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17 ABSTRACT 
 

18 A lane-based evacuation network that incorporates the lane reversal and crossing elimination 

19 strategies can be virtually decomposed as a set of roadway subnetworks and intersection 

20 subnetworks.  To facilitate the algorithmic advantage from this network decomposition 

21 mechanism, this paper considers an intersection origin-destination flow optimization problem 

22 arising from the evacuation network design that integrates these two capacity- and connectivity- 

23 reallocation strategies.  This work presents a sufficient condition of network flows for the 

24 problem existence and validness and develops an efficient simplex-based method for problem 

25 solutions.  Numerical examples are provided to illustrate the effectiveness of the method. 
 

26 Keywords: Intersection subnetwork, evacuation planning, lane reversal, crossing elimination, 

27 simplex method, the Hitchcock-Koopmans transportation problem 
 

28 INTRODUCTION 
 

29 In seeking the most effective ways to minimize the traffic congestion and disaster threat over an 

30 urban or regional evacuation network, many models aim at optimizing system performance by 

31 diversely routing evacuees to evade traffic bottlenecks, controlling their departure times to avoid 

32 jam creation, or manipulating network configurations to increase throughout capacity .  Among 

33 optimization-oriented evacuation planning models, those based on physical network 

34 reconfigurations are typically formulated as optimal network design or redesign problems.  Here, 

35 redesign means that most evacuation-network design problems involve only short-term, tactical- 

36 level (or operational-level) network reconfigurations based on existing network capacity and 

37 topology, rather than strategic, permanent alterations to network infrastructure. 
 

38 Two types of network reconfiguration strategies, namely lane reversal along roadways and 

39 crossing elimination at intersections, have been introduced into evacuation network design in 

40 recent years.  These two strategies supplement one another by increasing capacity in specific 

41 traffic directions and creating an interruption-free traffic environment throughout the evacuation 
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network.  While both have proven reasonably effective as capacity-increasing measures (for 1 
accelerating the evacuation process), their combination can enhance performance further.  2 

Solving this design problem with lane reversal and crossing elimination, however, poses a great 3 
challenge, because of the complex mutual connectivity requirement imposed by the two lane-4 

based network design strategies and the large number of solution spaces generated (by the lane-5 
based network setup, in which each intersection must be explicitly modeled as a subnetwork).  6 
One way to reduce the problem’s complexity is to relax the crossing elimination constraints and 7 
redefine the relaxed problem, on the standard node-arc network.  Such simplification can be 8 
characterized by Lagrangian relaxation.  To compensate for relaxation of the crossing 9 

elimination constraints, one needs to evaluate the number of traffic crossing points at each 10 
intersection and substitute the evaluation result back to the solution algorithm to guide its search 11 

itinerary.  This evaluation requirement results in an intersection origin-destination (O-D) flow 12 
optimization problem.  As will be shown later, under this specific modeling context, the O-D 13 
flow optimization problem’s objective is to find an intersection O-D flow pattern that minimizes 14 
the number of traffic crossing points without altering the entire network’s flow pattern.  It is 15 

clear that this problem differs from more traditional work in intersection O-D flow estimation, 16 
which generally seeks to replicate a most-likely O-D flow pattern (see, for example, 1-6). 17 

The remainder of this paper is organized into five sections.  The evacuation network design 18 
problem is introduced with lane reversal and crossing elimination.  Then, the intersection 19 

subnetwork O-D flow optimization problem is formulated, and conditions for problem existence 20 
and validity are discussed.  The major contribution of this work is the development of a simplex-21 

based solution method for the proposed O-D flow optimization problem.  Sections 4 and 5 22 
elaborate on and illustrate the method.  The paper’s final section concludes with some modeling 23 
extensions. 24 

EVACUATION NETWORK OPTIMIZATION WITH LANE REVERSAL AND 25 

CROSSING ELIMINATION 26 

Evacuation planning with lane reversal and crossing elimination has been formulated as a lane-27 

based network design problem (see 7-11).  These two lane-based capacity- and connectivity-28 

reallocation settings alter the network’s capacity and connectivity properties along roadway 29 
sections and at intersections, respectively. 30 

Lane reversal is not a new concept.  The use of lane reversal results in traffic “contraflow” or 31 

“counterflow” operation, which is often used to better accommodate traffic demand imbalances 32 
across the two opposed driving directions of a single congested roadway section.  A number of 33 
early studies concerning the design, efficiency, feasibility and safety issues of lane reversal can 34 
be seen in, for example, MacDorman (12), Glickman (13), Hemphill and Surti (14), and Caudill 35 
and Kuo (15).  An update on the development of lane reversal techniques and applications as 36 

well as its current state of planning and engineering practices was recently provided by Wolshon 37 

and Lambert (16).  In evacuation cases, the traffic direction of inbound lanes along some 38 

designated roadways may be reversed to better accommodate outbound traffic.  This lane-39 
reallocation strategy has been used extensively by several U.S. states along the Atlantic and Gulf 40 
coasts for hurricane evacuations (since its initial implementation in Georgia during the period of 41 
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Hurricane Floyd in 1999) (17).  In state and regional evacuations, lane reversal is typically 1 
applied to the major arteries (i.e., interstate and state highways). 2 

Given the discrete nature of lane-based configurations, seeking an optimal allocation of lane 3 
reversals across an evacuation network typically poses an NP-hard combinatorial optimization 4 

problem.  The problem is intractable for networks of realistic size.  So a number of researchers, 5 
including Hamza-Lup et al. (18, 19), Tuydes and Ziliaskopoulos (20), Kim et al. (21) and Meng 6 
et al. (22), have developed a set of heuristic and metaheuristic methods (including tabu search, 7 
simulated annealing, and genetic algorithms) to approximate network solutions for the lane 8 
reversal optimization problem. 9 

Crossing elimination at intersections has attracted relatively little attention in evacuation 10 
planning and management. Cova and Johnson (23) suggested using this measure as a lane-based 11 

routing strategy for emergency evacuations to reduce traffic control delays at intersections (e.g., 12 
delays due to traffic signals and stop signs).  The basic rationale for applying a policy of crossing 13 
elimination during evacuation events is to convert an intersection with interrupted-flow 14 
situations into an uninterrupted-flow facility by prohibiting some turning movements (through 15 

blocking lane entries and limiting flow directions).  By eliminating stop-and-go traffic control 16 
devices, intersection capacity for permitted traffic movements is significantly augmented. 17 

A few benefits from implementing the crossing elimination strategy are evident.  First, 18 

evacuation planners seek to increase throughout capacity at intersections for outbound directions.  19 

Second, this strategy channels traffic flow along certain movements and reduces the possibility 20 
of potential traffic conflicts, thereby potentially improving traffic safety at intersections.  This 21 

feature is particularly useful during an emergency evacuation, when the driving population may 22 
confront chaos and panic, and be forced to drive in a more aggressive manner.  Third, during a 23 
post-disaster evacuation, traffic signals and communication systems may be malfunctioning due 24 

to widespread power outages and other issues.  Such failure often occur following no-notice 25 
disasters (as in the aftermath of Mexico City’s 1985 earthquake) (24). 26 

Ideally, crossing elimination and lane reversal should be jointly used, to improve evacuation-27 

network clearance times and overall performance.  Tuydes and Ziliaskopoulos (20) have noted 28 
that the traffic control configurations at intersections and interchanges should be reset to 29 
maximize the efficiency of traffic movements for lane reversal operations.  Xie (7), Kalafaras 30 

and Peeta (8), Xie and Turnquist (9, 10), and Xie et al. (11) suggested simultaneous 31 
consideration of lane reversal and crossing elimination in evacuation network optimization and 32 
presented a class of integrated network design models, separately targeting static and dynamic 33 
network settings.  These studies help justify that the combination of both strategies. 34 

For illustration, Figure 1 depicts a few examples of their joint use.  It is readily seen that these 35 

strategies create a set of mutual network connectivity requirements at intersections.  For this 36 
reason, this paper emphasizes an explicit model for network connectivity at intersections and the 37 

resulting network design model is based on an expanded network representation (shown in 38 
Figure 2). 39 

Such an expanded network contains a number of intersection subnetworks and roadway 40 
subnetworks.  As shown in Figure 2, if all intersections are four-way with two-way legs and all 41 
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through and turning movements are permitted, each intersection subnetwork consists of 8 nodes 1 
and 12 links.  The roadway-section subnetwork between adjacent intersections includes 6 nodes 2 
and 4 links (where each of the lane directions is represented by a pair of consecutive directional 3 
links and for each traffic direction there is one upstream node, one downstream node and one 4 

intermediate node).  The upstream and downstream nodes (e.g., nodes 2, 10, 9 and 3 in Figure 2) 5 
provide connections between the roadway section and its adjacent intersections.  The 6 
intermediate nodes (e.g., nodes 11 and 12) are labeled traffic source nodes.  As a common 7 
network setting in transportation planning practice, it is assumed that all the traffic collected by a 8 
roadway section from its adjacent traffic analysis zone(s) originates virtually, from the zone 9 

centroid, and connect with that section’s intermediate node. 10 

It should be noted that, in such an expanded network, arcs in an intersection subnetwork have 11 

different properties from those in a roadway subnetwork: a roadway arc is treated as an ordinary 12 
graphical arc, associated with capacity, cost, and other travel supply-demand attributes, while an 13 
intersection arc is an impedance-free arc and only functions with providing the network 14 
connectivity.  This is consistent with the standard network setting of the graphical node-arc 15 

representation of a traffic network: all delays occur along arcs while nodes only provide network 16 
connectivity (with nodes representing intersections, origins, and destinations). 17 

While the expanded representation depicts traffic networks at a finer level, it significantly 18 
increases the network’s size and hence the computational cost of evaluating flows.  This is 19 

especially undesirable when solving a network design problem because the network typically 20 
needs to be evaluated repeatedly; so an expanded network implies much more computation than 21 

its standard counterpart. 22 

However, given the modeling fact that intersection arcs do not incur any cost or delay (this is 23 
especially true when crossing elimination is implemented so that no signal or stopping delay 24 

occurs at intersections), one can evaluate flows on the standard network and the expanded 25 
network equivalently (i.e., their network performance matrices [e.g., network-wide cost or 26 

congestion level] are equivalent), except that the standard network’s evaluation ignores 27 
intersection crossings (since the standard network simply models intersections as nodes).  In 28 

other words, by using the standard network, one ignores the set of constraints related to the 29 
crossing elimination operation in the network design model. 30 

Thanks to such network reduction (from the expanded network to the standard network), model 31 
complexity is accordingly reduced following use of Lagrangian relaxation.  This emerges by 32 
relaxing the set of crossing elimination constraints and inserting these into the objective function 33 
as a penalty term.  This network reduction or Lagrangian relaxation results in two algorithmic 34 
advantages: first, as discussed above, one can evaluate the network flow pattern on the standard 35 

network, which is much more computationally efficient than the network evaluation on the 36 
expanded network; second, it simplifies the model structure and accelerates the solution search 37 
process by avoiding direct manipulation of the set of complex crossing elimination constraints in 38 

the original solution space defined on the basis of the expanded network.  39 

Under the network reduction or Lagrangian relaxation framework, the added computational task 40 
is to evaluate the penalty term.  The value of the penalty term will be used to guide the solution 41 
search process to converge to the optimal solution of the original network design problem.  The 42 
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value of the penalty term for each intersection, i.e., number of crossing points at an intersection, 1 
however, is not fully determined by the network flow pattern obtained from the standard network.  2 
In fact, the representation of an intersection as a node in the standard network merely treats the 3 
intersection as a “black box”.  One way to evaluate the penalty term is to determine the minimum 4 

number of traffic crossing points given the intersection’s incoming and outgoing flows.  In the 5 
intersection subnetwork, if we look at each incoming flow from an “origin” node and each 6 
outgoing flow to a “destination” node, this problem can be defined as an intersection O-D flow 7 
optimization problem as follows. 8 

AN INTERSECTION O-D FLOW OPTIMIZATION PROBLEM 9 

For a four-leg intersection, the intersection O-D flow optimization problem may be briefly 10 
described as follows: given all the inbound traffic flow rates (from origin nodes) and outbound 11 
traffic flow rates (to destination nodes) of the intersection subnetwork, the problem is to find an 12 
O-D flow pattern that minimizes the number of traffic crossing points between the traffic 13 

movements with a positive O-D flow rate. 14 

Let us use an example to illustrate the problem configuration.  As shown in Figure 3, a typical 15 

four-leg intersection is represented by a network with 8 nodes and 12 arcs.  Each node represents 16 
either a traffic supply point (i.e., origin node) or a traffic demand point (i.e., destination node).  17 
In Figure 3, nodes 1, 3, 5 and 7 are origin nodes and nodes 2, 4, 6 and 8 are destination nodes.  18 

Each arc connecting an origin node and a destination node represents a feasible traffic movement.  19 

For example, in Figure 3, arc 1→2 emanates from node 1 (origin node) to node 2 (destination 20 
node), which means that a positive traffic flow rate is allowed from node 1 to node 2.  It is 21 

readily seen that in the four-leg intersection case, there are three outgoing arcs for each origin 22 
node while there are three incoming arcs for each destination node. 23 

Many traffic movements potentially cross each other in the intersection.  Arc 1→2, for example, 24 

which is a left-turn movement, potentially crosses arcs 3→6, 7→8, 3→4, and 5→8, if all these 25 
traffic movements are allowed.  As is well known, a right-turn movement does not cause any 26 

crossing point, e.g., arc 1→6.  The objective of this intersection O-D flow optimization problem 27 
is to find an optimal traffic movement configuration that minimizes the number of crossing 28 

points caused by left-turn and through movements, subject to the traffic supply and demand 29 
requirements at origins and destinations, respectively.  By using the notation shown in Figure 3, 30 

the problem formulation can be written as: 31 

 min 𝑧 𝐲 =   𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

𝑖𝑗 ,𝑚𝑛

  (1.1) 

where  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

= max  0,𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1   

subject to 𝑦𝑖𝑗 ,𝑦𝑚𝑛 ∈  0, 1  ∀𝑖 → 𝑗,𝑚 → 𝑛 (1.2) 

 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 𝑥𝑖𝑗 , 𝑥𝑚𝑛 ≤ 𝑢𝑚𝑛 𝑥𝑚𝑛  ∀𝑖 → 𝑗,𝑚 → 𝑛 (1.3) 



C. Xie, S.T. Waller and K.M. Kockelman                                                                                                   6 

 

 𝑥𝑖𝑗 , 𝑥𝑚𝑛 ≥ 0 ∀𝑖 → 𝑗,𝑚 → 𝑛 (1.4) 

  𝑥𝑖𝑗
𝑖∈𝑆𝑖

− 𝑏𝑗 = 0 ∀𝑗 (1.5) 

  𝑥𝑚𝑛
𝑛∈𝑅𝑚

− 𝑏𝑚 = 0 ∀𝑚 (1.6) 

In the above mixed linear integer programming model, there are two sets of decision variables, 1 

the arc variables, 𝑦𝑖𝑗  (or 𝑦𝑚𝑛 ), indicating the connectivity between a supply node 𝑖 (or 𝑚) and a 2 

demand node 𝑗 (or 𝑛) in the intersection subnetwork, and the flow variables, 𝑥𝑖𝑗  (or 𝑥𝑚𝑛 ), 3 

represents the traffic flow rate on arc 𝑖 → 𝑗 (or 𝑚 → 𝑛).  In the capacity constraint (i.e, constraint 4 

(1.3)), the “capacity” 𝑢𝑖𝑗  (or 𝑢𝑚𝑛 ) does not impose an upper bound on 𝑥𝑖𝑗  (or 𝑥𝑚𝑛 ) indeed, but 5 

appears merely as a sufficiently large number so as to represent the following arc-flow 6 

relationship: if 𝑦𝑖𝑗 = 1 (or 𝑦𝑚𝑛 = 1), 𝑥𝑖𝑗 ≥ 0 (or 𝑥𝑚𝑛 ≥ 0); if 𝑦𝑖𝑗 = 0 (or 𝑦𝑚𝑛 = 0), 𝑥𝑖𝑗 = 0 (or 7 

𝑥𝑚𝑛 = 0).  In the flow conservation constraints (i.e., constraints (1.5) and (1.6)), 𝑏𝑗  and 𝑏𝑚  are 8 

the input of the model, and 𝑆𝑗  and 𝑇𝑚  respectively represent the set containing the origin nodes 9 

of all the intersection arcs pointing to destination node 𝑗 and the set containing the destination 10 

nodes of all the arcs emanating from origin node 𝑚, e.g., in Figure 3, 𝑆2 = {1, 7, 5} and 𝑇3 = {4, 11 
6, 8}. 12 

Solving the intersection O-D optimization subproblem is indeed a local network design problem 13 
and a traffic reassignment process for the intersection subnetwork.  Such a subnetwork change is 14 

certainly a change to the expanded network.  This change, however, will not cause a change of 15 
the traffic flow pattern obtained from a traffic assignment process on the standard network in our 16 
case.  In other words, the traffic flow pattern obtained from the standard network can still be 17 

maintained in the expanded network with the intersection crossing reduction/optimization.  This 18 
conclusion holds subject to a homogeneous flow requirement that is satisfied by two modeling 19 

settings defined in our evacuation network design problem.  This requirement is a sufficient (but 20 
perhaps not necessary) condition to the conclusion. 21 

The first setting is that the underlying traffic assignment algorithm used for generating the traffic 22 
flow pattern implies the Markovian routing behavior that any individual would choose his or her 23 
remaining route to the destination without considering the route he or she has experienced 24 
between the origin and his or her current location.  The resulting traffic flow pattern possesses 25 
the property that the traffic flow arriving at any intermediate node in a network is assigned as if 26 

this node is a destination.  Many traffic assignment algorithms imply this Markovian routing 27 
property, including the classic all-or-nothing method for uncongested networks, the Frank-Wolfe 28 
algorithm (24) for deterministic user-equilibrium networks, Dial’s algorithm (25) and 29 

Akamatsu’s algorithm (26) for logit-based stochastic user equilibrium networks, and so on.  In 30 
Xie and Turnquist (9, 10), an analytical network loading algorithm based on Clark’s 31 

approximation (27, 28) is employed to approximate the probit-based stochastic user-equilibrium 32 
traffic flow pattern.  The underlying individual route choice behavior within this approximation 33 
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procedure also possesses the Markovian routing feature, which virtually assures the traffic flow 1 
merging at any intermediate node is homogeneous by origin. 2 

The second setting is the one-destination network representation, which has been widely used by 3 
many researchers to model the integrated route and destination choice behavior in evacuation 4 

networks (see, for example, 29-32, 7).  An immediate result from this setting is that all 5 
individuals departing from or arriving at any single source or intermediate node in the network 6 
go to the same destination.  From a modeling perspective, this result guarantees that all 7 
individuals going through a node are in a homogeneous population with a single route choice 8 
function (that implies an identical route choice probability distribution with each individual at 9 

any intersection).  Note that in a general multi-commodity network (i.e., a network with multiple 10 
origins and destinations), the intersection O-D flow optimization process may change the paths 11 

of traffic flows going through the intersection, and so possibly the destinations of these path 12 
flows.  The occurrence of a destination change would possibly result in an infeasible traffic flow 13 
pattern.  (By infeasible, we mean that the resulting traffic flow pattern caused by the intersection 14 
O-D flow optimization process may not satisfy the flow conservation constraints.)  However, this 15 

phenomenon will not occur in a network with the one-destination setting; or, in other words, the 16 
traffic flow diverging at any intermediate node is homogeneous by destination. 17 

As a result, from the two settings, we can conclude that the traffic flow between any intermediate 18 
node and the destination mode (in the standard network) can be regarded as a homogeneous flow 19 

pattern as if it is assigned between these two nodes.  As long as the (arc-based) traffic flow 20 
pattern holds, any individual’s Markovian route choice behavior would not be changed. 21 

This intersection O-D flow optimization problem could be efficiently solved using some 22 
traditional integer programming methods, such as the branch-and-bound algorithm, due to its 23 
relatively small solution space.  In the case of a four-leg intersection subnetwork, it has only 8 24 

binary integer variables and 8 real variables with 8 capacity constraints and 8 flow conservation 25 
constraints.  This algorithm embeds a vertex-and-branch tree structure in its search process, 26 

where the linear relaxation subproblem at each vertex is used to establish the lower bound for the 27 
feasible region corresponding to the vertex.  Two simple algorithmic choices may be applied to 28 

accelerate the branch-and-bound search for this mixed integer program.  To see these, once again, 29 

let us refer to Figure 3.  We can observe that, for example, first, if 𝑏2 = 0, we immediately have 30 

𝑥12 = 0, 𝑥52 = 0 and 𝑥72 = 0, and  𝑦12 = 0, 𝑦52 = 0 and 𝑦72 = 0; second, if 𝑥12 > 0, assign as 31 

much flow to 𝑥52  as possible, where 𝑥52  is the flow rate on the right-turn arc 5→2 arriving at 32 
node 2, since a right turn would not cause any crossing conflict.  Application of these simple 33 

rules at the beginning of a branch-and-bound search can effectively reduce the remaining search 34 
space. 35 

However, we consider a more efficient solution algorithm here, whose search process mimics the 36 
pivot move of the classic simplex method for linear programming problems.  To a single 37 
intersection O-D flow optimization problem presented here, the computational cost saving from 38 

the application of this simplex-based algorithm (compared to the branch-and-bound method) is 39 
quite trivial, due to the small size of the problem.  However, considering this problem is a 40 

subproblem of the evacuation network design problem with lane reversal and crossing 41 
elimination and needs to be solved repeatedly during the solution search process (i.e., there are a 42 
large number of intersections in a network and the objective functions of the relaxed Lagrangian 43 
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problem needs to be evaluated in a large number of times), the algorithm efficiency has a major 1 
impact on the computational cost of the overall network optimization process. 2 

A SIMPLEX-BASED SOLUTION METHOD 3 

Note that the flow conservation constraints of this problem have a special structure analogous to 4 
the Hitchcock-Koopmans transportation problem (see 33).  Specifically, given a set of supply 5 
nodes and demand nodes, the problem is to find a feasible “transportation flow pattern” between 6 
the supply and demand nodes, satisfying all the supply and demand requirements.  This 7 

connection can be seen by setting origin nodes 1, 3, 5 and 7 as the supply nodes and destination 8 

nodes 2, 4, 6 and 8 as the demand nodes as well as constraint (1.5) as a demand constraint and 9 

constraint (1.6) as a supply constraint.  Also, we can conveniently represent the supply and 10 
demand constraints into the so-called “transportation tableau”, as shown in Figure 3, in which 11 
rows represent the supply nodes 1, 3, 5 and 7, columns represent the demand nodes 2, 4, 6 and 8, 12 

and the cell in row 1 and column 2, for example, represents flow variable 𝑥12 .  If no flow is 13 
allowed between a supply node and a demand node, the cell in the corresponding row and 14 
column is illustrated as a shaded block.  Moreover, for each supply node, the supply flow rate is 15 

indicated on the right of the corresponding row; for each demand node, the demand flow rate is 16 
indicated on the bottom of the corresponding column.  The difference from the intersection O-D 17 

flow optimization problem to the transportation problem is also obvious: the intersection 18 
optimization model has its extra integer requirement and its objective function is nonlinear and 19 

integral. 20 

It is well known that the transportation problem can be efficiently solved by the simplex method, 21 

which starts from a basic feasible solution and iteratively improve its objective function value by 22 
updating the current solution from one basic feasible point to another until the optimal solution is 23 
found.  A basic feasible solution of the transportation problem can be conveniently represented 24 

by a rooted spanning tree in its transportation tableau (see Figure 4), which contains exactly 25 

𝑠 + 𝑑 − 1 basic variables, where 𝑠 and 𝑑 are respectively the numbers of supply and demand 26 
nodes. 27 

Despite the added complexity from our intersection subnetwork optimization problem, its 28 

structural similarity to the transportation problem inspired us to devise an efficient simplex-based 29 
iterative solution procedure, which can guarantee the optimality for the intersection optimization 30 
problem after a limited number of steps.  The rationale behind this simplex-based algorithm 31 
emerges from the facts listed below. 32 

For the sake of discussion convenience, we define the following terms in describing the 33 

intersection optimization problem.  Given 𝐱 =  ⋯ , 𝑥𝑖𝑗 ,⋯  and 𝐲 =  ⋯ ,𝑦𝑖𝑗 ,⋯ , we call a 34 

solution  𝐱,𝐲  a basic feasible solution to the defined problem if 𝐱 is a basic feasible solution in 35 

the feasible region for the arc flows (i.e., constraints (1.4)-(1.6)) and 𝐲 is feasible.  The set of all 36 
basic variables in a basic feasible solution is called the basis.  Given a basic feasible solution, 37 

another basic feasible solution is called its neighbor if it can be reached by exchanging a pair of 38 
basic variables between the two solutions.  All such neighboring solutions to this solution 39 

constitute its neighborhood.  We also define 𝑁 𝐱  as the number of nonzero flow variables in 40 

solution  𝐱,𝐲 .  It is obvious that 𝑁 𝐱 ≤ 𝑠 + 𝑑 − 1 if  𝐱, 𝐲  is a basic feasible solution of the 41 

defined problem, where 𝑠 = 4 and 𝑑 = 4. 42 
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Lemma 1.  If a solution  𝐱∗,𝐲∗  to the defined intersection optimization problem is optimal, it is 1 
a basic feasible solution; otherwise, an alternative basic feasible optimal solution exists. 2 

Proof.  Let us assume that  𝐱∗, 𝐲∗  is not a basic feasible solution. By definition, this means 3 

either 𝐲∗ is not feasible, 𝐱∗ is not feasible, or 𝐱∗ is not basic.  It is manifest that either the 4 

condition that 𝐱∗ or 𝐲∗ is not feasible contradicts the assumption given by the lemma, therefore, 5 

𝐱∗ and 𝐲∗ must be feasible. 6 

If 𝐱∗ is not basic while 𝐱∗ and 𝐲∗ are both feasible, it implies that 𝑁 𝐱 > 𝑠 + 𝑑 − 1.  It reflects 7 
in the tableau that there is at least one cycle on which all the corner cells are with positive flow 8 

variables.  We may adjust the flow values in these corner cells while maintaining the flow 9 

reservation feasibility until one (or more) variable, say 𝑥𝑖𝑗 , reaches its lower bound (i.e., 𝑥𝑖𝑗 = 0).  10 

The flow values in other cells of the tableau are not changed.  Apparently, this procedure breaks 11 

a cycle in the tableau and produces an updated solution  𝐱′, 𝐲∗  with fewer positive flow 12 

variables, i.e., 𝑁 𝐱 < 𝑁 𝐱∗ .  Following this flow adjustment 𝐱∗ → 𝐱′, we can make an 13 

adjustment 𝐲∗ → 𝐲′ so as to obtain a new feasible solution  𝐱′, 𝐲′  without violating the problem 14 

feasibility by setting 𝑦𝑖𝑗  from 1 to 0 since 𝑥𝑖𝑗 = 0. 15 

We can do all such adjustments until 𝑁 𝐱 ≤ 𝑠 + 𝑑 − 1 and 𝑧 𝐲′  becomes a basic feasible 16 
solution.  The immediate result from this adjustment is an improvement of the objective function 17 

value, i.e., 𝑧 𝐲∗ → 𝑧 𝐲′ , where 𝑧 𝐲′ ≤ 𝑧 𝐲∗ .  If 𝑧 𝐲′ < 𝑧 𝐲∗ , it contradicts the assumption 18 

in the lemma that  𝐱∗, 𝐲∗  is an optimal solution; if 𝑧 𝐲′ = 𝑧 𝐲∗ , then we have that  𝐱′,𝐲′  is 19 

also optimal.  Therefore, we can conclude that either  𝐱∗,𝐲∗  is a basic feasible solution or 20 
 𝐱′,𝐲′  that is basic feasible is an alternative optimal solution. ∎ 21 

This conclusion provides us with a theoretical foundation to devise a method that searches for 22 

the optimal solution of the intersection optimization problem along an itinerary consisting of 23 
only its basic feasible points.  The iteration between two consecutive basic feasible solutions can 24 
be realized by a pivot-move neighborhood search.  To guarantee the optimality of a basic 25 

feasible solution obtained by pivot moves, we need to investigate whether a local optimal 26 
solution to its neighborhood is globally optimal.  A common way to carry out this investigation 27 

is convex analysis. 28 

We rewrite the formulated mixed linear integer programming problem into an alternative 29 
formulation as follows: 30 

min 

 

𝑧 𝐱 =    𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

𝑖𝑗 ,𝑚𝑛

: 𝑦𝑖𝑗 ,𝑦𝑚𝑛 ∈  0, 1 , 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗 , 𝑥𝑚𝑛

≤ 𝑢𝑚𝑛 𝑦𝑚𝑛 ,∀𝑖 → 𝑗,𝑚 → 𝑛  

 

 

(2.1) 

subject to 𝑥𝑖𝑗 , 𝑥𝑚𝑛 ≥ 0 ∀𝑖 → 𝑗,𝑚 → 𝑛 (2.2) 
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  𝑥𝑖𝑗
𝑖∈𝑆𝑖

− 𝑏𝑗 = 0 ∀𝑗 (2.3) 

  𝑥𝑚𝑛
𝑛∈𝑅𝑚

− 𝑏𝑚 = 0 ∀𝑚 (2.4) 

where arcs 𝑖 → 𝑗 and 𝑚 → 𝑛 are a pair of arcs which geometrically cross each other if their 1 
traffic flow rates are both positive. 2 

This new problem formulation has the same structure as the transportation problem except for 3 
the objective function.  It is readily known that the feasible region of this problem is a bounded 4 

polyhedral set.  The remaining problem is the convexity property of the objective function 𝑧 𝐱 .  5 

Let us consider 𝑓 𝜆 = 𝑧 𝜆𝐱1 +  1 − 𝜆 𝐱2  and 𝑔 𝜆 = 𝜆𝐱1 +  1 − 𝜆 𝐱2, given that 𝐱1 and 𝐱2 6 

are any two feasible solutions and 0 < 𝜆 < 1.  It is easy to know that both 𝑓 𝜆  and 𝑔 𝜆  can be 7 
expressed as the sum of the following terms, respectively: 8 

 
𝑓 𝜆 = 𝑧 𝜆𝐱1 +  1 − 𝜆 𝐱2  

         =   𝑦′𝑖𝑗 + 𝑦′𝑚𝑛 − 1 
+

𝑖𝑗 ,𝑚𝑛  
  

where 
𝑦𝑖𝑗 ,𝑦𝑚𝑛 ∈  0, 1 , 𝜆𝑥𝑖𝑗

1 +  1 − 𝜆 𝑥𝑖𝑗
2 ≤ 𝑢𝑖𝑗𝑦′𝑖𝑗 , 𝜆𝑥𝑚𝑛

1 +  1 − 𝜆 𝑥𝑚𝑛
2

≤ 𝑢𝑚𝑛 𝑦′𝑚𝑛 ,∀𝑖 → 𝑗,𝑚 → 𝑛 
 

and 9 

 

𝑔 𝜆 = 𝜆𝐱1 +  1 − 𝜆 𝐱2 

         =   𝜆 𝑦𝑖𝑗
1 + 𝑦𝑚𝑛

1 − 1 
+

+  1 − 𝜆  𝑦𝑖𝑗
2 + 𝑦𝑚𝑛

2 − 1 
+
 𝑖𝑗 ,𝑚𝑛    

where 𝑦𝑖𝑗
1 ,𝑦𝑚𝑛

1 ∈  0, 1 , 𝑥𝑖𝑗
1 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗

1 , 𝑥𝑚𝑛
1 ≤ 𝑢𝑚𝑛 𝑦𝑚𝑛

1 ,∀𝑖 → 𝑗,𝑚 → 𝑛, and 

𝑦𝑖𝑗
2 ,𝑦𝑚𝑛

2 ∈  0, 1 , 𝑥𝑖𝑗
2 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗

2 , 𝑥𝑚𝑛
2 ≤ 𝑢𝑚𝑛 𝑦𝑚𝑛

2 ,∀𝑖 → 𝑗,𝑚 → 𝑛 
 

To compare the values of 𝑓 𝜆  and 𝑔 𝜆 , consider the following four conditions: if given 10 

𝑥𝑖𝑗
1 𝑥𝑚𝑛

1 = 0 (i.e., either 𝑥𝑖𝑗
1 = 0 or 𝑥𝑚𝑛

1 = 0) and 𝑥𝑖𝑗
2 𝑥𝑚𝑛

2 = 0 (i.e., either 𝑥𝑖𝑗
2 = 0 or 𝑥𝑚𝑛

2 = 0), 11 

 𝑦′𝑖𝑗 + 𝑦′𝑚𝑛 − 1 
+

= 0 and 𝜆 𝑦𝑖𝑗
1 + 𝑦𝑚𝑛

1 − 1 
+

+  1 − 𝜆  𝑦𝑖𝑗
2 + 𝑦𝑚𝑛

2 − 1 
+

= 0; if 𝑥𝑖𝑗
1 𝑥𝑚𝑛

1 > 0 12 

and 𝑥𝑖𝑗
2 𝑥𝑚𝑛

2 = 0, we obtain  𝑦′𝑖𝑗 + 𝑦′𝑚𝑛 − 1 
+

= 1 and 𝜆 𝑦𝑖𝑗
1 + 𝑦𝑚𝑛

1 − 1 
+

+  1 − 𝜆  𝑦𝑖𝑗
2 +13 

𝑦𝑚𝑛
2 − 1 

+
= 𝜆; if 𝑥𝑖𝑗

1 𝑥𝑚𝑛
1 = 0 and 𝑥𝑖𝑗

2 𝑥𝑚𝑛
2 > 0, we obtain  𝑦′𝑖𝑗 + 𝑦′𝑚𝑛 − 1 

+
= 1 and  𝑦𝑖𝑗

1 +14 

𝑦𝑚𝑛
1 − 1 

+
+  1 − 𝜆  𝑦𝑖𝑗

2 + 𝑦𝑚𝑛
2 − 1 

+
= 1 − 𝜆; if 𝑥𝑖𝑗

1 𝑥𝑚𝑛
1 > 0 and 𝑥𝑖𝑗

2 𝑥𝑚𝑛
2 > 0,  𝑦′𝑖𝑗 + 𝑦′𝑚𝑛 −15 

1 + = 1 and  𝑦𝑖𝑗
1 + 𝑦𝑚𝑛

1 − 1 
+

+  1 − 𝜆  𝑦𝑖𝑗
2 + 𝑦𝑚𝑛

2 − 1 
+

= 𝜆 +  1 − 𝜆 = 1.  Combining all 16 



C. Xie, S.T. Waller and K.M. Kockelman                                                                                                   11 

 

these conditions, we know that 𝑓 𝜆 ≥ 𝑔 𝜆  holds for any 0 < 𝜆 < 1.  Therefore, 𝑧 𝐱  is a 1 

concave function (where, more specifically, given the integer characteristic, we know that 𝑧 𝐱  2 
is a stepwise concave function). 3 

Given that the feasible region is a convex set but the objective function is a concave function, we 4 
cannot in general guarantee the global optimality of a local optimum.  However, for the defined 5 
intersection subnetwork optimization problem with its special structure, we can show that no 6 
local optimum can be actually held by a simplex-based procedure. 7 

Lemma 2.  If a basic feasible solution to the defined intersection subnetwork optimization 8 

problem is a local optimal solution to its neighborhood, it is also a global optimal solution. 9 

Proof.  We can distinguish flow variables in two types: 1) “right-turn” flow variables, which do 10 
not impose any traffic crossing points; and 2) “left-turn” and “through” flow variables, which 11 
would potentially cause crossing points.  The value of the objective function is determined by the 12 

values of the “left-turn” and “through” flow variables.  Suppose that 𝑥𝑖𝑗  and 𝑥𝑚𝑛  are two 13 

variables of the second type and their corresponding arcs may have a potential crossing point.  14 

The distribution of values of  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

 is shown in Figure 5, in which the feasible region 15 

for 𝑥𝑖𝑗  and 𝑥𝑚𝑛  are the projection of the whole feasible region of 𝐱 on the plane of 𝑥𝑖𝑗  and 𝑥𝑚𝑛 .  16 

Needless to say,  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

 has two possible values: when either 𝑥𝑖𝑗 = 0 or 𝑥𝑚𝑛 = 0, 17 

 𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

= 0, and when both 𝑥𝑖𝑗 > 0 and 𝑥𝑚𝑛 > 0,  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

= 1. 18 

Note that for any pair of 𝑥𝑖𝑗  and 𝑥𝑚𝑛  with a potential crossing point between their arcs, its 19 

feasible region subject to constraints (1.4)-(1.6) and the corresponding value distribution of 20 

 𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

 can be represented by one of the conditions in Figure 5.  If a local optimal 21 

solution that is not globally optimal exists, there is at least one pair of 𝑥𝑖𝑗  and 𝑥𝑚𝑛  such that there 22 

are two separate subregions both with  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
+

= 0  in its feasible region.  However, 23 

none of the feasible regions presented above includes such a case.  Therefore, a local optimal 24 

solution will not be blocked from other optimal solutions by simplex-based pivot moves and it is 25 

actually a global optimal solution. ∎ 26 

The conclusion given above assures the global optimality of a simplex-based search; it, however, 27 

does not guarantee the optimality uniqueness.  In fact, it is possible to have multiple optimal 28 
solutions to the defined intersection subnetwork optimization problem, in which some solutions 29 
are basic feasible solutions and others are not.  But we know that at least one of the optimal 30 
solutions is a basic feasible solution. 31 

Now we have all the required theoretical elements to guarantee the correctness of the proposed 32 

algorithm.  The algorithmic procedure of the resulting simplex-based pivot-move method can be 33 
sketched as follows: 34 

Step 1.  Obtain a starting basic feasible solution as the current solution and compute its objective 35 

function value 𝑧∗.  This can be accompolished by applying the northwest corner rule in the 36 
tableau (see 33); 37 
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Step 2.  Conduct all the candidate pivot moves by entering each nonbasic variable into the basis 1 
and compute the updated objective function value with each candidate move.  Choose the best 2 

move with the lowest objective function value 𝑧′; 3 

Step 3.  Compare the objective function value with the best move, 𝑧′, and the current objective 4 

function value, 𝑧∗. If 𝑧′ ≥ 𝑧∗, stop the iteration and we have the optimal solution 𝑧∗ at hand; if 5 

𝑧′ < 𝑧∗, implement the best move to obtain the updated basic feasible solution and assign 6 

𝑧∗ = 𝑧′, and then go to step 2. 7 

NUMERICAL EXAMPLES 8 

For the illustration purpose, we present a couple of numerical examples of the algorithm 9 
application in this section. 10 

The first example problem with its network and tableau representations is given in Figure 6(a).  11 
The initial basic feasible solution derived by the northwest corner rule is shown in Figure 6(b), in 12 

which the basis consists of variables 𝑥12 , 𝑥14 , 𝑥16 , 𝑥34 , 𝑥56 , 𝑥58 , and 𝑥74 , and the objective 13 
function value with this solution is 5.  Starting from this initial solution, it is found that by 14 

examining all the nonbasic variables that a pivot move that the nonbasic variable 𝑥52  enters the 15 

basis and the basic variable 𝑥56  leaves the basis yields a best move (i.e., the lowest objective 16 
function value).  By implementing this move, we get an updated basic feasible solution, the basis 17 

of which includes variables 𝑥12 , 𝑥14 , 𝑥16 , 𝑥34 , 𝑥52 , 𝑥58  and 𝑥74 , and the objective function value 18 
of which is 3.  This updated solution is illustrated in Figure 6(c).  The same examination and 19 

pivot procedure is then applied to proceed with the search for improved solutions.  Next, we 20 

obtain the basic feasible solution at iteration 2 by entering 𝑥38  into the basis and getting rid of 21 

𝑥12  from the basis, as shown in Figure 6(d), whose objective function value is 1.  Since this 22 
solution cannot be improved by a single pivot move, we can conclude that it is the optimal 23 
solution to the problem. 24 

The second example is a copy of the first one except that the values of 𝑏2 and 𝑏4 are swapped.  25 
The initial solution obtained by applying the northwest corner rule is shown in Figure 7(a), in 26 

which the basis consists of 𝑥12 , 𝑥34 , 𝑥36 , 𝑥38 , 𝑥52 , 𝑥58  and 𝑥72  and the objective function value 27 
with this solution is 7.  At the first iteration, it is found that two pivot moves yields the same best 28 

objective function value (i.e., the value is 3).  These two moves are respectively that 𝑥16  enters 29 

the basis and 𝑥58  leaves the basis, and 𝑥74  enters the basis and 𝑥58  leaves.  Since the two pivot 30 

moves improves the objective function value by the same quantity, we can implement either of 31 
them to obtain the next basic feasible solution.  For completeness, we present the basic feasible 32 
solutions resulted from both the moves respectively in Figure 7(b) and Figure 7(c).  Further 33 
examinations on these two solutions conclude that both of the solutions are optimal to the 34 
problem since no pivot move that improves the objective function value can be found.  This 35 

example demonstrates a case that more than one optimal solution exist at the same time. 36 

CONCLUDING REMARKS 37 

This text presents an intersection O-D flow optimization problem, which arises as a subproblem 38 
in the evacuation network design with lane reversal and crossing elimination.  The problem’s 39 

special structure analogous to the Hitchcock-Koopmans transportation problem leads to the 40 
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creation of a simplex-based solution method.  The method proves to be a very efficient procedure 1 
compared to traditional integer programming methods, in that in most cases it can find the 2 
optimal solution in just a few iterations.  The model can be readily modified to accommodate 3 
other types of intersections and interchanges.  But the solution method may deserve an in-depth 4 

reinvestigation on its applicability to other intersection/interchange cases.  This remains a piece 5 
of future work to the authors.  In this study, we simply use the number of traffic crossing points 6 
as the objective function of the O-D flow optimization problem and as the penalty term of the 7 
relaxed evacuation network design problem.  Other network status information, for example, 8 
traffic flow rates through intersections, may be used to interpret the violation conditions of the 9 

crossing elimination constraints more accurately and favor a faster Lagrangian relaxation-based 10 

solution method. 11 

 12 
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Figure 1  Examples of the joint use of lane reversal and crossing elimination 
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 (a) The expanded network representation 

 

 

 

 

 

(b) The standard network representation 

Figure 2  Node-arc network representations 
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(a) A four-leg intersection subnetwork 

 

 

 

 

(b) The tableau representation of the four-leg intersection subnetwork 

Figure 3  A four-leg intersection subnetwork and its corresponding transportation tableau 
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(a) The network representation of a basic feasible solution 

 

 

 

 

 

(b) The tableau representation of a basic feasible solution 

Figure 4  Representation of a basic feasible solution in the network and the tableau 
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(a) xij > 0 and xmn > 0 

 

 

 

 

 

(b) xij > 0 and xmn ≥ 0 

 

 

 

 

 

(c) xij ≥ 0 and xmn ≥ 0 

Figure 5  Feasible region of a pair of flow variables 𝑥𝑖𝑗  and 𝑥𝑚𝑛  with a potential crossing point 

and the corresponding  𝑦𝑖𝑗 + 𝑦𝑚𝑛 − 1 
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(a) The network and tableau representations of the problem 

 

 

 

 

 

 

(b) Iteration 0 (Objective function value: 5) 

 

 

 

 

 

 

(c) Iteration 1 (Objective function value: 3) 

Figure 6  The first numerical example and its solutions by the simplex-based method 
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(d) Iteration 2 (Objective function value: 1) 

Figure 6  (Continued) 
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(a) The network and tableau representations of the problem 

 

 

 

 

 

 

(b) Iteration 0 (Objective function value: 7) 

 

 

 

 

 

 

(c) Iteration 1 (Objective function value: 3) 

Figure 7  The second numerical example and its solutions by the simplex-based method 
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(d) Iteration 1 (Objective function value: 3) 

Figure 7  (Continued) 

 

1

3

2

4

6

7

5

8

2 4 6 8

1

3

5

7

274.7

94.5 100.1 105.5

139.4

155.1 5.5

274.7

300.1

139.4

160.6

569.2 100 100.1 105.5

274.7 105.5

300.1

569.2

139.4100

100.1

160.6


	TRB11IntersectionODFlowOptimization
	TRB11IntersectionODFlowOptimization

