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35  ABSTRACT 
 

36 

37  Geographically weighted regression (GWR) enjoys wide application in regional science, 

38  thanks to its relatively straightforward formulation and explicit treatment of spatial effects. 

39  However, its application to discrete-response data sets and land use change at the level of 

40  urban parcels has remained a novelty. This work combines logit specifications with GWR 

41  techniques to anticipate five categories of land use change in Austin, Texas while controlling 

42  for parcel geometry, slope, regional accessibility, local population density, and distances to 

43  Austin’s downtown and various roadway types. 
 

44 

45  Results of this multinomial logit GWR model suggest spatial variations in – and significant 

46  influence – of these covariates, especially roadway vicinity and regional access. For example, 

47  a one-percent increase in the distance on an undeveloped parcel’s distance to its nearest 

48  freeway is estimated, on average, to increase the probability of residential development by 

49  1.2%, while the same increase in distance to a major arterial is estimated to increase the 

50  probability by 1.8%. Conversely, proximity of roads (via reductions in such distances) is
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estimated to boost the likelihood of non-residential development (9.0% in the case of 1 

commercial development, for simply a 1% decrease in distance to such arterials). The logsum 2 

accessibility index is estimated to exert an average positive influence on commercial, office 3 

and industrial development tendencies, while dampening land use transitions from an 4 

undeveloped state to residential uses. Comparisons of results with a spatial autoregressive 5 

binary probit (using all developed land use categories as a single response) and GWR binary 6 

probit also provide some insights, with the latter seeming to surpass the former in accounting 7 

for spatial effects, as reflected by a lower AIC value. 8 

 9 

Key words: multinomial logit, geographically weighted regression, spatial autoregressive 10 

probit, land use change modeling 11 

 12 

INTRODUCTION 13 

 14 

The arena of land use modeling enjoys a variety of approaches. One approach can be found in 15 

agent-based models (ABMs), which aim to capture the intrinsic nature of land use patterns by 16 

simulating agent-environment interactions (see, e.g., Manson 2000, Parker 2008, Millington 17 

et al. 2008, and Zhou and Kockelman 2010). Although computational advances facilitate 18 

ABM implementation for complex regions with thousands or more agents, implementation 19 

complexity remains a major challenge, along with the lack of formal theories to characterize 20 

most agent-environment interactions (e.g., land development decisions) (Parker et al. 2001).  21 

 22 

Models of discrete choice are now common in land use modeling. Examples include Verburg 23 

et al.’s (2004) series of binomial logit models for residential, industrial/commercial, and 24 

recreational land uses on a 500m by 500m grid-cell map, Zhou and Kockelman’s (2008) logit 25 

models for parcel subdivision, and UrbanSim’s (Waddell et al. 2003) rather popular land use 26 

modeling code. Even after controlling for a host of local, neighborhood attributes around grid 27 

cells and parcels, much spatial autocorrelation can remain in unobserved factors. Very few 28 

existing studies attempt to account for such effects, since these imply two-dimensional 29 

dependence across, potentially, thousands of observations, requiring manipulation of large 30 

matrices and high dimensional multivariate distributions (Wang and Kockelman 2009a, 31 

LeSage and Pace 2009). 32 

 33 

As with various other socio-economic factors (including home prices, poverty levels, travel 34 

distances, and election outcomes), land use patterns tend to be correlated across space. The 35 

underlying idea emerges from Tobler’s First Law (Tobler 1970): everything is related to 36 

everything else, but near things are more related than distant things.  Wang and Kockelman 37 

(2007) described the three main approaches to address spatial effects: geographically 38 

weighted regression (GWR), spatial filtering, and direct incorporation of spatial effects. 39 

Spatial filtering removes residual spatial relationships by eliminating correlated data points in 40 

the sample. Direct spatial specifications tend to rely on spatial autoregressive (SAR) and 41 

spatial moving average (SMA) processes, as described in  Lichstein (2003), Anselin (2004), 42 

and LeSage and Pace (2009). Recent work on discrete states of land use change with such 43 

specifications can be found in Chakir and Parent’s (2009) spatial multinomial probit model, 44 

Munroe et al.’s (2002) series of binary probit and random-effect probit models using panel 45 

techniques, and Wang and Kockelman’s (2009a, 2009b, 2009c) spatially ordered probit 46 

model with temporal component.  47 

 48 

This paper combines discrete choice models with GWR techniques to analyze the influence 49 

of various factors on land development in Central Texas’ Travis County, over a 5-year 50 



period. Although the GWR technique has been used to study limited dependent variables 1 

(e.g., crash counts [Hadayeghi et al. 2010] and binary response [Páez 2006]), its application 2 

to parcel-level land use modeling is quite new. Thus, this work seeks to contribute to the 3 

literature and urban systems forecasting by applying a multinomial logit GWR (MNL GWR) 4 

model in the context of parcel-level land development. A SAR probit binary model is also 5 

specified, for comparison of parameter estimates and predictive fit – relative to a GWR probit 6 

binary model (after collapsing all developed land use into a single category, to enable model 7 

prediction).  The following sections describe existing work, data sets used, model 8 

specifications, and results, and then provide conclusions, as well as suggestions for future 9 

study.  10 

  11 

LITERATURE REVIEW 12 

 13 

A key advantage of GWR is its explicit allowance for local spatial effects in relatively 14 

standard regression models (Fotheringham 2003). Its flexible specification also allows one to 15 

examine the stability of parameter estimates over space, and thus highlights the robustness (or 16 

lack thereof) of the model’s structure.  In contrast, SAR models and other direct 17 

specifications impose added burden on the specification to be “right”, since only one equation 18 

governs anywhere (though latent spatial effects are permitted to vary) (McMillen 2010). 19 

 20 

GWR enjoys broad application, in fields as diverse as ecology, wealth and epidemics (see, 21 

e.g., Platt 2004, Ognev-Himmelberger et al. 2009, Atkinson et al. 2003, and Nagaya et al. 22 

2010). Transportation research applications currently exist for traffic count and crash count 23 

prediction (Zhao and Park 2004 and Hadayeghi et al. 2010, respectively) across networks. By 24 

contrast, GWR’s application to land use change at the level of whole parcels and/or for 25 

discrete response in urban contexts remains very rare, and so is the subject of interest here.   26 

 27 

In the context of land use attributes, Ghosh et al. (2008) analyzed impervious cover 28 

proportion via a continuous-response GWR framework, for data points across Minnesota’s 29 

Twin Cities metro area. Páez (2006) provided a binary-response application, using a binomial 30 

probit GWR with heteroscedastic error terms to analyze development of 324 vacant 1-hectare 31 

grid cells near California’s Bay Area Rapid Transit lines.   Between 1965 and 1990 just 61 of 32 

the 324 locations developed; and, as expected, the locally estimated GWR models yielded a 33 

higher log-likelihood value, than the standard binomial probit model (with spatially invariant 34 

parameters).   35 

 36 

Luo and Kanala (2008) and McMillan and McDonald (1999) extended GWR to multinomial 37 

cases. The former analyzed four types of conversion (from barren, crop/grassland, forest and 38 

water uses to urban land use) using a MNL GWR model (in reverse time, since all outcomes 39 

are “urban land use” in the end year). The study was based on satellite data for 30 m by 30 m 40 

grid cells in Springfield, Missouri, and did not sub-classify urban uses, since satellite images 41 

really cannot distinguish rooftops and parking lots into use types (e.g., office versus 42 

commercial). McMillen and McDonald (1999) specified an MNL GWR model to analyze the 43 

impact of transportation access on Chicago’s land use mixing in the 1920s. Their data set was 44 

composed of 1,160 blocks, approximately drawn at a 4-block interval, forming a lattice. The 45 

response variable (land use type) was categorized as follows: all residential, all commercial, 46 

all manufacturing, residential-commercial mix, and residential-commercial-manufacturing 47 

mix. In addition to distance metrics to Chicago’s central business district (CBD) and Lake 48 

Michigan, other access variables included distances to major streets, commuter train stops, 49 



freight rail lines and canals and rivers. They concluded that higher access to transport 1 

facilities was significantly associated with more mixed-use conditions. 2 

 3 

Parcel-level MNL GWR models remain conspicuously absent in the literature, and that is 4 

where this work most contributes, along with a comparative look at a SAR model’s results (at 5 

the binary-outcome level, since SAR MNP [LeSage and Pace 2009] cannot yet handle large 6 

sample sizes). Two separate base specifications were implemented, the first anticipating 7 

physical changes in parcel shapes over the five-year data window (i.e., parcel merges, 8 

subdivision, and no-change conditions) and the second anticipating land use changes (on 9 

unchanged parcels) over the same period. 10 

 11 

DATA SETS 12 

 13 

In order to apply an MNL GWR model to Austin area data, Travis County parcel details were 14 

assembled. These include a three-category physical change response variable, a six-category 15 

land use response variable, and the following eight regressors: network distance to the 16 

regional CBD (DistCBD), Euclidean distances to the nearest minor arterial, major arterial and 17 

freeway (DistMnrArt, DistMajArt, and DistFwy), Euclidean distances to the nearest water and 18 

golf course (DistWater and DistGolf), soil slope (Slope), a logsum measure of accessibility 19 

(Access), parcel size in acres (Area), and parcel perimeter-to-area ratio (Perim-to-Area). 20 

 21 

Land Use Types 22 

The County of Travis Central Appraisal District’s (TCAD’s) data sets were used to define 23 

those taxable (privately held) parcels, while City of Austin (CoA) data sets aided in the 24 

determination of land use type for non-taxable parcels (which are generally missing from 25 

appraisal district data) and in identifying undeveloped parcels in the year 2003. The final land 26 

use categories consist of undeveloped, residential (both single- and multiple-family dwelling 27 

units), commercial (including retail, entertainment and recreational uses), office, and 28 

industrial uses. Parks, greenbelts and preserved land were excluded from analysis because 29 

these land types are almost always undevelopable (due to planning restrictions, at least in the 30 

short to medium term).  31 

 32 

In terms of acreage, among the 674,951 acres of land that correspond to the 299,889 parcels 33 

encoded in CoA’s year 2003 land use map, 41.9 percent (240,143 parcels) were already 34 

developed in year 2003, 3.29 percent (2,647 parcels)  were in the form of parks and 35 

greenbelts , 9.03 percent (589) were otherwise preserved/protected , and 2.39 percent was 36 

covered by water (178 shapes). Although parks/greenbelts and water are, in essence, 37 

undevelopable, they provide a form of amenity for other, nearby land uses, and may facilitate 38 

developments such as houses and restaurants. For this reason, distances to each parcel’s 39 

nearest water area and park are controlled for in the spatial models.  40 

 41 

Undeveloped parcels are vacant parcels with the potential to develop, and thus exclude parks, 42 

preserved land, greenbelts and water; the data set includes a total of 48,445 undeveloped 43 

parcels in 2003. Among these, 1,951 had undergone subdivision by year 2008, 3,905 had 44 

merged into larger parcels by 2003, and the remaining 42,589 experienced no physical 45 

changes1. Of course, land use development may take place on portions of changed parcels. 46 

                                                                      
1 ArcGIS’s Spatial join function was used to join TCAD 2008 parcel centroids to the CoA’s 2003 map of undeveloped 
parcels. Parcel-merge behavior was detected by a zero value of join count (which is the number of centroids that fall within 
the parcel boundary), and subdivision was determined by a join count result greater than 1. (A Join count value of 1 
indicated parcels experiencing no physical changes.) 



Due to the computational intensity associated with the nested structure of such a change (e.g., 1 

the nature of the physical change and then the new land use types involved), a nested spatial 2 

MNL model is left for future improvement.  3 

 4 

In this paper, separate GWR MNL models for the occurrence of physical changes in a parcel 5 

and for land use type outcomes were constructed using the parcel-level data snapshot at years 6 

2003 and 2008. The physical change model used the 48,445 undeveloped parcels in 2003 7 

with three outcomes: subdivision, merging and no-change. The land use change model was 8 

based on parcels undergoing no physical changes, with five possible outcomes: undeveloped, 9 

single-family plus multi-family residential, commercial, office, and industrial uses.  10 

 11 

Among the 42,589 parcels that experienced no physical change, 64.8 percent remained 12 

undeveloped during the 5-year period. Among those that developed by 2008, the vast 13 

majority (98.7%) developed into residential uses, as shown in Table 1.  Tables 2 and 3 14 

summarize details on all covariates used in the two models, respectively. 15 

 16 

Table 1. Land Use Shares for Physically Unchanged Parcels between 2003 and 2008 17 

Land Use Code #Obs. Share 
Undeveloped 0 27584 0.648 
Single-Res 1 14446 0.339 
Multi-Res 2 59 1.39E-3 

Commercial 3 209 4.899E-3 
Office 4 127 2.991E-3 

Industrial 5 164 3.839E-3 
Total 42589 1.00 

 18 

Such unbalanced land use distributions (in favor of residential and undeveloped uses by year 19 

2008) can result in a singular or nearly singular Hessian matrix for the model’s log-likelihood 20 

function in certain neighborhoods (especially in highly residential neighborhoods, far from 21 

Austin’s mixed-use downtown). To counter the impact of unbalanced response-variable 22 

conditions around various parcels, a binary probit GWR model was also estimated, as a 23 

complement to the MNL GWR model. In this case, all developed land use categories were 24 

combined into one category and served as the developed (y=1) alternative, as opposed to the 25 

undeveloped base alternative (y=0), and no inestimable situations arose (due to Hessian 26 

singularities present for a variety of parcel settings in the 5-level GWR MNL model). As 27 

noted earlier, this binary case was used to allow comparison with results of a binary SAR 28 

probit model, as discussed later. 29 

 30 

Table 2. Covariates for Prediction of Physical Parcel Changes 31 

Unit Min Max Mean Median StdDev 
DistCBD Mile 0 55.40 19.69 18.26 10.29 
DistFwy  Mile 0 21.02 6.429 5.011 5.651 

DistMajArt Mile 0 6.139 0.803 0.483 0.855 
DistMnrArt Mile 0 10.62 1.770 1.474 1.368 
DistWater Mile 0 14.56 3.014 1.520 3.259 
DistGolf Mile 0 14.53 2.581 1.944 2.533 

Slope Percent 0 65.49 7.614 5.654 6.703 
Peri-to-Area 1/Feet 4.81E-04 1.127 0.036 0.037 0.024 



Area Acres 1.68E-03 1769 5.108 0.298 32.51 
 1 

Covariates for Land Use Change Prediction  2 

The five land use types described above serve as response categories for land use change 3 

from an undeveloped state in 2003.  A variety of attributes or “covariates” are expected to 4 

influence the various likelihoods of change, including soil slope and parcel geometry, local 5 

population density, distance to the region’s CBD, distances to various roadway types, and 6 

regional accessibility. Table 3 provides summary statistics for all these variables.  7 

 8 

Table 3. Summary Statistics of Regressors 9 

 Unit Min Max Mean Median StdDev 
DistCBD Mile 7.000E-01 43.84 19.95 18.55 10.44 

DistMnrArt Mile 3.307E-03 10.62 1.767 1.470 1.350 
DistMajArt Mile 2.354E-04 6.139 0.815 0.490 0.852 

DistFwy Mile 1.169E-02 21.02 6.611 5.414 5.661 

PopDensity Persons per 
Acre 0.000 149.71 1.136 0.022 5.207 

Slope Percent 0.01 74.60 7.829 5.829 6.874 
Access - 1.201 6.729 5.488 5.684 0.932 

Peri-to-Area 1/Feet 7.120E-04 1.060 0.036 0.038 0.019 
Area Acres 3.737E-03 1407 3.329 0.283 21.37 

 10 

While steeper slopes can be difficult to build upon, they also can be more interesting for 11 

views and neighborhood aesthetics.  Here, slopes first took the form of a raster layer (at 10 m 12 

resolution), as obtained by applying ArcGIS’s slope function2 to the U.S. Geology Survey’s 13 

National Elevation Dataset. To reduce computational demands, these 10 m grid cells were 14 

converted to a 30 m point layer, and the Slope attribute was averaged (and then these were 15 

averaged for each parcel’s spatial extent, to use in the regression models).   16 

 17 

Zhou and Kockelman (2008) estimated that parcel size and the ratio between perimeter and 18 

area are positively associated with residential development, consistent with the more 19 

rectangular shapes commonly observed for residential parcels (e.g., 50 ft x 100 ft). In 20 

contrast, parcels with commercial, office and civic uses tend to be more square in shape 21 

(Zhou and Kockelman 2008). Thus, parcel areas (measured in acres) and the ratio between 22 

each parcel’s perimeter and area (measured in inverse feet) serve as two other covariates for 23 

land use change prediction.  24 

 25 

As noted, local densities of development can also incentivize or deter new development. 26 

Here, population per acre in 2005 (evaluated at the TAZ level) serves as the mid-point 27 

measure of local population density for the 8-year period. This variable was interpolated for 28 

each parcel’s census tract using a demographic software’s (Social Explorer’s) year 2000, 29 

2006 and 20073 population counts. Tract-level population densities are defined as population 30 

counts per tract divided by the tract’s land (not water) area, and then these were assigned to 31 

TAZs. Densities for years 2001-2005 and 2008 were estimated using an exponential growth 32 

                                                                      
2 ArcGIS’ slope algorithm searches for (and assigns) the maximum among the eight slope values calculated 
from the run and rise of each grid cell’s center-point elevation versus that of its eight surrounding neighbors.  
3 These three years’ population counts are at the tract level. The year 2000’s data come from the decennial 
Census aggregates. The other two sets of counts were estimated by data experts at Social Explorer, who “filled 
in” data missing in the 2006 and 2007 American Community Surveys using PUMS PUMA aggregates. Then, 
the changes between 2000 and 2006/2007 PUMAs were allocated to census tracts.  Therefore, the end result can 
as comparable to ACS tract level estimates. (Huang 2010) 



assumption, such that y(t)=y(0)×(1+i)t. In this way, future year values were inferred from a 1 

past year’s value.  2 

 3 

Distance to the region’s CBD regularly is a powerful covariate in models of land value and 4 

land use (see, e.g., Haider and Miller 2000, Srour et al. 2002, Zhou and Kockelman 2008). 5 

Here, this attribute was computed as the shortest-path network distance from each parcel’s 6 

centroid to the Texas State Capitol, based on Travis County’s 2005 coded network.  7 

Distances to the nearest freeway, major arterial and minor arterial can also play important 8 

roles in a site’s viability for development (see, e.g., Iacono et al. [2008] and Zhou and 9 

Kockelman [2006]), with access of interest to most developers. Visibility from high-flow 10 

facilities is probably of great interest to commercial and office sites, while some sound-11 

dampening and safety-enhancing buffer space is desired for most residential users.  Again, 12 

Euclidean distances from parcel centroids were used, based on shortest paths on Travis 13 

County’s 2005 network. In addition, distances to amenities like golf courses and bodies of 14 

water (as per the CoA’s 2003 maps) were evaluated as covarates, since these are noted at 15 

times in the literature as contributing to land use change (see, e.g., Lin et al. 2005).  16 

Overall, regional accessibility is also a key component of site attractiveness for a variety of 17 

use types (see, e.g., Waddell et al. [2003], Sour et al. [2002], Niemeier [1997], and Sermons 18 

and Seredich [2001]).  Traditional measures of accessibility, such as travel time, distance and 19 

cumulative opportunities, are rather simplistic in nature.  Fortunately, the expected-20 

maximum-utility or logsum measure obtained from discrete choice models of destination 21 

choice can account for the behavioral nature of such choices (see, e.g., Neimeier [1997]). 22 

Here, the Access variable is computed as follows: 23 

       
 24 

୧ݏݏ݁ܿܿܣ ൌ lnൣ∑ ൫exp  ,ሺ݅ݐݏଵ݀݅ߚ ݆ሻ ൅ ௝ሻ൯ே݌ଶln ሺ݁݉ߚ
௝ୀଵ ൧    (1) 25 

 26 

where Accessi  is the accessibility index for location i (i.e., the traffic analysis zone of the 27 

parcel i), dist(i,j) is the shortest-path network distance from each origin TAZ i to each 28 

destination TAZ j, ݁݉݌௝ denotes total employment in TAZ j, and parameters β1 and β2 (-29 

0.226 and +0.269, respectively) were estimated by running a logit model of destination TAZ 30 

choice for all 13,942 trips in the 2006 Austin Travel Survey.   31 

 32 

METHODOLOGY 33 

 34 

This section summarizes the mathematical formulations of MNL and GWR regression 35 

techniques, including cross-validation for bandwidth or neighborhood determination (for the 36 

spatial weights). Given the site-specific nature of land use data and lack of alternative-37 

specific variables, an unconditional MNL was adopted here, as shown in Eq 2 (and in Greene 38 

[2003]).  39 

 40 

௡ܲ௝ ൌ ሺܾ݋ݎܲ ௡ܻ ൌ ௡ሻݔ|݆ ൌ
ୣ୶୮ ሺ௫೙ᇱఉೕሻ

ଵା∑ ௫೙ᇱఉೖ
಻
ೖసభ

      (2) 41 

 42 

where n denotes the nth parcel observation, j indexes outcome alternatives (with j=0  43 

indicating the base alternative: a parcel remaining undeveloped in this work’s context), and 44 

the vector β consists of alternative-specific parameters (to be estimated) for non-generic 45 

attributes (such as parcel size and slope). The corresponding log-likelihood is: 46 

 47 

ܮ݈݊              ൌ ∑ ሾ∑ ௡௝ln ሺܫ ௡ܲ௝ሻ௄
௝ୀ଴ ሿே

௡ୀଵ        (3) 48 



 1 

where ܫ௡௝ is an indicator variable for outcome j at parcel n and Inj =1 if parcel n is of land use 2 

category j and 0 otherwise. 3 

 4 

GWR is an extension of weighted least squares (WLS) methods, where the weights are 5 

spatial in nature (and falling with separation between observations) and a new regression is 6 

run at each data point, to allow parameter estimates to vary over space. In the case of a 7 

continuous response (e.g., home prices), Equation 4 shows GWR estimator for the ith data 8 

point or parcel: 9 

,௜ݔመሺߚ  ௜ሻݕ ൌ ሺܺ′ܹሺݔ௜, ,௜ݔ௜ሻܺሻିଵܺ′ܹሺݕ  ௜ሻܻ      (4)  10ݕ

 11 

where ߚመሺݔ௜, ,௜ݔ) ௜ሻ is the vector of estimated parameters at locationݕ  ௜), X is an n by k matrix 12ݕ

of covariates, ܹሺݔ௜,  ௜ሻ is an n by n weight matrix, varying by location (as described below), 13ݕ

and Y is an n by 1 vector of response values (across all n neighbors).  14 

 15 

As noted, in the current context, the response is discrete multinomial.  The log-likelihood 16 

function used is that applied by McMillen and McDonald (1999), as shown in Equation 5: 17 

 18 

௜ܮ݈݊              ൌ ∑ ሾݓ௜௡ே
௡ୀଵ ∑ ௡௝݈݊ ሺܫ ௡ܲ௝ሻሿ௄

௝ୀ଴
       

(5) 19 

 20 

where  win is the weight for the nth data point with respect to the ith regression point (as 21 

described below), and Inj is an indicator variable for land use category j. Pnj is the probability 22 

that undeveloped parcel n transitions to land use type j by 2008 (as shown in Eq 2). 23 

MATLAB software was used to repeatedly maximize this loglikelihood (for neighborhood 24 

samples around each parcel), using Newton-Raphson techniques (based on first- and second-25 

order derivatives, as described in Greene 2003).   26 

 27 

Weights Used 28 

Fotheringham (2003) describes a variety of weight options. Gaussians weights and their bi-29 

square variation are provided in Equations 6 and 7, respectively.  These consider point 30 

proximity as well as bandwidth distance.  31 

 32 

௜௝ݓ   ൌ ሾെ0.5 ݌ݔ݁ · ሺ݀௜௝/ܾሻଶሿ        (6) 33 

 34 

௜௝ݓ   ൌ ൜ሾ1 െ ሺ݀௜௝/ܾሻଶሿଶ, ݂݅ ݀௜௝ ൏ ܾ 
           0                , ݁ݏ݅ݓݎ݄݁ݐ݋

       (7) 35 

 36 

where b is bandwidth and ݀௜௝ is the distance between regression point i and data point j. 37 

 38 

Such functions are called “fixed spatial kernels”, indicating that the sample size used for 39 

regression at any data point (parcel) i is solely determined by bandwidth distance. As noted, 40 

data points typically do not scatter evenly over space, so a fixed-distance kernel can cause 41 

inadequate sample sizes in sparsely data-populated locations. One remedy is to use “spatially 42 

varying kernel”, which ensures that effective bandwidths “shrink” in areas where data points 43 

are densely distributed and “expand” in sparsely populated locations. An example is the tri-44 

cube weight for pairs of points, expressed as follows:  45 

 46 

௜௝ݓ   ൌ ሺ1 െ ሺ݀௜௝/݀୫ୟ୶ሻଷሻଷ         (8) 47 



 
where j is one of point i’s N nearest neighbors (otherwise wij equals zero), and ݀୫ୟ୶ is the 1 

distance from the Nth nearest neighbor to point i. 2 

 3 

Cross-validation (CV) determines the optimal bandwidth value or optimal number of nearest 4 

neighbors N by minimizing the CV score (Fotheringham 2003). In essence, the CV technique 5 

calculates the sum of squared error terms in each regression point’s neighborhood, excluding 6 

the regression point itself from the model. This pseudo-sum-of-squared-errors is called the 7 

CV score, and is expressed as follows, for the MNL case: 8 

 9 

ܸܥ              ൌ ∑ ∑ ሺܫஷ௡,௝ െ ෠ܲஷ௡,௝ሺܾሻሻଶ 
௃
௝ୀ଴

ே௢௕௦
௡ୀଵ        (9) 10 

 11 

where I≠n,j is an indicator variable for data points other than n, so  I≠n,j =1 if parcel n is of land 12 

use type j, and 0 otherwise. Moreover, ෠ܲஷ௡,௝ is the estimated probability for parcel n having 13 

land use type j.  14 

 15 

The number of valid data points (Nobs) over which the CV score is computed can vary as a 16 

function of N. For example, only 25% (1,933) of this work’s previous experimental dataset 17 

(7,591 data points) yield an invertible Hessian under an N = 300 nearest-neighbors 18 

specification. This percentage increases to 48% and 58% when N rises to 800 and 1,500, 19 

respectively. When N increases to 3,000, the valid percentage falls back to 40%4.  For 20 

comparability across cases, Eq 9’s CV score should be normalized, by dividing by the 21 

number of valid regression points (rather than simply summing over Nobs data points), thus 22 

providing an average CV score for each regression point. Given computational intensity, the 23 

average CV score was only computed for five N values (N = 300, 800, 1000, 1500 and 3000), 24 

yielding average CV scores of 8.29, 5.13, 1.75, 3.82 and 1.98. Thus, parameter estimates 25 

were obtained by maximizing the log-likelihood function applicable at each undeveloped 26 

parcel, with N =1000; and Hessians were used to compute standard errors and t-statistics, 27 

with all results presented below.  28 

 29 

MODELS AND RESULTS 30 

 31 

This section presents results from the two MNL GWR models, a binary probit GWR model, 32 

and a SAR binary-probit model. The binary probit models help counter the estimation issues 33 

associated with insufficient variation of land use change in neighborhoods around a variety of 34 

parcels, as discussed earlier.  The SAR binary-probit was analyzed using Bayesian estimation 35 

methods (LeSage 1999), as another point of comparison (with constant parameters and a 36 

relatively straightforward spatial representation for dependence in unobserved components).  37 

 38 

Results of MNL GWR 39 

As noted earlier, Austin’s land use changes (from undeveloped status) heavily favor 40 

residential uses, resulting in singular Hessians for sample sets surrounding many parcels. 41 

Without a Hessian, one cannot quantify uncertainty in parameter estimates. One remedy is to 42 

select regression points (i) in the N = 1000 neighborhoods that contain enough land use-43 

change variation and simply ignore those that do not.  44 

                                                                      
4 Adding such new variety in data may cause these problems because the spatial weights (for far-away points) 
fall to levels too low to recognize the added information. The study area’s  neighborhoods of 800 to 1500 
parcels may offer a better mix of different land use types. (Including too many observations will overwhelm the 
sample with residential parcels thus leading to singular Hessian.) This trend is probably specific to the study 
area’s data sets.   



 1 

Out of the 33,912 datapoints (a 70% sample of the population) in the physical-change model, 2 

27,174 regression points yield invertible Hessians. Working with these 27,174 data points’ 3 

results, a variety of estimates emerge, as shown in Table 4. A rise in the DistCBD variable’s 4 

value, on average, is associated with a higher probability for parcels to undergo merging or 5 

subdivision. This effect appears stronger in the southeastern part of Travis County than in the 6 

northwestern part, as shown in Figure 1. In contrast, an increase in the distance to a parcel’s 7 

nearest highway tends to dampen such probabilities.  Proximity to both the nearest water 8 

body and golf course  tends to increase the likelihood of merge and subdivision outcomes, 9 

with water access, in particular, offering very high elasticities. As expected,  larger parcel 10 

sizes tend to decrease the likelihood of a merge event but increase subdivision tendencies. 11 

The Perim-to-Area variable exhibits the opposite effect.   12 

 13 

Out of the 42,589 datapoints in the land use model, 3,684 yield invertible Hessians, thanks to 14 

a fair amount of land use variation in their neighborhoods5 (i.e., roughly 7 to 10% of parcels 15 

shift to non-residential development). Amid these estimator distributions (one set of estimates 16 

per data point), one finds that coefficients on the Constant terms for the Residential 17 

alternative have relatively high mean values, among the four developed alternatives. This is 18 

consistent with the fact that the majority of 2003-2008’s new developments are residential. 19 

The DistCBD variable tends to have a negative impact on Office development, meaning that 20 

office uses are more likely in more central locations, ceteris paribus. This is in contrast to 21 

Residential, Commercial and Industrial outcomes′ response to the DistCBD variable. For 22 

example, new residential developments emerged around the southwestern and northern areas 23 

of the county, though many high-rise condominium units have emerged in Austin’s 24 

downtown.  25 

 26 

                                                                      
5 With N = 1000 nearest neighbors (for the tri-cube nearest neighbor weight function), average neighborhood 
radius was  3.45 miles (with a standard deviation of  1.93 miles). 



 1 

 2 

Figure 1. Spatial Distribution of DistCBD for Parcel Merge Response 3 
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Table 4. Summary Statistics of Parameter Estimates of MNL GWR Model for Physical Change Behavior 
   

      Constant DistCBD DistFwy DistMajArt DistMnrArt DistWater DistGolf Area Perim-to-Area Slope 

M
er

ge
 

M
ea

n Beta 25.40 0.12 -2.74 -1.87 -2.93 -0.53 0.33 -0.05 21.58 -0.01 
Tstat -0.67 0.70 -1.05 -1.22 -1.02 -0.36 0.28 0.27 2.00 0.03 

Elasticity 94.42 10.03 -53.51 -45.24 -54.68 -24.78 -0.16 -0.65 68.76 -0.63 

M
ed

ia
n Beta -1.95 0.06 -0.65 -1.05 -0.64 -0.24 0.15 0.01 19.21 0.00 

Tstat -0.85 0.42 -0.90 -1.18 -0.98 -0.47 0.16 0.10 2.05 0.13 
Elasticity -52.66 4.42 -14.66 -23.07 -16.63 -5.44 1.21 0.01 56.67 0.09 

St
dD

ev
 Beta 133.83 1.41 10.13 4.25 8.79 6.57 3.84 1.31 35.16 0.12 

Tstat 2.54 1.90 2.17 1.82 2.33 2.02 2.73 0.99 1.78 1.60 
Elasticity 1,804.90 48.88 186.94 95.52 172.17 119.84 62.52 6.48 120.57 3.77 

M
in

 Beta -739.86 -25.13 -100.27 -53.72 -94.57 -115.50 -31.92 -26.63 -34.03 -0.96 
Tstat -6.29 -7.44 -7.71 -7.62 -7.94 -5.42 -9.17 -2.52 -4.27 -4.89 

Elasticity -151.12 -441.57 -271.55 -182.02 -252.12 -29.39 -34.68 -31.79 -109.43 -35.34 

M
ax

 Beta 134.41 4.53 55.43 22.78 17.65 29.78 97.72 6.56 240.40 0.42 

Tstat 7.46 6.62 4.17 5.77 5.78 6.51 8.33 3.59 6.00 4.17 
Elasticity 2,293.18 276.75 1,221.15 554.93 424.24 506.09 li 1,102.09 1.99 7,175.29 15.84 

      Constant DistCBD DistFwy DistMajArt DistMnrArt DistWater DistGolf Area Perim-to-Area Slope 

Su
bd

iv
is

io
n 

M
ea

n Beta 40.91 0.19 -3.51 -2.04 -2.87 -1.65 -0.23 0.10 -70.69 -0.05 
Tstat 0.18 0.65 -0.73 -0.90 -0.78 -0.76 -0.20 1.28 -2.52 -0.37 

Elasticity 446.92 2.55 -67.45 -43.75 -70.85 -34.87 -7.31 0.05 -37.54 -2.02 

M
ed

ia
n Beta 2.26 0.10 -0.69 -1.17 -0.76 -0.52 -0.08 0.02 -67.59 -0.03 

Tstat 0.22 0.63 -0.75 -1.19 -0.87 -0.65 -0.13 1.37 -2.57 -0.50 
Elasticity 40.00 6.80 -16.31 -27.42 -23.46 -12.53 -0.99 0.04 -24.08 -0.83 

St
dD

ev
 Beta 141.21 1.14 10.48 6.75 9.40 6.98 5.09 0.47 66.62 0.17 

Tstat 1.50 1.75 1.64 1.37 1.31 2.00 1.72 1.02 1.42 1.19 
Elasticity 2,135.53 49.95 29.59 98.46 24.87 33.08 82.17 0.70 28.62 4.62 

M i n Beta -623.51 -11.40 -18.70 -83.67 -102.52 -35.47 -61.45 -16.92 -51.05 -6.89 
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Tstat -4.22 -4.87 -6.11 -5.71 -5.26 -8.35 -8.08 -3.29 -6.71 -3.34 
Elasticity -1,368.76 -726.35 -295.58 -128.75 -334.04 -260.17 -131.52 -35.89 -190.13 -20.89 

M
ax

 Beta 1707.71 18.70 52.95 49.23 27.79 30.50 62.17 4.64 39.07 1.01 
Tstat 5.24 7.34 4.98 3.97 4.19 4.62 4.51 3.99 2.11 3.24 

Elasticity 2310.99 454.79 132.94 303.73 493.82 425.60 703.19 2.11 380.56 15.15 

 P
se

ud
o-

R
2 ad

j 

Mean 0.987 

Median 0.987 

StdDev 0.003 

Min 0.980 

Max 0.997 
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Table 5. Summary Statistics of Parameter Estimates for the MNL GWR Model of Land Use Change 

 
 
  

 Constant DistCBD DistMnrArt DistMajArt DistFwy Slope Perim-to-Area Area Access Pop Density 

R
es

id
en

tia
l Min -4.889 -0.177 -0.492 -0.028 -0.139 -0.108 -6.788 -0.206 -1.179 -0.132 

Max 6.543 0.287 1.023 2.635 1.216 0.039 13.983 -0.021 0.401 0.013 
Mean -1.129 0.006 0.128 1.115 0.724 -0.004 3.311 -0.100 -0.071 -0.013 

Median -0.549 -0.008 0.141 1.176 0.822 -0.003 1.752 -0.105 -0.143 -0.018 
StdDev 1.603 0.098 0.259 0.615 0.273 0.024 3.639 0.030 0.217 6.271E-03 

C
om

m
er

ci
al

 Min -4.439 -0.372 -2.293 -5.013 -1.231 -0.688 -66.143 -0.050 -0.691 -0.021 
Max 4.575 0.243 0.340 -1.764 0.432 -0.381 -0.838 0.014 0.747 0.061 
Mean -1.784 0.019 -0.832 -3.159 -0.009 -0.499 -12.357 -0.011 0.132 -3.159E-3 

Median -1.991 0.007 -0.698 -3.038 -0.012 -0.491 -2.210 -0.011 0.195 -5.231E-3 
StdDev 1.403 0.106 0.610 0.547 0.272 0.050 16.433 0.015 0.199 1.652E-3 

O
ff

ic
e 

Min -9.256 -1.699 -2.714 -6.292 -1.728 -0.291 -159.625 -0.125 -1.863 -0.011 
Max 12.222 0.356 1.579 0.664 1.746 0.052 -19.123 0.046 1.462 0.025 
Mean -2.701 -0.442 -1.009 -3.395 0.018 -0.102 -62.248 -0.032 0.531 -0.019 

Median -3.545 -0.465 -1.186 -4.326 -0.102 -0.107 -50.690 -0.021 0.649 -0.021 
StdDev 3.736 0.472 0.775 1.965 0.566 0.056 36.282 0.041 0.670 1.371E-3 

In
du

st
ry

 Min -8.912 -0.250 -3.209 -7.163 -2.102 -0.577 -57.250 -4.048E- -0.361 -0.522 
Max 1.256 0.419 0.250 -0.225 0.086 -0.359 -5.592 1.118E-02 1.288 0.031 
Mean -3.438 0.162 -1.598 -2.281 -0.386 -0.474 -18.646 -2.279E- 0.320 -0.073 

Median -3.699 0.159 -1.756 -2.274 -0.281 -0.483 -15.293 -4.934E- 0.337 -0.054 
StdDev 1.889 0.123 0.933 1.225 0.287 0.054 10.667 9.288E-03 0.279 0.015 

Ps
eu

do
-R

2 ad
j Min 0.32  

Max 0.74  
Mean 0.63  

Median 0.57   
StdDev 0.15   
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Table 6. T-Statistics of Parameter Estimates for the MNL GWR Model of Land Use Change   
Residential DistCBD DistMnrArt DistMajArt DistFwy Slope Perim-to-Area Area Access PopDensity 

Mean 0.306 0.521 4.309 5.353 -0.187 1.161 -4.440 -1.067 -6.721 
Median -0.129 0.715 4.322 5.946 -0.203 1.024 -4.300 -1.995 -5.013 
StdDev 1.750 1.456 2.674 1.961 1.040 0.842 0.943 2.104 2.521 

Commercial  
Mean 0.192 -1.120 -2.522 0.047 -3.411 -0.864 -0.325 0.371 -0.461 

Median 0.034 -1.001 -2.444 -0.044 -3.425 -0.388 -0.410 0.608 -1.232 
StdDev 0.657 0.597 0.394 0.617 0.398 0.861 0.629 0.573 0.111 
Office  
Mean -0.911 -0.763 -1.536 -0.100 -0.884 -2.381 -0.385 0.387 -1.163 

Median -1.342 -0.882 -1.851 -0.193 -1.024 -2.260 -0.510 0.789 -1.202 
StdDev 1.081 0.601 0.843 0.744 0.495 0.567 1.122 0.951 0.061 
Industry  

Mean 0.614 -1.539 -1.285 -0.549 -2.386 -1.056 0.285 0.563 -2.434 
Median 0.671 -1.830 -1.371 -0.573 -2.390 -0.910 -0.016 0.727 -2.306 
StdDev 0.450 0.700 0.509 0.231 0.597 0.412 0.890 0.489 0.372 

Notes: Z=1.96 (5% level, 2-tail); Z= 1.645 (10% level,2-tail).
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Table 7. Summary Statistics for Covariates’ Elasticity Estimates6 in MNL GWR Model of Land Use Change 
Residential DistCBD DistMnrArt DistMajArt DistFwy Slope Perim-to-Area Area Access PopDensity 

Mean 8.823E-03 0.192 1.763 1.224 -0.005 8.013 -4.085E-02 -0.853 -2.321 
Median -0.022 0.244 1.923 1.395 -0.006 4.285 -0.043 -1.772 -2.145 
StdDev 0.291 0.407 0.883 0.451 0.037 8.434 0.013 2.557 0.342 

Commercial  
Mean 0.088 -2.356 -9.193 -0.030 -1.354 -4.031 -4.784E-03 2.505 -1.598 

Median 0.035 -1.979 -8.835 -0.038 -1.328 -8.808 -0.005 3.694 -1.452 
StdDev 0.514 1.734 1.595 0.859 0.136 6.178 0.007 3.760 0.532 
Office  
Mean -2.188 -2.870 -9.935 0.061 -0.277 -2.068 -1.422E-02 10.181 -2.397 

Median -2.298 -3.370 -12.657 -0.324 -0.291 -2.672 -0.009 12.407 -2.125 
StdDev 2.334 2.204 5.754 1.795 0.153 1.816 0.018 12.791 1.210 
Industry  

Mean 0.788 -4.530 -6.651 -1.219 -1.289 -4.526 -1.085E-03 6.057 -3.889 
Median 0.783 -4.983 -6.636 -0.884 -1.313 -6.551 0.000 6.413 -5.157 
StdDev 0.594 2.642 3.586 0.911 0.146 4.897 0.004 5.289 1.390 

                                                                      
6 Elasticity measures the percentage change in the probability of choosing alternative j that is associated with 1-percentage change in the covariate Xk entering the utility 
function of that alternative (j), expressed as ܧ௝,௑೙ೕ ൌ ௝ߚ  · ௡௝ݔ · ሺ1 െ ௡ܲ௝ሻ. The elasticity shown for each alternative j is taken as the averaged values of individual elasticities 

across the various N data points:.ଵ
ே
∑ ௝,௑೙ೕܧ
ே
௡ୀଵ . 
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Distances to each parcel’s nearest roadways also exhibit interesting impacts. Holding 1 

everything else constant, proximity to major arterials and to freeways appears to significantly 2 

suppress new residential development. For display purposes, coefficient estimates on 3 

DistMajArt for residential and commercial uses were averaged at the TAZ level and are 4 

presented in Figures 2 and 3. The northwestern region exhibits a remarkable tendency for 5 

residential development to avoid major arterials, with practically significant elasticities 6 

throughout. (Note: The magnitudes of these elasticities are in proportion to the sizing of 7 

Figure 2’s triangle symbols.) By contrast, rising DistMajArt (i.e., falling access to major 8 

artierals) tends to significantly reduce a parcel’s attractiveness for commercial development 9 

in the mid-south and northwestern regions of Travis County, as shown in Figure 3. Across the 10 

region, a 1-percent increase in DistFwy is estimated, on average, to increase the probability of 11 

residential development by 1.2%, reflected by an average elasticity of 1.224, and 1-percent 12 

increase in DistMajArt is estimated to increase that probability by 1.8% (thanks to an average 13 

elasticity of 1.763).  14 

 15 

 16 

Figure 2. The Impacts of Distance to Major Arterials on Residential Development 17 

(Coefficient Estimates and Elasticities across TAZs) 18 

 19 
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 1 

Figure 3. The Impacts of Distance to Major Arterials on Commercial Development 2 

(Coefficient Estimates and Elasticities across TAZs) 3 

 4 

In contrast, the proximity of roads is estimated to boost the likelihood of non-residential 5 

development. For example, a 1-percent increase in DistMajArt is associated with a 9.0% 6 

decrease in the probability of commercial development. The median elasticity values of 7 

DistFwy are all negative for commercial, office, service/recreational and industrial uses, 8 

suggesting that freeway proximity is meaningful for such non-residential development, 9 

ceteris paribus. Similarly, longer distances to major arterials and minor arterials are, on 10 

average, inversely associated with commercial, office and industrial development while 11 

contributing to residential and service/recreational development7.  12 

  13 

Soil slope tends to have a negative impact on all types of development. Individual elasticities 14 

for non-residential developement types are all negative, whereas 1,301 out of 3,684 15 

regression points exhibit positive slope elasticities on residential development (as shown in 16 

Figure 4). 120 parcels have elasticity estimates greater than 2.0, indicating that a steeper 17 

slope is considered an amenity in these locations, to a practically significant degree. Parcels 18 

near Austin’s Colorado River tend to have negative slope elasticities because the waterfront 19 

region has rather dramatic slopes to begin with, so even a slight increase in this attribute can 20 

greatly increase development costs. By comparison, in areas farther away from  the 21 

waterfront, a moderate increase in slope can offer some scenic benefit, thereby contributing 22 

to home development.  A squared Slope term was also controlled for, but the added 23 

correlations resulted in non-singular Hessians for just 435 data points’ neighborhood samples. 24 

 25 

The influence of the Perim-to-Area variable varies across land use alternatives: positive 26 

elasticities (averaging +8.0) are estimated for residential development, while average non-27 

                                                                      
7 Various recreational land uses (like golf courses and camp grounds) were categorized as the “Service-Rec” use 
type, which may be causing the positive elasticities of a Service-Rec land use change outcome with respect to 
the various roadway distance variables. 
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residential development elasticities are negative. Parcel size tends to be negatively  associated 1 

with development tendencies, but its influence is not statistically or practically significant (in 2 

terms of t-statistics and elasticity estimates). 3 

 4 

The logsum Access index is estimated, on average, to exert positive influence over 5 

commercial, office and industrial development tendencies, while residential development 6 

averaged negative t-statistics of -1.995, respectively (with associated median elasticity values 7 

of -1.772).  8 

 9 

 10 

Figure 4. The Impacts of Slope on Residential Development (Coefficient Estimates and 11 

Elasticities across TAZs) 12 

 13 

Results of the Binary GWR Probit and SAR Probit Models 14 

To avoid the issue of a singular or near-singular Hessian around roughly half the data points 15 

in the primary data set, all five developed land uses were collapsed, allowing for a simpler 16 

binary specification of land use outcomes in 2008. The likelihood function for a GWR binary 17 

probit model is formulated as follows (LeSage 1999):  18 

 19 

ܮ݈݊  ൌ ∑ ௡ᇱݔ௡݈݊Φሺݕ௜௡ሾሺݓ ௜ሻߚ ൅ ሺ1 െ ௜ሻሻሿேߚ௡Ԣݔ௡ሻln ሺΦሺെݕ
௡ୀଵ   (10) 20 

where ݕ௡ ൌ 1 (for developed land uses), if ݕ௡ ൌ ߚ௡ݔ ൅ ௡ߝ ൐ 0, and 0 otherwise. Table 8 21 

summarizes variations in all parameter estimates, their associated t-statistics, and the model’s 22 

(adjusted) pseudo-R-square values, as run on all 7,951 data points. 23 

 24 

Given the fact that the majortiy of developments, if any, are residential in nature, the results 25 

of the binary GWR estimates, shown in Table 8, are largely the same as the results for the 26 

residential alternative in the MNL GWR case. 27 

 28 
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Table 8. Summary Statistics of Parameter Estimates, T-Statistics and Adjusted Pseudo-R-Square Values of Binary Probit GWR Model 
Constant DistCBD DistMnrArt DistMajArt DistFwy Slope Access Perim-to-Area Area Pseudo-R2

adj

Min -3.89 
(-7.48) 

-0.29 
(-5.88) 

-0.84 
(-6.29) 

-0.81 
(-3.10) 

-0.27 
(-3.51) 

-0.14 
(-7.58) 

-2.99 
(-10.6) 

-3.79 
(-2.47) 

-0.033 
(-4.62) 0.23 

Max 18.75 
(9.97) 

0.30 
(10.55) 

0.93 
(5.88) 

2.93 
(10.96) 

0.91 
(9.60) 

0.02 
(1.19) 

0.20 
(2.78) 

31.81 
(12.11) 

0.002 
(0.57) 0.25 

Mean 1.07 
(0.51) 

0.02 
(1.48) 

-0.01 
(-0.39) 

0.71 
(3.88) 

0.36 
(4.07) 

-0.04 
(-2.47) 

-0.36 
(-3.57) 

9.18 
(4.12) 

-0.004 
(-1.79) 0.24 

Median 0.69 
(1.46) 

0.04 
(1.07) 

-0.04 
(-0.42)

0.59 
(3.66)

0.44 
(4.78)

-0.04 
(-2.62)

-0.20 
(-3.49) 

6.74 
(3.56)

-0.002 
(-1.48) 0.24 

StdDev 3.04 
(3.72) 

0.12 
(4.09) 

0.20 
(2.27) 

0.64 
(3.06) 

0.23 
(2.42) 

0.04 
(1.95) 

0.45 
(2.68) 

9.22 
(3.69) 

0.004 
(1.05) 0.01 

Average AIC: 5,100 
Notes: Numbers in parentheses are t-statistics. 
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The standard SAR model specification (LeSage and Pace 2009) is as follows: 1 

ݕ  ൌ ݕܹߩ ൅ ௡ߡߙ ൅ ߚܺ ൅  2 (12)       ߝ

 3 

where y is an n by 1 vector of (continuous) response variables (such as home values), ߩ is a 4 

scalar measuring the degree of spatial autocorrelation, W represents an n by n spatial-weight 5 

matrix, ߡ௡ is an n by 1 vector of ones (ߙ is the parameter for this constant terms),and X is an n by 6 

K matrix of covariate attributes. The error term, ߝ, is assumed to follow an iid normal 7 

distribution, ܰሺ0,  ௡ሻ.  For a binary probit variation of this standard SAR model, a latent 8ܫఌଶߪ

variable y*  is introduced in place of y, and actual discrete outcome y equals 1 if y*>0 and 0 9 

otherwise (Ozturk and Irwin 2001, Lacombe et al. 2009, Hoshino 2009). 10 

 11 

Parameter estimates can be conducted using maximum likelihood estimation (MLE) methods. 12 

But LeSage and Pace (2009) find that MLE is subject to computational difficulties; they cited 13 

findings from Beron and Vijverberg (2000), reporting that their SAR probit application 14 

experienced estimation times on the order of “hours” – for just a 49-observation problem. Thus, 15 

estimation was achieved here using the Bayesian procedure proposed by LeSage and Pace 16 

(2009).  Table 9 presents these results, where y equals 0 for parcels remaining in undeveloped 17 

status, and 1 once developed (including residential, commercial, service/recreational, office and 18 

industrial uses).   19 

 20 

Table 9. Results of SAR Binary Probit Model for Parcel Development  21 

Variable Coefficient StdDev p-value 
Constant -0.881 1.157 0.227 
DistCBD 0.070 0.020 0.000 

DistMnrArt -0.119 0.033 0.000 
DistMajArt 0.346 0.093  0.000 

DistFwy 0.040 0.039 0.168 
Slope -0.019 0.008 0.011 
Access 0.053 0.390 0.449 

Perim-to-Area 7.602 1.276 0.000 
Area -0.010 0.005 0.040 

ρ 0.273 0.028 0.002 
AIC= 5,468.4 

 22 

Parameter estimates of the SAR probit model highly resemble those of the probit GWR in this 23 

binary set-up. However, distance to freeway and accessibility lost significance in the SAR 24 

specification while having remarkable t statistics in the GWR model. The estimate of the spatial 25 

parameter, ߩ, is 0.273, indicating a relatively weak spatial autocorrelation. In addition, the GWR 26 

probit model yields a lower AIC than the SAR probit (when modeling the 27 

developed/undeveloped response), suggesting a better fit for the far more flexible GWR 28 

technique, as one might well expect. While the SAR approach greatly simplifies interpretation, 29 

much of the spatial relationship comes down to a single parameter,  ρ. The GWR method allows 30 

for local regressions, thus accommodating a variety of potential spatial variations. However, 31 

GWR methods do not offer a single interpretation on the effect of variables and can make model 32 
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application to new locations (where a local regression has not been performed) challenging if not 1 

impossible.  2 

 3 

CONCLUSIONS 4 

 5 

This paper applied GWR techniques to Travis County data in Texas, yielding a series of 33,912 6 

and 29,812 MNL model runs for models of physical/shape change and land use change, 7 

respectively.  The  first model was used to analyze parcels‘ merging and subdivision activity 8 

between 2003 and 2008, while the latterwas used to anticipate land use change (from an 9 

undeveloped state) across five use categories over the same time period. The nearest 1,000 10 

neighboring points were used in each case, with a weight matrix based on the tri-cube weighting 11 

specification. To counter the identification problems emerging from Hessian inversions due to 12 

heavily biased response (in land use outcomes), all developed land use types were later collapsed 13 

into one category, allowing for comparison of a binary SAR probit’s and a GWR probit’s 14 

outputs. 15 

 16 

The results from the 5-level MNL GWR model of land use change indicate a spatial interesting 17 

pattern of various covariates’ influence on land use development.  Proximity to the region’s CBD 18 

tends to have a positive impact on the development office space, with an average elasticity of 19 

2.2, but reduce the likelihood of undeveloped parcels becoming residential, commercial or 20 

industrial in nature, everything else constant.  21 

 22 

Distances to the three types of roadways were estimated to exert varying influences. For 23 

example, residential development exhibits a tendency to avoid proximity to freeways and major 24 

arterials in these data: a 1-percent increase in distances to these is estimated, on average, to 25 

increase the probability of residential development by 1.2% and 1.8%, respectively. In contrast,  26 

non-residential developments tend to cluster around these transportation facilities. Soil slope was 27 

found to be reduce the likelihood of non-residential development, as reflected in uniformly 28 

negative elasticities for the non-residential alternatives. However, in some areas, a steeper slope 29 

is considered an amenity by  home developers (presumably for scenic reasons), as reflected by 30 

the positive and practically significant elasticities for about 4-percent of data points.  31 

 32 

Coefficient estimates from the probit SAR model highly resemble those of the probit GWR 33 

model (for binary response). But DistFwy and Access, with t-statistics of 4.07 and -3.57 in the 34 

GWR model, do not seem to be significant in the SAR model. The probit GWR model’s average 35 

AIC was lower than that for the probit SAR model, which suggests that local regression tends to 36 

better account for spatial variation than spatial autoregressive processes (which heavily rely on a 37 

single spatial parameter, ρ).  In conclusion, the binary-probit GWR model seems to surpass the 38 

binary-probit SAR  model in anticipating development. A comparison between such methods 39 

(GWR and SAR) in a multinomial setting is of interest, and hopefully methods and code will 40 

eventually exist to estimate the SAR version for large-scale data sets like those used here.  It also 41 

would be useful to exhaustively or strategically search for more optimal N values (to determine 42 

the nearest-neighbor rule), and to work with discrete-response spatial data sets of various types 43 

(e.g., soil types, vehicle-type choices, and vegetative cover types). 44 

 45 



23 
 

As noted, the model results can be applied in a variety of ways, for various estimates of interest.  1 

For example, (hypothetically) increasing all undeveloped parcel sizes by one-quarter acre is 2 

estimated to result in a 14 percent reduction of newly developed parcels (from the observed 3 

value of 15,004 transitions to 12,903), over the 5-year period. Simply a two-percent decrease in 4 

all parcels‘ distances to freeways, major arterials and then minor arterials, separately/in turn, is 5 

predicted to result in 16, 15, and 14 percent reductions (in all undeveloped parcels‘ developing), 6 

respectively.  7 

 8 

In general, the results of this work suggest that GWR-facilitated local-area regressions can work 9 

reasonably well with spatially rich, discrete-response data sets, such as those found across 10 

regions at the parcel level. The GWR MNL model used here appears to  capture a variety of 11 

behaviors. Such methods offer planners and modellers the potential for intersting longer-run, 12 

dynamic predictions, thereby facilitating transportation and land use planning and policy 13 

evaluations. 14 
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