable 
Arrival-Specific Utility Return-Specific Utility

Mean 
Estimate 95% Interval Mean 

Estimate 95% Interval 

LOS 
Variables 

Travel Time (min) -0.0038 (-0.0092, -0.0037) -0.0058 (-0.0157, -0.0053)
Travel Time 
Variance (min^2) -0.0011 (-0.0026, -0.0011) -0.0005 (-0.0016, -0.0005) 

Cost ($) -0.0465 (-0.1369, -0.0342) -0.0554 (-0.1577, -0.0467)

Constant 
Interactions 

Sin(2*pi*t/24) 0.3822 (-0.1965, 0.4000) -2.947 (-3.982, -2.923)
Sin(4*pi*t/24) -0.9215 (-1.378, -0.9134) -0.5503 (-1.074, -0.5524)
Cos(2*pi*t/24) -1.447 (-2.502, -1.427) -0.2693 (-1.035, -0.2668)
Cos(4*pi*t/24) -0.2851 (-0.8649, -0.2742) 0.1037 (-0.3165, 0.1049)

Male 
Indicator 
Interactions 

Sin(2*pi*t/24) 0.3037 (0.0426, 0.3086) 0.2977 (-0.1330, 0.3036)
Sin(4*pi*t/24) 0.3416 (0.1454, 0.3418) 0.1131 (-0.1049, 0.1127)
Cos(2*pi*t/24) 0.1152 (-0.3719, 0.1032) 0.3879 (0.0652, 0.3855)
Cos(4*pi*t/24) 0.0955 (-0.1537, 0.0889) -0.0759 (-0.2826, -0.0763)

Age 
Interactions 

Sin(2*pi*t/24) 0.0026 (-0.0088, 0.0025) 0.0108 (-0.0118, 0.0116)
Sin(4*pi*t/24) 0.0024 (-0.0064, 0.0020) 0.0144 (0.0030, 0.0146)
Sin(6*pi*t/24) -0.0063 (-0.0093, -0.0062) 0.0127 (0.0095, 0.0128)
Cos(2*pi*t/24) -0.0034 (-0.0307, -0.0032) -0.0062 (-0.0188, -0.0062)
Cos(4*pi*t/24) 0.0013 (-0.0123, 0.0012) 0.0093 (-0.0007, 0.0093)
Cos(6*pi*t/24) 0.0084 (0.0041, 0.0086) 0.0011 (-0.0021, 0.0012)

Part-Time 
Indicator 
Interactions 

Sin(2*pi*t/24) -1.232 (-1.948, -1.217) -0.2844 (-1.391, -0.2618)
Sin(4*pi*t/24) -0.2684 (-0.8433, -0.2492) 0.5054 (-0.1222, 0.5034)
Cos(2*pi*t/24) 0.1918 (-1.323, 0.2485) 1.307 (0.4414, 1.2943)
Cos(4*pi*t/24) 0.0105 (-0.7837, 0.0346) 0.3018 (-0.3227, 0.3025)

High Inc. HH 
Indicator 
Interactions 

Sin(2*pi*t/24) -0.0796 (-0.3313, -0.0799) -0.5753 (-1.002, -0.5713)
Sin(4*pi*t/24) -0.1613 (-0.3490, -0.1654) -0.2843 (-0.4918, -0.2812)
Cos(2*pi*t/24) -0.0900 (-0.5749, -0.0860) -0.3883 (-0.6743, -0.3867)
Cos(4*pi*t/24) 0.0042 (-0.2509, 0.0086) 0.1498 (-0.0512, 0.1497)

HH Size 
Interactions 

Sin(2*pi*t/24) -0.0429 (-0.1264, -0.0414) 0.0692 (-0.0649, 0.0674)
Sin(4*pi*t/24) 0.0102 (-0.0561, 0.0107) 0.0487 (-0.0195, 0.0476)
Cos(2*pi*t/24) 0.1341 (-0.0046, 0.1338) 0.0721 (-0.0194, 0.0715)
Cos(4*pi*t/24) -0.0076 (-0.0854, -0.0075) 0.0400 (-0.0346, 0.0417)

No. Other 
Tours 
Interactions 

Sin(2*pi*t/24) -0.3042 (-0.4990, -0.3026) 0.7399 (0.4726, 0.7449)
Sin(4*pi*t/24) -0.0425 (-0.1789, -0.0423) 0.1729 (0.0112, 0.1751)
Cos(2*pi*t/24) -0.0825 (-0.3842, -0.0778) -0.1693 (-0.3740, -0.1698)
Cos(4*pi*t/24) -0.0384 (-0.1981, -0.0420) -0.0595 (-0.1980, -0.0554)

Travel 
Distance 
Interactions 

Sin(2*pi*t/24) 0.0175 (0.0059, 0.0172) -0.0089 (-0.0307, -0.0091)
Sin(4*pi*t/24) 0.0032 (-0.0053, 0.0033) 0.0023 (-0.0064, 0.0023)
Cos(2*pi*t/24) 0.0381 (0.0208, 0.0386) -0.0028 (-0.0141, -0.0026)
Cos(4*pi*t/24) 0.0225 (0.0125, 0.0226) 0.0050 (-0.0047, 0.0051)

CBD Dest. 
Indicator 
Interactions 

Sin(2*pi*t/24) -0.2002 (-0.6283, -0.1903) -1.290 (-1.998, -1.299)
Sin(4*pi*t/24) -0.1589 (-0.4452, -0.1633) -0.4269 (-0.8165, -0.4136)
Cos(2*pi*t/24) 0.6770 (-0.0066, 0.6754) -0.3724 (-1.009, -0.3411)
Cos(4*pi*t/24) 0.4269 (0.0048, 0.4291) 0.2123 (-0.1545, 0.2189)

 403 



Table 1 (Cont’d):  Model Estimation Results 404 

Variable Mean 
Estimate 95% Interval 

௔ଵଶߪ   1.278 (0.8876, 1.225) 
௔ଶࣤߪ   1.839 (0.2227, 1.581) 
௥ଵଶߪ   4.459 (3.153, 4.359) 
௥ଶࣤߪ   1.784 (0.2363, 1.588) 
 ௔ 0.7442 (0.7257, 0.7446)ߣ 
 ௥ 0.7335 (0.7127, 0.7343)ߣ 
 ௗ 0.8039 (0.7971, 0.8046)ߣ 
 ߬௔௥  0.0512 (0.0014, 0.0483) 
 ߬ௗ 0.0295 (0.0018, 0.0271) 
 full 9.892 (9.750, 9.878),1ߤ 
 part 10.17 (9.798, 10.13),1ߤ 
 full -0.0814 (-0.1064, -0.0785),2ߤ 
 part -0.0881 (-0.1363, -0.0817),2ߤ 

 405 
Implied median values of travel time (VOTTs) for the model are $5.97/hour and $6.76/hour for arrival 406 
and return journeys (with much higher mean VOTTs, at $19.85/hour and $16.07/hour, respectively).  407 
Implied median values of reliability (VORs) are $9.95 and $5.81 per hour of travel time’s standard 408 
deviation on the home-to-work journey and work-to-home journey, respectively.  (Mean VOR estimates 409 
are $13.47 and $7.17 per hour.)   410 
 411 
Of course, the effects of these variables also depends on the variability in them.  For arrival time choice, 412 
it turns out that reliability is more practically significant for the home-to-work journey than is average 413 
travel time.  This makes sense, since many workers are somewhat constrained in their working hours.  414 
There also is an incentive for leaving a buffer period, to ensure arrival at or before work is scheduled to 415 
begin.  Since it may be more acceptable to arrive 10 minutes early than to arrive 10 minutes late, many 416 
may depart from home earlier, rather than later.4  However, on the return journey, average travel times 417 
are more practically significant.  One should note, however, that these VOTT and VOR estimates are 418 
context-specific (for activity scheduling), and may not be valid for other choice contexts (e.g., mode or 419 
route choice) or under different network variable imputation assumptions. 420 
 421 
5.1 Effects of Individuals’ Characteristics 422 
 423 
To understand the effects of time-invariant covariates, the “average” sample individual was assumed 424 
(i.e., the sample-average value of each covariate was used); and covariate values were varied one at a 425 
time.  Figure 1 shows density profiles to illustrate the effect each covariate has on predictive densities of 426 
the arrival time at work.  Note that time-varying variable effects were omitted here, to highlight the 427 
effects of each attribute. 428 
 429 
 430 

                                                            
4 Small et al. (1999) estimated the marginal costs of early arrival to rise with time, from about $0.028/min at 5 
minutes early, up to about $0.128/min at 15 minutes early.  The marginal cost of late arrival, however, was 
estimated to be 2.5 to 11 times greater, at $0.31/min. 



 431 
Figure 1:  Predicted Arrival Time Density Profiles for Individuals with Different Attributes 432 

 433 
Predictive densities (of systematic utility for work arrival time choice) peak near the AM peak period, as 434 
expected.  Effects of gender, household income, household size, travel distance, and CBD appear rather 435 
small (Figures 1a, 1d, 1e, 1g, and 1h), though in line with expectations.  For instance, males, those from 436 
larger households, and those with longer travel distances tend to arrive earlier, all else equal.  The 437 
household size effect can, in some sense, be viewed as a proxy for the number of children, and those 438 
with children may have obligations such as dropping off children in the morning.  Those with longer 439 
travel distances may be arriving earlier on average because they need to leave extra buffer time to be 440 
sure to arrive at work on time (since longer distances are associated with larger travel time variances) 441 
and/or get started earlier in order to arrive home at a reasonable hour, at the end of a long work day.  442 
Individuals from high-income households may have more flexibility in work start times, thus explaining 443 
why such individuals tend to arrive a bit later, ceteris paribus.  Not surprisingly, older individuals (Figure 444 



1b) tend to arrive earlier for work, while part-time worker status (Figure 1c) and added tours (Figure 1f) 445 
both tend to make later departure times more desirable.  These results seem reasonable, since part-446 
time workers often do not work full 8-hour days and those with additional engagements are less likely to 447 
be working typical hours.   448 
 449 
Figure 2 shows return time predictive densities for variations in each variable.  Males are predicted to 450 
return slightly later than females (Figure 2a), and arrive slightly earlier (Figure 1a), on average, so their 451 
work durations tend to be slightly longer (by about 20 to 30 minutes).  Maybe men are more likely to 452 
work overtime than women, and/or females are more likely to have other responsibilities, such as 453 
dropping children off at and picking them up from school and child care facilities.   454 
 455 
Older individuals are predicted to return earlier than younger ones (Figure 2b), which is not so surprising 456 
given that they are predicted to arrive earlier, on average (Figure 1b).  Interestingly, part-time workers’ 457 
return time profiles (Figure 2c) mimic their arrival time profiles (Figure 1c), with return times shifted to 458 
later hours, of course.  This is very reasonable considering that such workers may have very different 459 
work scheduling constraints, as compared to full-time workers.  While household size has little effect on 460 
arrival times (Figure 1e) and does not appear to shift return times (Figure 2e), it appears to add 461 
uncertainty in return time choice.  The presence of additional tours has very important effects on a 462 
worker’s return time (Figure 2f).  In particular, such individuals are predicted to return from work much 463 
earlier (about 45 to 90 minutes per additional tour, on average), as the number of such additional tours 464 
increases.  Since these workers obviously have other scheduling considerations for the day, this seems 465 
very reasonable.  As with travel distance’s limited effect on arrival times, its effect on return times is not 466 
substantial (Figure 2g).  Finally, the effect of traveling to a workplace in the central business district 467 
(CBD) is to push return times later in the day (Figure 2h), consistent with these workers’ later arrival 468 
times (Figure 1h).  Perhaps CBD workers enjoy occupations with later start times.  Overall, covariates’ 469 
effects appear reasonable, though somewhat limited in magnitude. 470 
 471 



 472 
Figure 2:  Predicted Return Time Density Profiles for Individuals with Different Attributes 473 

 474 
5.2 Out-of-Sample Predictions 475 
 476 
To better appreciate the predictive ability of the BVMNP model, relative to a simple joint-choice 477 
multinomial logit (MNL) model, out-of-sample prediction was performed, using a 20% random sample.  478 
In the case of the MNL, each choice alternative represents the arrival and return time alternative pair – 479 
in contrast to the BVMNP model, which represents arrival times and return times as distinct choices.  480 
The MNL model was estimated using BIOGEME software and employed 50 randomly chosen alternatives 481 
from the set of all 621 joint choice alternatives along with the chosen alternative5.  Since the MNL model 482 

                                                            
5 McFadden (1978) showed that one can use a simple random sample of alternatives for MNL estimation and still 
obtain consistent parameter estimates. 



represents arrival and return time choice jointly, additional utility components related to alternatives’ 483 
duration (equal to the return time minus arrival time) and its squared value were included in the model, 484 
similar to Popuri et al.’s (2008) specification.  For consistency with the BVMNP model’s duration 485 
components, the sample was segmented by full-time workers with no additional tours for the day and 486 
all other workers (i.e., part-time workers and those with additional tours).  Since the MNL model is 487 
estimated using classical techniques, the predictive likelihood is simply a fixed value.   488 
 489 
For the BVMNP model (as with any MNP), predictive likelihoods are difficult to compute, due to open-490 
form likelihood expressions.  Instead, using random parameter draws from the posterior, utilities were 491 
drawn from their corresponding distribution for each individual, taking the maximum utilities to signify 492 
the chosen alternative.  The probabilities of accurate arrival- and departure-time slot prediction were 493 
then averaged over all individuals.   494 
 495 
It turns out that predictive accuracies of the BVMNP model are clearly superior to the MNL.  In fact, the 496 
BVMNP specification beats the MNL nearly 99% of the time.  This suggests the BVMNP specification is 497 
superior in terms of model fit to the MNL.  In the following section, several toll policy simulations are 498 
examined using both specifications. 499 
 500 
5.3 Policy Simulations 501 
 502 
This section examines the consumer surplus (CS) and predicted departure time distribution changes 503 
under each of three toll-policy simulations.  In the first, it is assumed that $0.15/mile tolls are assessed 504 
on all roads during the peak periods and that these result in peak-period travel time delay reductions of 505 
50%.  In the second, the same tolls are assessed, but peak-period delay reductions are assumed to be 506 
just 10%.  In the final simulation, $0.30/mile peak-period tolls are assumed to reduce peak period delays 507 
by 50%.  Note that a 50% delay reduction is not the same as a 50% travel time reduction.  Delay is 508 
measured in relation to free-flow travel time.  Thus, routes with no delay during peak periods do not 509 
benefit from the toll policies.  The simulations were performed using the estimation sample data for 510 
those traveling by auto mode only (since non-auto mode users would be largely unaffected by toll 511 
policies), and 1,000 random draws from the collection of posterior draws were employed (with the same 512 
1,000 random draws used in each policy simulation).  Since the MNL model was not estimated using 513 
Bayesian methods, its CS changes represent point estimates, rather than the distributional estimates 514 
that emerge from the BVMNP model.   515 
 516 
Figure 3 shows the distribution of CS change (measured as the difference in CS between tolling and 517 
status quo simulations) for the three tolling policy simulations under the MNL and BVMNP 518 
specifications.  Average estimates of CS change per traveler were -$0.90 and -$1.49 for simulation 1 519 
under the BVMNP and MNL specifications, respectively, -$1.51 and -$1.85 for simulation 2, and -$2.41 520 
and -$3.36 for simulation 3.  Under both model specifications, Simulation 1’s CS changes are estimated 521 
to be least negative, not surprisingly since its combination of tolls and delay reductions should offer the 522 
greatest value to travelers.  In addition, both models predict the CS change under tolling simulation 3 to 523 
be more than twice as negative as simulation 1, as expected, since delay reductions are identical for the 524 
two simulations, but tolls are twice as large in simulation 3.   525 
 526 
Based on the differences between simulations 1 and 2 under both model specifications, it appears that 527 
the peak period delay reduction does have a significant effect on CS change.  Tolls under these 528 
simulations are identical, but peak travel delay is reduced by 40% more in simulation 1 as compared to 529 
simulation 2.  The most notable difference between the two models here is the magnitude of CS change, 530 



which is estimated to be much lower for the MNL than for the BVMNP.  This could be because the 531 
BVMNP model recognizes the similarities between alternatives near peak periods and peak periods (via 532 
error term correlations).  In other words, peak shoulder slots may not be viewed as poorly by travelers 533 
under the BVMNP specifications, when compared to the MNL, where correlations do not exist.  While CS 534 
change is important for scenario evaluations and policymaking, it is also important to understand tolls’ 535 
effects on travelers’ scheduling choices.   536 
 537 

 538 
Figure 3: Consumer Surplus Change Distributions Under Toll Policy Simulations 539 

 540 
To appreciate the tolls’ effects on traveler behavior, Figure 4 illustrates simulated aggregate predictive 541 
arrival and return time densities for the two models under each scenario.  Examining these distributions, 542 
it is immediately clear that the MNL specification implies that workers are rather non-responsive to peak 543 
tolling policies, while much larger scheduling shifts emerge under the BVMNP specification.   544 
 545 



 546 
Figure 4:  Arrival and Return Time Predictive Densities Under Toll Policy Simulations 547 

 548 
To further examine differences in the two models, three time-of-day periods were examined here:  an 549 
off-peak period (before 5 am or after 10 am for arrivals and before 2:30 pm or after 7:30 pm for 550 
returns), a shoulder peak period (5 to 6 am or 9 to 10 am for arrivals and 2:30 to 3:30 pm or 6:30 to 7:30 551 
pm for returns), and the peak period (6 to 9 am for arrivals and 3:30 to 6:30 pm for returns).  Given that 552 
the simulated tolls are only applied during peaks, one expects shoulder periods to experience a 553 
relatively large increase in shares, as compared to off-peak periods (i.e., before 5 am and after 10 am for 554 
arrivals and before 2:30 pm and after 7:30 pm for returns).  Under the MNL specification, percentage 555 
changes for off-peak and shoulder periods are similar in magnitude for arrivals and returns and for each 556 
toll policy simulation, highlighting the MNL’s independence of irrelevant alternatives assumption.  The 557 
BVMNP specification, on the other hand, exhibits percentage changes more in line with expectations.  558 
The BVMNP predicts peak-period travelers to shift more toward shoulder periods, with the greatest 559 
shoulder period shifts under simulation 3, not surprisingly.  Of course, this is due to the correlations 560 
offered under the BVMNP specification.  561 
 562 
 563 
6. CONCLUSIONS 564 
 565 
Better methods for modeling travelers’ tour scheduling choices are clearly needed.  This paper develops 566 
and applies a bivariate multinomial probit (BVMNP) model as a reasonable option in the context of tour 567 



scheduling.  Here, work-tour scheduling was found to be most influenced by age (with older individuals 568 
arriving and returning from work earlier in the day), worker status (with part-time worker schedules 569 
shifted to later times-of-day), and the number of travel tours undertaken by the worker (with those 570 
having additional tours arriving slightly later and returning from work much earlier), each of which 571 
seems reasonable. 572 
 573 
Empirical evidence suggests that the BVMNP performs better than a relatively straightforward, and 574 
standard, joint MNL model of all paired timing choices.  In addition, the BVMNP model offers more 575 
reasonable scheduling predictions under various tolling policy simulations.  While the MNL predicted 576 
rather small changes in the number of peak period travelers, the BVMNP predicted much more 577 
substantial peak-period travel reductions.  In addition, the BVMNP consistently predicted relatively large 578 
share increases for peak shoulder periods (consistent with expectations), whereas MNL predictions for 579 
peak shoulders were generally similar in magnitude to off-peak period share increases.  580 
 581 
Bayesian techniques are particularly advantageous in estimating the BVMNP model, where conditional 582 
posterior distributions were derived for latent utility variables, covariance components, and utility 583 
function parameters separately.  Bayesian estimation also provides draws from the multivariate 584 
posterior distribution of all parameters.  In terms of risk and uncertainty analysis (which is particularly 585 
important for toll road analyses), posterior draws offer a natural setting for capturing such uncertainty 586 
in demand modeling and other systems.6  The scenario analyses provided in this paper illustrate how 587 
uncertainty passes through the model into welfare estimates. 588 
 589 
While great strides in activity-based travel demand modeling have been made in recent years, time-of-590 
day modeling remains a key weakness of most model systems.  Due to the very large number of 591 
alternatives one must typically consider, a major difficulty in tour scheduling models is how to capture 592 
correlation across alternatives, since one does not expect independence across such similar alternatives.  593 
The BVMNP model offers researchers and analysts the ability to capture such correlations in a 594 
meaningful way, while retaining a random utility framework.  Of course, more research and 595 
experimentation would be needed to fully appreciate the relative merits and limitations of the model. 596 
 597 
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