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ABSTRACT

This paper summarizes the literature on spatial filtering for analysis of spatial data, as proposed 
by Griffith (2000a). Given the scarcity of its application in transportation and its fledgling nature, 
preliminary case studies were conducted using continuous and discrete response data sets, for land 
values and land use, in comparison with results from spatial autoregressive models with distance 
decay parameters estimated using Bayesian techniques. For both the continuous land value and 
binary land use cases, the spatial filtering approach demonstrates great potential as a worthy 
competitor to more conventional Bayesian spatial-autoregressive models, offering high fit 
statistics, somewhat shorter computing times, and more straightforward computations. 

Key words: spatial filtering, spatial econometrics, land use change, land valuation, spatial probit, 
spatial autoregressive regression
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INTRODUCTION   

Spatial relationships typically exist across persons and locations in transportation, land use, and 
demographic data sets. They can be summarized into two types of spatial effects: spatial 
heterogeneity and spatial autocorrelation (Anselin 1988). 

Spatial heterogeneity refers to the variation or instability in observational units across a 
geographic region and implies that the functional forms and/or behavioral parameters vary by 
location (Anselin 1988). Geographically weighted regression (GWR) is commonly used to 
characterize such variations, by estimating parameters for each site or observational unit based 
on all observations within a neighborhood (optimally pre-determined using cross validation), as 
described in Fotheringham (2003). Ghosh et al. (2008) analyzed impervious (or heavily 
developed) land cover shares via a continuous-response GWR model, using data points across 
Minnesota’s Twin Cities metro area. Páez (2006) calibrated a binomial probit GWR model with 
heteroscedastic error terms to characterize the development of 324 vacant 1-hectare grid cells 
near California’s Bay Area Rapid Transit lines. Applications of multinomial GWR models for 
land use patterns can be found in McMillan and McDonald (1999) and Wang et al. (2011).    The 
second type of spatial effect, spatial autocorrelation, arises primarily due to imperfect 
information on observational units and measurement errors. For example, information on 
variables like soil types, scenic beauty, school quality, and air traffic is regularly absent from 
models of land use value and change, resulting in correlations across nearby sites’ error terms. 
Moreover, aggregated spatial data values (such as county-level average incomes) and arbitrary 
spatial boundaries (such as Census tract designations) can introduce forms of spatial 
autocorrelation. A common treatment for this effect is to directly specify a spatial structure, such 
as a spatial autoregressive (SAR) or spatial moving average (SMA)1 models (Anselin 1988, 
Anselin and Hudak 1992, LeSage and Pace 2009). Work on discrete states of land use change 
with such specifications can be found in Chakir and Parent’s (2009) spatial multinomial probit 
model (for cross-sectional data), Munroe et al.’s (2002) series of binary probit and random-
effects probit models (using panel techniques), and Wang and Kockelman’s (2009a, 2009b, 
2009c) dynamic spatial ordered probit model with a temporal component.  

Most applications to date rely on specific functional forms (such as SAR and SMA) and 
arbitrarily pre-determined weight structures to anticipate spatial structure in the data. Several 
issues can limit the use of specific functional forms in addressing spatial autocorrelation. 
McMillen (2004) noted how functional misspecifications may lead to spatial autocorrelation and 
advocated the use of non-parametric methods, to avoid a priori assumptions of model form. He 
used a Lagrange Multiplier (LM) test to examine residuals’ spatial autocorrelation for a series of 
GWR applications with varying window sizes (or neighbor counts). Although reducing window 
sizes did not monotonically decrease Lagrange Multiplier test statistics, restricting the spatial 
relations to smaller neighborhoods (or window sizes) contributed to, in general, a smaller degree 
of spatial autocorrelation. Hence, McMillen argued that spatial autocorrelation may be induced 
by functional misspecification.  

Computing effort is another important factor to consider, as demonstrated in Wang et al.’s (2010) 
pursuit of an estimable dynamic spatial multinomial probit specification. Essentially, more 

                                                            
1 Spatial error models, where the weight matrix applies to the vector of error terms (as used in Zhou and Kockelman 
[2009], for example), are a type of SMA model. 



complicated models require more complex estimation strategies, such as Bayesian sampling from 
large-size truncated normals (for latent response variables, in the case of multinomial probits, for 
example); issues of parameter identification, sample size limitations, and a model’s functional 
flexibility can and do emerge. Another serious challenge relates to computing the log-
determinant of a SAR specification: |ܫ௡ െ  is the ߩ ,௡ is an n by n identity matrixܫ where ,|ܹߩ
degree of spatial autocorrelation and W is the connectivity or weight matrix. This is especially 
time-consuming when n is large.  This log-determinant term is also known as the “normalizing 
factor” or the Jacobian term, and it ensures that the integral of a spatial model’s likelihood 
function equals 1 (when integrating over the density or distribution of all unknown parameters) 
(Griffith, 2000a). These can be computationally costly to obtain, and Griffith (2000a) discussed 
three strategies for computing this term. 

Eigenvector-based spatial filtering, as introduced by Griffith (2000a, 2000b, 2007), is a relatively 
new technique for analysis of spatial data sets, and it appears to offer much promise. Griffith 
(2008) formally established an indirect linkage between GWR and spatial filtering via interaction 
terms, and noted how GWR can be viewed as a special case of indirect spatial filtering. In other 
words, spatial filtering should be able to address apparent heterogeneity in behaviors by 
interacting eigenvectors (synthetic variables) and systematic covariates (X). SAR models rely on 
the assumption that responses of observational units are more likely to be influenced by nearby 
neighbors. They employ an n by n weight matrix (where n is the number of sample units) to 
describe this distance-decay spatial pattern (or any other pattern of decay, as in social networks). 
In contrast, spatial filtering addresses such spatial autocorrelation from a quasi semi-parametric 
point of view.  Apart from the observed covariates, also known as the systematic component, 
spatial filtering techniques generate synthetic explanatory variables representing the data set’s 
spatial structure. More flexibility is added to the model by bringing these synthetic variables 
(considered the model’s non-parametric component [Tiefesldorf and Griffith 2007]) into the 
systematic part of a model. Different methods of generating these synthetic variables leads to 
three main types of spatial filtering in the literature: Dray et al.’s (2006) distance-based 
eigenvector procedure, Getis’ (1990, 1995) G-statistics-based approach, and Griffith’s (2000a, 
2000b) eigenfunction-based procedure.  

Dray et al.’s (2006) approach is also known as principal coordinate analysis of neighbor matrices 
(PCNM). Their work built upon Borcard and Legendre’s (2002) original PCNM proposal by 
providing more formal mathematics and the linkage between the PCNM method and spatial 
autocorrelation structure. The original PCNM approach follows a 3-step procedure:  

First, a pairwise Euclidean distance matrix (D) is computed between all sampled locations 
(where D=[dij]). Second, a threshold value t is chosen to construct a truncated distance-based 
matrix D*, where d*

ij = dij, if dij ≤ t and d*
ij = 4t, if dij > t. Third, the doubly-centered square 
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2 Diagonalization, also known as eigenvalue decomposition, is simply the application of linear algebra to solve the 
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Here I denotes an identity matrix, 1 is an n by 1 vector of ones, ܦଶ
 is an element-by-element כ

squared matrix of D*).  The principal coordinates are obtained by scaling each of eigenvectors 
 ௞ is the eigenvalueߣ ௞, whereߣobtained in the last (third) step to have length ඥ (௞ݑ)
corresponding to the kth eigenvector. All eigenvectors with positive eigenvalues were selected as 
synthetic control (supplementary explanatory) variables in the original PCNM approach (for use 
in the regression function’s primary equation).  

As discovered earlier (by de Jong et al. [1984]), there exists a linkage between eigenvalues and 
Moran’s I (MI), an index that measures the strength of spatial autocorrelation in a single variable 
(Anselin 1988):  

ܫܯ ൌ
݊

∑ ∑ ௜௝௝௜ݓ
·

∑ ௜ݕ௜௝ሺݓ െ ௝ݕതሻ൫ݕ െ ത൯௜௝ݕ

∑ ሺݕ௜ െ തሻଶݕ
௜

 

where W=[ݓ௜௝] is a spatial weight matrix and y a variable observed across a number of n spatial 
units. Roughly speaking, the larger/smaller a positive/negative eigenvalue is, the stronger the 
positive/negative spatial autocorrelation the associated eigenvector represents. Recognizing this 
association, Dray et al.’s (2006) improvement to the original PCNM approach permits negative 
spatial autocorrelation (as represented by negative eigenvalues), while omitting eigenvectors 
with small (in absolute terms) eigenvalues.  Although negative spatial autocorrelation is not 
common in the fields of transport and land use, it has been observed in competitive biological 
processes. Dray et al.’s version of the PCNM method also allows for weight matrices with non-
zero diagonal elements.  

The main difference between Getis’ and Griffith’s filtering approaches is the manner in which 
the original variables are decomposed. Getis (1990,1995) used the difference between observed 
and expected local spatial statistics, Gi, to separate spatial from non-spatial effects. In other 

words, observed variables (ݕ) were filtered using ݔ௜
כ ൌ ௜ݔ ቂ ௐ೔
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ቃ  ௜ሺ݀ሻ, where ௜ܹ is the sum ofܩ/
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 is its expected value. Therefore, the difference between ݔ௜ and its filtered counterpart, ݔ௜

 ,כ

can be interpreted as a spatial variable, with a positive value indicating clustering of higher 
values of x and a negative value indicating clustering (or spatial autocorrelation) of lower x 
values. Also, these newly-generated spatial variables (ݔ௜

 are associated, but not correlated with (כ
x.  

In contrast, Griffith (2000a, 2000b) used orthogonal and uncorrelated map patterns (represented 
as eigenvectors obtained from a doubly centered contiguity matrix) characterizing the data set’s 
spatial (or other relationship) structure to filter out meaningful spatial forces. In an unusual paper, 
Getis and Griffith (2002) compared their two approaches using government expenditures per 
capita across U.S. states. The two filtering methods yielded similar goodness-of-fit statistics, 
although the z-score of Moran’s I test statistic for residuals switched signs: it was weakly 
negative in Getis’ model but weakly positive in Griffith’s model. In addition, results from both 
approaches were similar to that of an SAR model. Importantly, Griffith’s approach was deemed 
preferable, thanks to its flexibility for application in non-linear model specifications. By contrast, 
Getis’ approach requires that analysts have variables with a natural origin and a linear model 



specification, thereby limiting its use (Patuelli et al. 2011). Another advantage of Griffith’s 
filtering approach is the orthogonality of the eigenvectors, facilitating stepwise variable addition 
to the model specification (also known as “forward regression”, as applied in Griffith and Peres-
Neto [2006]).  

A potential drawback of Griffith’s approach lies in computing the eigenfunctions (which are the 
eigenvectors and their associated eigenvalues) for large data sets, which can be a formidable 
task3. However, in comparison with the more widely used SAR approach to spatial 
autocorrelation, such computations may be reasonable. The paper makes such a comparison, and 
hereafter refers only to Griffith’s eigenvector-based approach when discussing the mechanics of 
spatial filtering.  

The following sections discuss in some detail the nature of Griffith’s (2000a, 2000b) spatial 
filtering technique and its application. Two case studies, for analysis of continuous land value 
data and binary land development data, with comparison to a special, more flexible SAR model 
specification, are provided.  

METHODOLOGY: MATHEMATICS AND APPLICATIONS OF SPATIAL FILTERING 

The crux of spatial filtering lies in the linkage between eigenfunctions (i.e., the eigenvectors and 
corresponding eigenvalues) and spatial autocorrelation. Essentially, the (exogenously specified) 
W matrix’s eigenvectors are used as supplemental covariates in the regression, to “filter” out 
spatial autocorrelation, thereby allowing for more efficient estimation of primary covariates’ 
parameters.  Eigenfunction decomposition has been widely used in fields like control theory and 
imaging, but its usage in spatial analysis is relatively new. A thorough interpretation of 
eigenfunctions from a regional/spatial perspective can be found in Griffith (1996), which uses a 
9-by-9 regular square grid and 3 cases of Canada’s urban census tracts to provide natural 
interpretations of the eigenvectors associated with the largest eigenvalues. 

In the regular square grid case, Griffith’s (1996) largest two eigenvectors represented a pair of 
orthogonal gradients, and the third largest depicted a centrally positioned, exponentially 
declining map pattern. The orthogonal pattern meant that those two eigenvectors could be 
expressed as a linear combination of the coordinates of their grid cells’ centroids. The negative 
exponential pattern is equivalent to ܧ ൌ ܽ ൅ ܾ ڄ exp ሼcሾሺx െ xୡሻଶ ൅ ሺy െ yୡሻଶሿሽ଴.ହ, where xୡ and 
yୡ are the coordinates of the region’s or data space’s center, and a, b and c are parameters to be 
estimated. Similar map patterns were found for the three census tracts examples (for different 
Canadian cities), with different sample sizes (n) and city compactness. Moran’s I statistic across 
model residuals fell each time an eigenvector was added to the set of explanatory factors. Of note 
is that in contrast to a square tessellation, the topographic center of an irregularly-shaped region 
does not necessarily coincide with its geometric center. Also, the salient gradient and concentric 
map patterns (for regular tessellation) tend to dissipate as n increases and more irregularity exists.  

In addition, as n increased, greater agreement was observed between the eigenvalues of the 
weight matrix W and the eigenvalues of its transformation matrix Ω ൌ ሺܫ െ 11்/݊ሻܹሺܫ െ
11்/݊ሻ, with their correlations ranging from 0.97 for the small n case to approximately 1.0 for 

                                                            
3 Interestingly, when the data come from a regular square grid, computing the eigenvalues and vectors can be done 
directly and quickly, in closed form. 



the large n case. The two sets of eigenvalues exhibited an interlaced pattern (with higher values 
aligning with lower values); and, as n increases, the eigenvalues of Ω showed upper bound 
convergence to the eigenvalue of C (Griffith, 1996).  

The matrix Ω is guaranteed to have an eigenvector of purely 1/√݊ values, corresponding to an 
eigenvalue of unity. One advantage of using Ω instead of W is the fact that the eigenvectors of Ω 
are orthogonal (and thus uncorrelated). In other words, Ω′s eigenvectors look a bit like the scaled 
principal components of the matrix W, though their mathematical derivations are quite different.  

Spatial Filtering Based on ࢹ 

Griffith (2000a) further investigated the use of  Ω  for filtered analysis of spatial data. The 
extreme (most negative and positive) values Moran’s I for a specific spatial configuration 
(represented by connectivity matrix C or its row-standardized counterpart W) can be expressed as 
a function of Ω’s eigenvalues (as per Tiefelsdorf and Boots [1995] and De Jong et al. [1984]):  

Moran′s I ൌ MI ൌ
݊

1′ܹ1
·  ሺΩሻ݁ݑ݈ܽݒ݃݅݁

In other words, one could compute Moran’s I for any set of numerical values (y) observed in a 
spatial size-n data set, and these are the normalized/scaled eigenvalues of Ω . Moreover, the first 
eigenvector (denoted as E1) of matrix Ω is the vector of values yielding the strongest spatial 
autocorrelation (thus having the largest MI value) in the space W. It is thus the most important 
principal component of the spatial structure, as encoded by W.  Ω’s second eigenvector (E2) 
offers the second largest eigenvalue or MI, and is orthogonal to (and thus uncorrelated with) the 
first eigenvector (Griffith, 2000a). 

Using these principal components or top eigenvectors, Griffith (2000b) specified four linear 
spatial filter models (crime rates as a function of household incomes and house values in 
Columbus; family income as a function of population densities in Ottawa; population densities as 
a function of distance to CBD in Toronto; and wage rates as a function of unemployment rate 
and net migration rate in Ohio), with samples sizes ranging from 25 to 731. In general, 
noticeable spatial autocorrelation was present in the residuals of an unfiltered/standard ordinary 
least squares (OLS) model.  The filtered OLS model performed moderately better than a SAR 
model with the same spatial weight matrix (W), as reflected by Moran’s I for residuals in the 
filtered model being just half the size of that for the SAR model, on average. Griffith (2000b) 
then tested a 30-by-30 (n = 900) case of remotely sensed biomass values and controlled for all 
279 eigenvectors that met his MI = 0.25 threshold, without any other, standard covariates. 
Neither this filtered OLS model nor a SAR model could address all of the spatial autocorrelation 
present in the data, however.  

Selection of Eigenvectors 

A key issue for filtered regression applications is the strategy to select meaningful eigenvectors 
to embody compelling spatial interactions. As noted above, Griffith (2000b) set a single MI 
threshold for all eigenvectors’ inclusion. Griffith and Peres-Neto (2006) used a more efficient 
method by restricting attention to eigenvectors with positive spatial autocorrelation and then used 
stepwise regression to search among them for meaningful eigenvectors. Tiefelsdorf and Griffith 
(2007) compared the performance of two algorithms for selecting meaningful eigenvectors using 



the natural log of bladder cancer mortality rates (as a function of the logs of lung cancer rates and 
population densities for 508 US State Economic Areas). As usual, stepwise regression was used 
to select the top-performing set of eigenvectors in order to optimally reduce the residual sum of 
squares, ܴܵܵ ൌ or increase the proportion of explained variation, ܴଶ ,כ̂ߝ்כ̂ߝ ൌ 1 െ /כ̂ߝ்כ̂ߝ
ሾݕTܯሺଵሻݕሿ, where the כ̂ߝ are the estimates of the error terms and ܯሺଵሻ is an idempotent matrix: 

௡ܫ െ ଵ·ଵ೅

௡
. To help ensure that the spatial pattern underlying each selected eigenvector is strong 

enough to merit inclusion in the regression equation, Tiefelsdorf and Griffith (2007) proposed 
minimizing the following Z-score objective function: 

min ݖሾܫሺכ̂ߝሻሿ ؠ ሾ
௬೅ெሺ೉|ಶሻௐெሺ೉|ಶሻ௬

௬೅ெሺ೉|ಶሻ௬
െ ሻሻሿכ̂ߝሺܫሻሻሿ/ሾvarሺכ̂ߝሺܫሺܧ

భ
మ 

where W is the spatial weight matrix, ܧሺܫሺכ̂ߝሻሻ is the expected value of residual’s Moran’s I 

(computed as  
୲୰ୟୡୣሺெሺ೉|ಶሻௐெሺ೉|ಶሻሻ

௡ି௞
), and the variance of MI is  

ሻ൯כ̂ߝሺܫ൫ݎܽݒ ൌ
ଶሾሺ௡ି௣ሻ௧௥൫ெሺ೉|ಶሻௐெሺ೉|ಶሻ൯

మ
ିሾ௧௥൫ெሺ೉|ಶሻௐெሺ೉|ಶሻ൯ሿమሿ

ሺ௡ି௞ሻమሺ௡ି௞ାଶሻ
, with  ܯሺ௑|ாሻ ؠ ܫ െ ܺሺ்ܺܺሻିଵ்ܺ. 

This is the t-statistic for a test of Moran’s I (of the residuals) being statistically significant. In 
other words, minimizing this Z-score is akin to removing all evidence of spatial autocorrelation 
in the error terms.  

Their first scenario involved a full set of eigenvectors, while their second focused on 
eigenvectors exhibiting positive spatial autocorrelation. They found that limiting their search to 
those exhibiting positive spatial autocorrelation greatly reduced the number of iterations to 
optimize the objective function used, both in minimizing the Z score on Moran’s I and the RSS. 
Of interest is the fact that the spatial autocorrelation level (indexed by the Z score) did not 
monotonically fall under the RSS-minimization scheme. While Moran’s I minimization scheme 
reached its conversion criterion faster than the RSS scheme, it required more computing and the 
difference in conversion rate was negligible when the search was confined to the set of 
eigenvectors exhibiting positive autocorrelation. Their RSS minimization scheme yielded four 
more eigenvectors, but the first eigenvectors selected under both strategies frequently 
identicalwith both tending to select eigenvectors with large spatial autocorrelation.  

Applications of Spatial Filtering 

Griffith (2004) compared his application of a logistic spatial filtering technique for binary 
response (y = 0,1) with results of Bayesian estimation and maximum pseudo-likelihood 
estimation and maintained that spatial filtering furnishes a successful way to account for spatial 
dependence in a logistic specification. Patuelli et al. (2011) added a spatial filtering component 
to a conventional random-effects model of German unemployment data over time (and across 
439 districts). Chun and Griffith (2011) analyzed US interstate migration flows by utilizing a 
random-parameters model with spatial filter. In the context of network flows, the conventional n 
by n weight matrix is “enlarged” to an n2 by n2 matrix given there are n2 combinations of origins 
and destinations for a region with n trip-generating and –attracting zones. 

Spatial filtering’s application to transportation is nascent. The majority of the spatial filtering 
literature comes from fields like ecology, optical imaging and economic analysis (e.g., Diniz-
Filho and Bini 2005, Zhang et al. 2005, Tiefelsdorf and Griffith 2007, Jacob et al. 2008). Only 



recently have Chun (2008) and Chun and Griffith (2011) used spatial filtering to model U.S. 
interstate migration flows. 

This following discussion demonstrates the use of spatial filtering for analysis of land use and 
land value data, with a comparative look at continuous and binary SAR specifications (each with 
a distance-decay parameter, for added functional flexibility).   

DATA SETS FOR ANALYSIS 

Two related data sets were assembled to demonstrate spatial filtering techniques in a land use 
and land value context. One contains appraised values for private properties across Texas’ Travis 
County in the year 2008, as obtained from County of Travis Central Appraisal District (TCAD). 
Five covariates were created for this regression: the shortest-path network distance from each 
parcel’s centroid to Austin’s central business district (DistCBD), the shortest Euclidean distance 
from each parcel centroid to the nearest freeway (DistFwy), the distance to the nearest major 
arterial (DistMaj), the distance to the nearest minor arterial (DistMin), and the parcel’s Slope. 
Wang et al. (2011) provides more details on these covariates’ calculations. Covariates of regional 
accessibility (using a logsum measure of destination choices in trip-making, as described in 
Wang et al. [2011] and Niemeier [1997]) and population density of each traffic analysis zone 
were also examined for inclusion in the models, but they exhibited too much collinearity with the 
constant term (due to a lack of variation in these variables across the sampled points). Table 1 
summarizes key statistics of the land value data set. 

The other data set characterizes when undeveloped, privately-held parcels in Travis County 
underwent development between 2003 and 2008. Undeveloped parcels are vacant parcels with 
the potential to develop, and thus exclude parks, preserved land, greenbelts and water. The 
original Travis County data set showed 48,445 undeveloped parcels in 2003, among which 
42,589 parcels experienced no physical changes (subdivision or merging) over the 5 year period. 
Among these 42,589 parcels, 64.8 percent remained undeveloped through 2008.  The vast 
majority (98.7%) of those that developed were developed into residential uses.  In addition to the 
five covariates described above, the ratio between each parcel’s perimeter and land area was 
controlled for in the binary-response model (where y = 1 if the parcel developed by 2008, and 0 
otherwise). Table 2 provides summary statistics for this data set, with additional details provided 
in Wang et al. (2011).  

Both of these data sets involve thousands of parcels, which turned out to be demanding for 
eigenvector calculation and selection (in reminding the model specifications, with synthetic 
control variables).  So the sample sizes were reduced, as described below. 

Table 1 Summary Statistics for Austin Land Value Data Set 

Unit Min Max Mean Median StdDev
Land Value per 

Square Foot 
$/SF 0 1,216 7.848 4.716 10.68 

DistCBD Mile 0 55.40 19.691 18.26 10.29 
DistFwy Mile 0 21.02 6.429 5.011 5.651 

DistMajArt Mile 0 6.139 0.803 0.483 0.855 
DistMnrArt Mile 0 10.62 1.770 1.474 1.368 



Slope Percent 0 65.49 7.614 5.654 6.703 
# Obs. 307,331 

 
Table 2 Summary Statistics for Austin Land Development Data Set 

 Unit Min Max Mean Median StdDev 
y  -- 0 1 0.35 0 0.48 

DistCBD Mile 7.000E-01 43.84 19.95 18.55 10.44 
DistMnrArt Mile 3.307E-03 10.62 1.767 1.470 1.350 
DistMajArt Mile 2.354E-04 6.139 0.815 0.490 0.852 

DistFwy Mile 1.169E-02 21.02 6.611 5.414 5.661 
Slope Percent 0.01 74.60 7.829 5.829 6.874 

PeriArea 1/ Ft. 0.001 0.462 0.042 0.044 0.023 
# Obs. 42,589 

 

RESULTS OF DATA ANALYSIS 

The spdep library (Bivand et al. 2011) of the open-source statistical software R includes methods 
to reduce residual spatial dependence in spatially filtered models. For example, the 
SpatialFiltering function, used here to select meaningful eigenvectors for the continuous land 
value model. It does this by maximizing the reduction in the MI value of residuals at each loop in 
the repeated-OLS estimation process. The process terminates when a maximum tolerance has 
been cleared for the Z score of the remaining MI value. 

In calibrating this work’s binary model of land development, R’s Moran eigenvector (ME) 
fitering function for general linear models was used to find eigenvectors that represent 
significant spatial interactions. This function selects eigenvectors into the GLM model as 
synthetic variables until the MI of residuals of the continuous y (between 0 and 1, in this case) 
falls below a pre-specified tolerance level. In other words, both algorithms run through at most n 
of the n eigenvectors at each loop.  

Such brute force selection of eigenvectors requires considerable computing effort, or smaller 
sample size. Given the very large data sets available for analysis here, two different methods of 
parcel selection were employed. For the continuous land value data set, one parcel was randomly 
selected from each of Austin’s 590 traffic analysis zones (TAZs), ensuring reasonable 
geographic coverage of Travis County. For the binary land development data, a sample size of 
1,0004 was randomly selected across the county, resulting in greater coverage. For ease of visual 
representation, Theissen or Voronoi polygons5 were created using the sampled parcels’ centroids 
and ArcGIS polygon commands (to illustrate the results described below). 

Land Value Model Results 

                                                            
4 While the number of unselected eigenvectors falls as the selection process proceeds, n remains large in large data 
sets, over many iterations. R users report computing difficulty for sample size of 3,000+ on the R online forum, at 
https://stat.ethz.ch/pipermail/r-sig-geo/. A sample size of 3,000 resulted in excessively long computing times for the 
logit model 
5 Each Thiessen polygon has one input point, and any location within a polygon is closer to its input point than to 
that of any other polygon. Here, the input points are the centroids of each sampled parcel. 



Table 3 summarizes the results of a SAR model, which is a conventional SAR model that 
allows for a distance decay parameter in its weight matrix: ݕ ൌ ߩ ఈܹݕ ൅ ߚܺ ൅  where ఈܹ is the ,ߝ
row-standardized version of D with ܦ௜௝ ൌ ݀௜௝

ఈ  if ݀௜௝ ൏ ݀୫ୟ୶, and ܦ௜௝ ൌ 0 if ݀௜௝ ൒ ݀୫ୟ୶ or i = j. 
݀୫ୟ୶ is the distance of the qth nearest neighbor, with q selected to be 6 (somewhat arbitrarily, but, 
according to LeSage, it doesn’t matter what q value one uses, since the indirect effects travel 
across neighbors in the spatial weight matrix). The model was estimated using Bayesian methods, 
as described in Wang et al. (under review). Table 4 shows the spatially filtered (SF) regression 
results, with all selected eigenvectors listed in Table 5. Both the SAR and SF models yield 
similar parameter estimates for the set of five covariates found in Table 1, but the SAR model 
tends to mask the statistical significance of covariates, as reflected in its consistently lower t 
statistics than those from SF model.  

Using a tolerance level6 of 0.1, 25 eigenvectors were selected into the SF-OLS model, yielding 
much higher R2 and adjusted R2 values. As one might expect in a setting with 25 added variables, 
all based on the weight matrix, Moran’s I of the SF model’s residual term is very low – and just 
12 percent of MI value apparent in the SAR residuals, which still exhibit noticeable clustering.  

The first four selected eigenvectors represent prominent spatial patterns across the Travis County 
TAZ map. The first depicts strong clustering in central and eastern regions. The second catches a 
clear cluster at the north-eastern corner and two smaller clusters at the northern and southern 
corners. The third captures two large clusters in the central and southwestern areas of the county, 
with the fourth mainly accounting for positive spatial interactions in the northwestern region. 

The SF-OLS model took almost twice the time required for SAR model, since so many 
eigenvectors had to be repeatedly evaluated. When the tolerance level was raised to 4, the 
algorithm terminated after selecting 12 eigenvectors, and thus ∑ ሺ590 െ ݅ଵଶ

௜ୀ଴ ሻ = 7,592 search 
loops, yielding a slightly lower but still satisfactory R2 of 0.62 and a lower computing time 
(3,897 seconds) than that required by the SAR model. Thus, even under a moderate tolerance 
level, the SF-OLS technique may provide better fit with less computing burden than important, 
competing model specifications.  

 

 

 

 

 

 

                                                            
6 The search algorithm terminates when the Z score for statistical significance of Moran’s I falls below the analyst-
provided tolerance value.  



Figure 1. Top Two Selected Eigenvectors across Sampled Travis County Parcels (Left image 
shows loadings on the first selected eigenvector; right image shows loadings on the second.) 

Land Development Model Results 

As with the continuous-response modeling approach, top eigenvectors were simply added to the 
set of covariates in the main equation characterizing discrete response. In the case of a binary 
logistic model, the expression is as follows:  

Probሺݕ௜ ൌ 1ሻ ൌ
exp ሺݔ௜ߚ ൅ ሻߛ௜ܧ

1 ൅ exp ሺݔ௜ߚ ൅ ሻߛ௜ܧ
 

where ݔ௜ is a 1 by k vector containing the systematic covariates for parcel i as well as a constant 
term. ܧ௜ is an 1 by p vector for the ith parcel’s row of values in the top p eigenvectors selected. 
These ܧ௜ values characterize that parcel’s “loadings” (a term from principal components analysis) 
on each of the included eigenvectors.  

The ME search algorithm terminated after 12,922 search loops for a total of 4.81 minutes on an 
Intel(R) Xeon(R) 2.40GHz desktop computer, yielding 12 eigenvectors that represent significant 
spatial components as synthetic variables. As shown in Table 6, the likelihood of a parcel’s 
development (y = 1) was estimated to be positively associated with distance to the CBD and 
distances to the nearest major arterial and freeway, suggesting that many parcels developing over 
the 2003-2008 period were on the periphery of Travis County, but relatively close to minor 
arterials and with somewhat lower slopes, on average, than parcels that remained undeveloped, 



ceteris paribus. In addition, the larger the ratio of a parcel’s perimeter to its area, the more likely 
it would undergo development. 

Thiessen or Voronoi polygons were constructed around parcels’ centroids to illustrate the 
eigenvector loadings across sampled parcels (so that parcels are visible, rather than being hidden 
among the tens of thousands available in the original data set). Figure 2 shows how the first two 
chosen/most relevant eigenvectors load. The first eigenvector captures clustering patterns at the 
northern and southern areas of the region under study, whereas the second depicts strong 
clustering pattern in the southwest corner, along with clusters sitting around the center. 

  

Figure 2. Top Two Selected Eigenvectors across Sampled Travis County Parcels (Left image 
shows loadings on the first selected eigenvector; right image shows loadings on the second.) 

The same set of sampled points was analyzed using a binary probit SAR model with a distance 
decay parameter (to be estimated) in its weight matrix, with estimation results shown in Table 7. 
A spatial autoregressive probit model with a distance decay parameter () in the weight matrix 
was expressed as: כݕ ൌ ߩ ఈܹכݕ ൅ ߚܺ ൅  is the unobserved response variable with a כ� where ,ߝ
positive value leading to a y = 1 outcome, and zero otherwise.  is the spatial autocorrelation 
coefficient characterizing the strength of spatial association in response values (after controlling 
for X factors), �  is an n by K covariate matrix, with n denoting the number of observational 
units (e.g., parcels over space) under study and K the dimension of the parameter vector . The 
error term, �, is assumed to have an iid normal distribution: � ~ �ሺ0, �2��ሻ. To ensure 
identification (as present in any latent-response model), the homoscedastic error term is set to 
unity. Here, �� is a function of the distance decay parameter �, such that ��� ൌ ���

� , 
if ��� ൏ �max, and   ��� ൌ 0 otherwise. �� is the row-standardized version of D. 

Both parameter estimates and quasi-t stats were smaller in magnitude than in the SF model, 
presumably due to larger relative scaling on the latent error term (which requires scaling for 
model identification).  Essentially, when there is more noise in a probit or logit model, the slope 
parameters fall, relative to the noise term (whose scale is pre-specified). Interestingly, computing 
time was much higher for Bayesian estimation of the SARP model than for the probit with 
spatial filtering.  



Table 3 Parameter Estimates and Impact Estimates for SAR Model of Land Value 

 
Mean Stdev T-Stats 

Direct 
Effect 

Stdev_Dir T-Stats Indirect Effect Stdev_Indir T-Stats 

Constant 8.865 1.168 7.589 9.451 1.251 7.557 14.244 2.693 5.289 

DistCBD -0.651 0.126 -5.163 -0.694 0.135 -5.152 -1.046 0.249 -4.197 

DistMin -0.271 0.378 -0.718 -0.288 0.402 -0.716 -0.434 0.620 -0.700 

DistMaj 1.043 0.849 1.228 1.117 0.906 1.233 1.683 1.402 1.201 

DistFwy 0.811 0.255 3.173 0.860 0.273 3.156 1.296 0.455 2.850 

Slope -0.181 0.147 -1.234 -0.192 0.156 -1.227 -0.289 0.244 -1.186 

ρ 0.549 0.032 17.32 

α -0.864 0.338 -2.557 

σ 101.3 6.203 16.33 

R2 0.290 

Adjusted R2 0.284 

Moran’s I of ε 0.512 

Run time 4,369 seconds 

 
 
 
 



Table 4 Regression Results for Spatially Filtered Least-Squares Model of Land Value  

  Estimate Stdev T-Stats Pr(>|t|) 

Constant 24.09 0.799 30.158 < 2e-16 

DistCBD -1.747 0.104 -16.84 < 2e-16 

DistFwy 2.221 0.229 9.696 < 2e-16 

DistMaj 2.051 0.776 2.642 0.00846 

DistMin -0.8192 0.347 -2.359 0.01866 

Slope -0.2761 0.136 -2.037 0.04209 

vec5 -176.8 9.254 -19.1 < 2e-16 

vec3 -58.99 9.254 -6.374 3.86E-10 

vec4 -53.27 9.254 -5.756 1.42E-08 

vec2 49.86 9.254 5.387 1.06E-07 

vec14 37.54 9.254 4.057 5.68E-05 

vec31 37.50 9.254 4.052 5.79E-05 

vec48 38.77 9.254 4.189 3.25E-05 

vec57 34.17 9.254 3.692 0.00024 

vec19 26.24 9.254 2.836 0.00474 

vec33 26.92 9.254 2.909 0.00377 

vec61 -32.43 9.254 -3.504 0.00049 

vec6 21.04 9.254 2.274 0.02335 

vec7 20.49 9.254 2.214 0.02724 

vec16 20.90 9.254 2.258 0.02431 

vec15 20.48 9.254 2.213 0.02728 

vec46 23.87 9.254 2.579 0.01016 

vec23 20.47 9.254 2.212 0.02734 

vec40 -22.29 9.254 -2.409 0.01634 

vec75 28.06 9.254 3.032 0.00254 

vec18 18.81 9.254 2.032 0.04259 

vec39 20.71 9.254 2.238 0.02561 

vec84 28.32 9.254 3.06 0.00232 

vec66 -23.46 9.254 -2.535 0.01153 

vec86 26.56 9.254 2.87 0.00426 

vec92 25.73 9.254 2.78 0.00562 

vec12 15.40 9.254 1.664 0.09666 

R2 0.668 

Adjusted R2 0.65 

Run time 8,421 seconds 

Moran’s I of ε 0.065 



 
Table 5 Eigenvectors Selected for Spatially Filtered Least-Squares Model of Land Value 
(with Tolerance = 0.1). 

Step 
Selected 

Eigenvector 
Eigenvalue 

Moran's I of 
Residuals 

Z Score Pr(ZI) R2 r 

0 0 0.000 0.526 26.742 0.000 0.281 0.000 

1 5 1.020 0.313 13.705 0.000 0.498 -176.8 

2 3 1.038 0.276 11.610 0.000 0.522 -59.0 

3 4 1.022 0.244 9.768 0.000 0.542 -53.2 

4 2 1.051 0.213 7.936 0.000 0.559 49.9 

5 14 0.923 0.197 7.040 0.000 0.569 37.5 

6 31 0.758 0.184 6.298 0.000 0.579 37.5 

7 48 0.607 0.173 5.667 0.000 0.589 38.8 

8 57 0.535 0.166 5.247 0.000 0.597 34.2 

9 19 0.880 0.157 4.809 0.000 0.602 26.2 

10 33 0.739 0.149 4.411 0.000 0.607 26.9 

11 61 0.497 0.143 4.027 0.000 0.615 -32.4 

12 6 1.010 0.136 3.711 0.000 0.618 21.0 

13 7 1.003 0.129 3.409 0.001 0.621 20.5 

14 16 0.907 0.123 3.110 0.002 0.624 20.9 

15 15 0.912 0.117 2.816 0.005 0.627 20.5 

16 46 0.611 0.112 2.525 0.012 0.630 23.9 

17 23 0.829 0.106 2.242 0.025 0.633 20.5 

18 40 0.662 0.101 1.956 0.050 0.637 -22.3 

19 75 0.408 0.096 1.672 0.094 0.642 28.1 

20 18 0.890 0.090 1.405 0.160 0.645 18.8 

21 39 0.675 0.085 1.140 0.254 0.648 20.7 

22 84 0.354 0.081 0.873 0.383 0.653 28.3 

23 66 0.465 0.077 0.624 0.533 0.657 -23.5 

24 86 0.349 0.073 0.383 0.702 0.662 26.6 

25 92 0.322 0.069 0.174 0.862 0.667 25.7 

26 12 0.957 0.065 -0.022 0.982 0.668 15.4 
Notes: r indicates the regression coefficient associated with each eigenvector. Pr(ZI) is the probability of the 
permutation-based standardized deviate for the given value of the alternative argument. 



 
 
Table 6 Regression Results for Spatial Filtered Binary Logit Model of Land Development  

Estimate Stdev T stat. z value Pr(>|z|) Marg. Effect 

Constant -1.945 0.292 -6.655 -6.655 2.84E-11 - 

DistCBD 0.289 0.038 7.507 7.507 6.06E-14 0.156 

DistMin -0.560 0.122 -4.574 -4.574 4.79E-06 -0.302 

DistMaj 0.498 0.308 1.616 1.616 0.106 0.268 

DistFwy 0.456 0.156 2.928 2.928 0.003 0.246 

Slope -0.087 0.026 -3.377 -3.377 0.001 -0.047 

Periarea 7.479 3.220 2.322 2.322 0.020 4.027 

vec2 -11.398 3.656 -3.117 -3.117 0.002 -6.137 

vec8 -18.906 4.500 -4.201 -4.201 2.65E-05 -10.180 

vec20 -12.685 2.741 -4.628 -4.628 3.68E-06 -6.830 

vec32 -11.481 2.961 -3.877 -3.877 0.000 -6.182 

vec18 12.871 3.677 3.500 3.500 0.000 6.930 

vec66 -10.554 2.920 -3.614 -3.614 0.000 -5.683 

vec38 -7.053 2.419 -2.915 -2.915 0.004 -3.798 

vec15 6.293 2.232 2.819 2.819 0.005 3.388 

vec45 5.105 2.212 2.308 2.308 0.021 2.749 

vec7 8.343 3.089 2.701 2.701 0.007 4.492 

vec60 -6.914 2.912 -2.374 -2.374 0.018 -3.723 

vec84 -6.606 2.529 -2.612 -2.612 0.009 -3.557 

vec22 4.832 3.235 1.494 1.494 0.135 2.602 

AIC 1170.2 

Likelihood Ratio 254.3 > �0.05
2 ሺ19ሻ = 30.14 

Moran's I of ε 0.103 

Run Time  288.6 seconds 
Significance codes:  *** is for 0.000, ** is for 0.001, * is for 0.01, * is for 0.05, and  0.1 

‘ ’   



 
Table 7 Parameter Estimates and Impact Estimates for SARP Model of Land Use. 

Covariates Mean St.Dev. T-Stat. 
Direct 
Effect Stdev_Dir T-Stat. Indirect Effect Stdev_Indir T-Stats 

Constant -0.571 0.139 -4.102 - - - - - - 

Dist2CBD 0.060 0.016 3.652 0.023 0.00103 34.744 0.025 3.24E-04 76.1 

DistMin -0.092 0.053 -1.753 -0.039 0.00115 -27.226 -0.038 3.18E-05 -1192 

DistMaj 0.311 0.167 1.868 0.133 0.00515 27.188 0.128 9.66E-05 1327 

DistFwy 0.038 0.063 0.608 0.016 0.00134 26.907 0.016 1.67E-06 9418 

Slope -0.025 0.014 -1.708 -0.011 3.89E-04 -27.077 -0.010 5.05E-06 -2000 

PeriArea 4.689 1.737 2.699 1.974 0.070 28.196 1.928 0.006 342 

ρ 0.526 0.044 12.086             

α -0.670 0.191 -3.505             

AIC 2961.0 

Moran's I of e 0.046 

Run time 12,354 seconds 



SUMMARY AND CONCLUSIONS 

The value of using spatial filtering for regression model estimation seems clear: the relatively 
straightforward decomposition of a spatial weight matrix offers a set of vectors that characterize 
the data set’s spatial relationships. Inclusion of these values in the model’s primary behavioral 
equation accounts for much information that would otherwise remain largely latent, in the 
model’s error terms, even in SAR-type models, as illustrated here.  Other benefits of a spatially 
filtered approach include avoidance of normalizing factor computation that SAR techniques 
require. However, spatial filtering is computationally burdensome in other ways, such as 
exhaustively identifying the top eigenvectors for model inclusion, particularly in large data sets 
(since the number of vectors equals sample size). 

This paper compared results of spatial filtering models and relatively flexible SAR models (each 
allowing for a distance decay parameter in their weight matrices). Parameter estimates, inference, 
predictive power, and computing times improved. Despite improved model fit, spatially filtered 
models may rely on a large number of proxy variables, at odds with model parsimony. While 
such proxies may perform fairly well in substituting for missing covariates (characterizing spatial 
structure of the data), the interpretation of these synthetic variables remains largely ambiguous. 
Underlying causes of such dependence is largely unknow: are they generated by pure spatial 
interactions (e.g., attributes of nearby parcels and their land owners impacting others’ outcomes) 
or it is caused by omitted explanatory variables (such as soil and air quality). 

In conclusion, spatial filtering methods for spatial data sets are an appealing method for 
removing spatial relationships in analysis of spatial data, allowing the analyst to focus on the 
marginal effects of covariates of interest while appreciating the various components that 
characterize the data set’s spatial structure. Such techniques are shown here in a positive 
comparison to results of reasonably flexible spatial autoregressive model specfications. 
Opportunities for continued investigation include analysis of count and categorical response 
variables, use of simulated data sets and other spatial techniques for more rigorous understanding 
of the benefits of a filtered approach. 
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