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27 ABSTRACT 

28 
29 Budget constraints and competing opportunities demand thoughtful project evaluation before 

30 investment. Significant uncertainty surrounds travel choices, demographic futures, project costs, 

31 and model parameters. The impacts of this uncertainty are explored by conducting hundreds of 

32 sensitivity test runs across 28 random parameter sets to evaluate highway capacity expansion and 

33 tolling project scenarios in Austin, Texas. The effects of different parameter sets on project 

34 benefit-cost ratios, crash counts, emissions, traffic volumes, and tolling revenues are examined in 

35 detail. Linear regression results show that link capacity, link-performance parameters – and their 

36 covariation – are key to results, followed by the elasticity of demand, trip growth rates and 

37 values of travel time. 

38 

39 INTRODUCTION 

40 
41 As a consequence of global recession, governments around the world are trimming budgets 

42 (Economist 2011a, 2011b and 2011c). With U.S. gas taxes stagnant and transportation 

43 construction prices rising 59% between 2000 and 2009 among six representative states (WSDOT 

44 2011), transportation professionals must determine and pursue the most socially beneficial and 

45 budget-sensitive projects possible, under tight funding constraints. Kockelman et al.’s (2010) 

46 Project Evaluation Toolkit or PET allows users to quickly and with minimal input ascertain trip
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tables for abstracted networks (Xie et al. 2010), anticipate demand shifts under different network 47 
scenarios, and generate a host of project-evaluation metrics for side-by-side comparison.  PET 48 
anticipates emissions, crashes, traveler welfare, and network reliability impacts, relative to Base-49 
Case network conditions, and relies on user specification of project costs to estimate long-term 50 
performance metrics (like internal rates of return, benefit-cost ratios, and net present values). 51 
 52 
PET also enables sensitivity testing of project impacts, by allowing users to randomize 28 sets of 53 
parameters (including values of travel time, link performance parameters, demand elasticities, 54 
and regional growth rates, among others).  Sensitivity testing allows basic project assumptions to 55 
exhibit a degree of uncertainty and vary over the course of multiple trial runs, producing a 56 
distribution for possible outcomes and giving analysts a sense of risks and rewards across project 57 
alternatives. 58 
 59 
An appreciation of the likely distributions of project outcomes is essential to wise decision 60 
making, since actual outcomes can be much different than those expected.  Standard & Poor’s 61 
Bain and Plantagie (2004) describe much of this problem, noting that estimates for some project 62 
types have not only been inaccurate, but biased overall.  In this light, transportation planners, 63 
policymakers and investors may opt for a project with more certain benefits, rather than one with 64 
slightly greater predicted benefits, but also a greater degree of uncertainty (with some outcomes 65 
which may be particularly bad).  Additionally, agencies may wish to package projects with a 66 
significant degree of risk as a public-private partnership (Bain and Plantagie 2007). 67 
 68 
This paper examines the potential impacts of upgrading an arterial street to a freeway or a 69 
tollway in Austin, Texas.  The nature of performance distributions is examined in greater detail 70 
by varying 28 sets of parameters – one set at a time and in combination – in order to better 71 
understand the impacts of multiple degrees of uncertainty across project scenario alternatives. 72 
Simulation results suggest how much uncertainty exists in model predictions, with regression 73 
results identifying key assumptions and inputs.  74 
 75 
BACKGROUND 76 
 77 
In 2003 Flyvbjerg et al. published an important cost-overrun study of 258 major public works 78 
across 20 nations, emphasizing road projects (167 of the 258 cases) with the rest comprising rail, 79 
bridges and tunnels. Two years later, a follow-up study (Flyvbjerg et al. 2005) focused on travel 80 
demand forecasts, for 210 major rail and roadway projects. Both studies concluded that cost and 81 
traffic estimates are highly uncertain, and regularly much different from actual values. For 82 
example, road project costs averaged 20.4% higher than projected costs – with a standard 83 
deviation of 29.9%, and half of all road projects had overstated demand by more than 20 percent, 84 
with a quarter of estimates overstating demand by at least 40 percent. Rail-related biases were 85 
even more dramatic, with 72% of all projects overstating ridership by 70 percent or more.  Such 86 
results highlight a substantial underlying degree of uncertainty in forecasting traffic flows (as 87 
well as bias). 88 
 89 
In their review of this literature, Lemp and Kockelman (2009b) noted that predicted traffic 90 
volumes exceed actual volumes by over 30% in half of the hundreds of cases examined.  Even 91 
when correcting for optimism bias, uncertainty of traffic volumes and revenues remains 92 



3 
 

substantial, suggesting that analyst assumptions are far from perfect.  To address at least the 93 
variance in potential project outcomes, Lemp and Kockelman recommended that project 94 
evaluations be conducted using Monte Carlo or related simulations to “provide probability 95 
distributions of future traffic and revenue.” (2009b, p 1).  This is consistent with the practice of 96 
many others, including Ševčíková et al.’s (2007) model projecting future households by traffic 97 
analysis zone, Gregor’s (2009) GreenSTEP emissions model which uses Monte Carlo sampling 98 
to generate distributions and Wang’s (2008) application estimating uncertainty impacts using a 99 
freight mode choice model.  While such sampling addresses the variability underlying key 100 
sources of project uncertainty, it does not address issues of model misspecification and bias. 101 
 102 
The methods employed here use processes similar to those applied by Zhao and Kockelman  103 
(2002), Pradhan and Kockelman (2002) and Krishnamurthy and Kockelman (2003) in their 104 
investigations of uncertainty propagation through a standard four-step travel demand model and 105 
integrated transport-land use models.  For example, Krishnamurthy and Kockelman varied 95 106 
parameters and two demographic inputs over 200 simulations.  After generating model 107 
predictions, they identified key inputs by regressing important outputs on the sets of variable 108 
inputs.  Results were most strongly impacted by changes in the link performance function 109 
parameters, and shares of peak versus off-peak traffic (Krishnamurthy and Kockelman [2003]).  110 
This investigation builds on these three previous works by looking at the value of specific 111 
projects, rather than how urban-system model parameters affect total system travel distances and 112 
land use patterns.  PET produces a wide variety of parameter-dependent project-related impacts, 113 
including emissions, crashes, traveler welfare, tolling revenues, and benefit-cost ratios.  114 
 115 
TOOLKIT DESCRIPTION  116 
 117 
The Project Evaluation Toolkit (PET) acts as a stand-alone tool for transportation project impact 118 
assessment.  PET is intended for use upstream of the NEPA process, allowing planners to 119 
quickly evaluate a number of potential project variations before selecting the most appealing 120 
candidate(s) for more detailed demand modeling (and more detailed networks).  PET uses an 121 
Excel interface with a C++-coded travel demand model that accommodates hundreds of network  122 
links and relies on user-entered link volumes and attributes, plus hundreds of parameter values to 123 
predict changes in travel patterns, emissions, crash counts, and other impacts (versus a base [e.g., 124 
no-build] case).   125 
 126 
PET simultaneously serves several needs not currently met by any other single model. For 127 
example, its data requirements and run times (less than an hour to evaluate three scenarios, 128 
versus the Base-Case) are less cumbersome than required by regional planning models.  PET 129 
allows up to five traveler classes for assignment and infers trip tables from link counts, closely 130 
mimicking traffic shifts on a complete network following network changes (Xie et al. 2010).  131 
PET holistically evaluates full-network impacts, unlike other sketch-planning tools that lack 132 
embedded travel demand models and focus on corridors.  However, PET faces network-size 133 
limitations (with run times growing exponentially with network links) and neglects land use 134 
details (typically used for trip generation and attraction computations). 135 
 136 
PET’s travel demand model operates by first estimating a base trip table from coded-link 137 
volumes using a maximum entropy methodology (Xie et al. 2010).  Next, PET performs an 138 
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iterative process to equilibrate travel times, costs, and flows, beginning with the application of 139 
elastic demand functions governing all origin-destination (O-D) pairs: 140 
 141 

௜௝,ௗݔ
௞ ൌ ௜௝,ௗݔ

௕,௞ ቆ
௚೔ೕ,೏
ೖ

௚೔ೕ,೏
್,ೖ ቇ

ఎ

 (1) 142 

 143 
where ݔ௜௝,ௗ

௞  is the traffic volume of traveler class k (in vehicles per time period) between origin i 144 

and destination j during time-of-day period d, ݃௜௝,ௗ
௞  represents the generalized cost (linearly 145 

combining time and money) of class k individuals traveling between origin i and destination j 146 
during time-of-day period d, and the superscript b denotes the Base-Case scenario traffic 147 
volumes or path costs.  The ߟ term represents the elasticity of trip-making and is set to -0.69 148 
based on weighted elasticities observed from application of regional travel demand models to the 149 
complete Austin network (Lemp and Kockelman 2009a).  This function estimates changes in trip 150 
making for each user class, based on general travel cost changes between each O-D pair. 151 
 152 
After application of the elastic demand function, an incremental logit model (Ben-Akiva and 153 
Lerman 1985) is used to estimate changes in travel mode (e.g., SOV, HOV2, HOV3 or transit).    154 
For the heavy-truck driver class, the probability of choosing the heavy-truck mode is 1.0 so the 155 
mode split step is effectively ignored for these users.   For other traveler classes, mode-split 156 
probabilities depend on user type (work-related [non-commute] travel, commuters and travelers 157 
with other non-work purposes), with each user type possessing distinct values of travel time and 158 
reliability. Their mode splits take the form: 159 
 160 
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 162 
In this model, ௜ܲ௝,௠

௞  represents the probability that a traveler of type k originating at origin i and 163 

traveling to destination j will choose mode m; and ∆݃௜௝,௠
௞  represents changes in generalized 164 

travel costs (as defined earlier).  The mode-choice model requires a single mode scale parameter 165 
 ௠ሻ to reflect the generalized cost term’s coefficient in the associated systematic utility function 166ߣ)
(Ben-Akiva and Lerman 1985). 167 
 168 
The model then estimates changes in up to five time-of-day splits using a similar incremental 169 
logit model (with an associated time of day scale parameter, ߣ௧).  Finally, the demand model 170 
relies on the Floyd-Warshall algorithm for shortest-path user equilibrium traffic assignment 171 
(Floyd 1962).  This four-step iterative process (of elastic demand, mode and time-of-day choice, 172 
and network assignment, across multiple traveler classes) continues until equilibrium is reached 173 
using the method of successive averages.  For more travel demand modeling details, see 174 
Kockelman et al. (2010). 175 
 176 
Once the demand model reaches convergence, traveler welfare impacts (consisting of changes in 177 
monetized travel times and operating costs plus any surplus from new travelers) are estimated for 178 
each O-D pair (ij), traveler class (k), and time of day (d) using the rule-of-half (RoH) (Geurs et 179 
al. 2010): 180 
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 183 
where ݔ’s represent each O-D pair’s flow rate (before and after the network or policy change: xb 184 
and x), ݃ is generalized travel cost, and ݓ is vehicle occupancy rate.  This formulation accounts 185 
for benefits to new travelers who may be adding new trips due to reduced travel costs, as well as 186 
benefits to travelers who were already traveling from a given origin to a given destination, and 187 
see their travel costs fall.  Preliminary testing was conducted based on Lemp and Kockelman’s 188 
(2009a) demand model specifications to find that the RoH results very closely track (<5%) 189 
nested and standard logsums, provided that no major network changes are made or new 190 
alternatives are added (such as a subway mode). 191 
 192 
All flows and welfare estimates are then imported to the Excel component, which estimates 193 
changes in network reliability, crashes, emissions, toll revenues, and fuel consumption.  194 
Reliability is estimated as a link-level travel time variance, using the following formula:  195 
 196 
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 198 
where ݎ௔

଴ is the free-flow travel time variance of link ܽ, and ߛ ,ߪ and ߬ are parameters estimated 199 
using traffic data obtained from freeway segments in Atlanta, Los Angeles, Seattle and 200 
Minneapolis (Margiotta, 2009). Using nonlinear least-squares regression, parameters were 201 
estimated to define the relationship between travel time variance and hourly volume-capacity 202 
ratios, with resulting values of ߪ ൌ 2.3, ߛ ൌ 0.7, and ߬ ൌ 8.4 (with an R2

adj of 0.408) 203 
(Kockelman et al. 2010). 204 
 205 
PET uses safety performance functions from Bonneson and Pratt’s (2009) Roadway Safety 206 
Handbook to predict the total number of fatal plus injurious crashes on each directional link in 207 
the PET networks.  Fatal and injurious count shares or splits, along with extrapolations of 208 
property damage only (PDO) crash counts, are then estimated from Texas crash data sets, 209 
(TxDOT 2009).  Emissions estimates employ lookup tables generated using EPA’s MOBILE 210 
6.2, for 13 distinct species based on vehicle-fleet age and type distributions, ambient 211 
temperatures (summer and winter), model-estimated speeds, analysis year, and road facility type 212 
(freeway, arterial, ramp, etc.).  Local calibration factors may be used to scale up or down crash 213 
counts and emissions volumes (due to local area crash histories, atmospheric variations, vehicle 214 
technologies, and so forth).  For example, a 1.1 local crash calibration factor indicates 10% more 215 
crashes are expected than using default formulae.  Summary measures are provided in the form 216 
of benefit-cost ratios, net present values, internal rates of return and payback periods (for each 217 
alternative policy or project, versus the Base-Case [no-build scenario]). PET’s sensitivity testing 218 
module provides distributions on these, and many other model outputs, as illustrated in this 219 
work. 220 
 221 
CASE STUDY 222 
 223 
For this investigation, two scenarios were examined converting a four-lane arterial to a four-lane 224 
freeway or tollway.  A 5% discount rate was assumed which is lower than the 7% required by the 225 
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OMB for federal projects, but is on the high end of the 3 to 5% discount rates typically used for 226 
state transportation projects (FHWA 2007). Additionally, a 20-year design life was assumed 227 
along with a 1% annual growth rate in Base-Case trip rates between all O-D pairs, though PET 228 
has the ability to account for pair-specific growth rates.  The 1% growth rate is lower than the 229 
estimated regional population growth (Robinson 2008) but close to or higher than the expected 230 
growth rate for zip codes in which the most congested roadways lie.  Figure 1 illustrates the case 231 
study location on the 194 link Austin regional network. 232 
 233 

 234 
 235 

Figure 1: Case Study Location 236 
 237 

Both scenarios included upgrading the existing four-lane segment (two through lanes in each 238 
direction) from an arterial to a grade-separated freeway or tollway, while retaining the two lanes 239 
in each direction configuration.  Two-way (total) capacity was estimated as increasing from 3080 240 
vehicles per hour (vph) to 7640 vph, as well as eliminating seven intersections between US 290 241 
and minor streets.  The first scenario (Freeway) was modeled as a non-tolled freeway, and the 242 
second scenario (Tollway) with fares at $0.20 per mile for SOVs (similar to Austin’s US 130 243 
[TxDOT 2011]), $0.10 per mile for HOVs (2 or more persons), no toll for transit users, and 244 
$0.60 per mile for heavy-trucks. 245 
 246 
Initial project costs were estimated at $71.8 million for the Freeway scenario and $80.5 million 247 
for the Tollway scenario, based on an estimated construction cost of $3.2 million per freeway 248 
lane-mile plus another $760,000 per directional mile for installation of toll collection 249 
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infrastructure and 10 percent for design costs, as per recent Texas projects (TxDOT 2008).  A 250 
$30 million repaving project was also assumed needed 10 years after the initial-year in the Base-251 
Case scenario. Annual maintenance and operations costs were estimated at $410,000 for the 252 
Freeway scenario plus another $1.13 million for the two tolling scenarios, based on recent Texas 253 
estimates (TxDOT 2008).  Fagnant et al. (2011a) previously examined a similar case study, and 254 
changes in PET’s specification have resulted in somewhat different B/C ratios and other outputs. 255 
 256 
Due to rising input prices and the nature of this expansion project, the true tollway construction 257 
cost may be closer to $7 million per lane-mile (as confirmed by Austin tollway expert Burford 258 
[2011]).  A project recently was bid in the same location with a larger footprint (6 managed lanes 259 
+ 6 frontage lanes) with a per-mile project bid cost indicating this new estimate (though costs 260 
could be lower than $7 million per lane-mile due to the lack of new right-of-way acquisition). 261 
This variation of the base assumptions results in an approximate doubling of project costs and 262 
roughly a halving of these benefit-cost (B/C) ratios, as estimated below (parenthetically).   263 
 264 
Both alternative scenarios showed favorable B/C ratios.  The Freeway scenario was most 265 
favorable from the public’s perspective, with a 14:1 B/C ratio, while the Tollway enjoys a 266 
respectable B/C ratio of 6.5:1. (These ratios are 7.7:1 and 3.5:1, respectively, under the higher 267 
construction cost assumption, of $7 million per lane-mile.)  The main reason for the Freeway 268 
alternative’s strong performance lies in its superior traveler welfare impacts, as shown in Table 269 
1: 270 
 271 

Table 1: Present Value of Capacity Expansion Scenario Impacts (in $Millions) 272 
 273 

Freeway Tollway 

In
it

ia
l-

Y
ea

r 

Total Impacts $32.0 M $12.4 M 

Traveler Welfare $23.8 $5.0 

Reliability $7.0 $6.3 

Crashes $0.7 $0.7 

Emissions $0.5 $0.4 

D
es

ig
n-

Y
ea

r Total Impacts $132.9 M $99.6 M 

Traveler Welfare $76.6 $49.1 

Reliability $51.8 $47.2 

Crashes $1.4 $1.3 

Emissions $3.1 $2.0 
 274 
In the Freeway scenario, travelers gain a mobility benefit without having to pay an extra fee, as 275 
in the tolling scenarios.  However, this carries an implicit cost since the Freeway scenario must 276 
be financed through tax revenues.  Conversely, the Tollway scenario is not only self-financing, 277 
but likely revenue generating with an estimated 23% internal rate of return (or 11% under the 278 
higher-construction-cost assumption) - to tolling authorities, rather than to society at large.   279 
 280 
While these estimates are high, and the projects may seem unusually attractive (from an 281 
engineering accounting standpoint), Austin tollway expert Burford (2011) feels that PET’s 282 
revenue projections appear reasonable.  Transportation planners and policy makers may prefer 283 
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the Tollway scenario, since it offers a mechanism to quickly recover invested funds.  This project 284 
may be much more profitable than existing tollways in Austin, due to its lack of parallel (non-285 
tolled) frontage roads and assumption of no additional right-of-way requirements (which are 286 
likely required, due to state laws that mandate provision of a “free” alternative to new tolled 287 
routes).  288 
 289 
Crashes and emissions also require further consideration, though outweighed by traveler welfare 290 
and travel time reliability benefits when monetized.  Over the 20-year design life, the projects are 291 
projected to avoid 480-530 injurious crashes, 6 or 7 of which are expected to be fatal.  Most 292 
emissions types are forecasted to fall in the initial-year and all are lower in the design-year.  In 293 
particular network-wide emissions of hydrocarbons, butadiene, formaldehyde and acrolein all 294 
fall by over 0.9% when comparing the Freeway scenario’s design-year with the Base-Case 295 
scenario. This is particularly impressive when considering that the improved links handle only 296 
1.45% of total system traffic.  For both crashes and emissions, the Freeway scenario is preferred, 297 
though the Tollway is still beneficial.  The major reason for this is that some vehicles in the 298 
Tollway scenario chose longer and slower routes along arterials, thus increasing emissions and 299 
crash risks. 300 
 301 
Average daily speeds on the upgraded segment increased in both scenarios relative to the Base-302 
Case scenario, showing a 23 mph (55 vs. 32 mph) difference in the initial-year and 31 mph (54 303 
vs. 23 mph) by the design-year.  US 290 Traffic volumes are predicted to increase in both 304 
scenarios versus the Base-Case, with 160 and 275 vpd in the first year growing to 930 and 1100 305 
by the design-year for the Tollway and Freeway scenarios, respectively.  306 
 307 
PARAMETER VARIATION 308 
 309 
Twenty-eight parameter sets were then varied during sensitivity analysis in order to determine 310 
the impact of parameter variation on outcomes.  All random draws originate from lognormal 311 
distributions, where the corresponding/underlying normal random variable’s standard deviation 312 
varies, as per user specification, and is centered at zero.  These draws result in lognormal 313 
distributions with means centered approximately at 1, with reported coefficients of variation 314 
(CoV), where CoV equals the distribution’s standard deviation divided by the absolute value of 315 
its mean.  Variations were conducted by drawing an independent random value for each 316 
parameter set. (For example, all user classes’ values of travel time have a single, shared draw for 317 
a given iteration, so all move up or down together, to help ensure some necessary correlation.)  318 
This random draw was then applied to the Base Case and all alternative scenarios for that 319 
iteration, and to the initial and design-life years (with interpolation of project impacts in 320 
intermediate years, to moderate computational burdens).  Hundreds of iterations were run, for 321 
hundreds of evaluations across all scenarios (each versus the corresponding Base Case scenario). 322 
 323 
Two sets of runs were conducted with three hundred iterations each, the first run containing a 324 
low degree of uncertainty (0.10 or 10.0% CoV for all parameter sets) and the second a higher 325 
degree of uncertainty for most parameters (10.0% CoV for three parameter sets with a relatively 326 
strong degree of certainty, 30.7% CoV for most parameters, and 53.3% CoV for four parameter 327 
sets with a high degree of uncertainty).  These lognormal CoVs correspond to draws from the 328 
underlying (normal) random variables centered at 0 with standard deviations of 0.1, 0.3 and 0.5.  329 
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 330 
Table 2 shows which parameters were varied and the CoV for each set of runs, as well as the 331 
default average parameter values.  For a full listing of these and other default-parameter value 332 
sources, please see the PET Guidebook (Fagnant et al. 2011b). 333 

 334 
Table 2: Sensitivity Testing Parameters and Assumed Variations 335 

 336 

Parameter 
Low 
CoV 

High 
CoV Mean Values Used 

Value of Travel Time 10.0% 30.7% $5 to $50 per hour 

Value of Reliability 10.0% 30.7% $5 to $50 per hour of travel-time std. dev. 

Vehicle Operating Costs 10.0% 30.7% $0.20 to $0.50 per mile 

Crash Costs 10.0% 30.7% $7500 (PDO) to $1.13M (Fatal) 

Emissions Values 10.0% 53.3% For 5 species, varies widely 

Link Capacities 10.0% 10.0% Varies based on indiv. hwy link 
Link Performance Params. (α & β) for 
BPR Formula  10.0% 10.0% Varies based on link class 

Free-flow Speeds 10.0% 10.0% Varies based on link class 

Reliability Parameters (σ & τ) 10.0% 53.3% 2.3, 8.4 

Local Crash Rate Calibration Factor 10.0% 30.7% 1.0 

Emissions Rate Calibration Factor 10.0% 30.7% 1.0 

Mode Scale Parameter 10.0% 53.3% 1.0 

Time-of-day Scale Parameter 10.0% 53.3% 0.1 

Ambient Temperatures 10.0% 30.7% 
76 (April-Oct), 56 (Nov-March) degrees 

Fahrenheit 

Average Vehicle Occupancies 10.0% 30.7% Averages 1.6 across all modes  
User Class Share: Heavy-Truck Driver 
(very high VOT) 10.0% 30.7% 5% 
User Class Share: Work Related (high 
VOT) 10.0% 30.7% 10% 
User Class Share: Commuter (high 
VOT) 10.0% 30.7% 20% 
User Class Share: Non-Work Related 
(low VOT) 10.0% 30.7% 65% 

Mode Probability: SOV 10.0% 30.7%  35.9% 

Mode Probability: HOV2 10.0% 30.7% 33.3% 

Mode Probability: HOV3 10.0% 30.7% 29.6% 

Mode Probability: Transit 10.0% 30.7% 0.12% 

Annual Trip Growth Rates (over time) 10.0% 30.7% 1% Annually 

Demand Elasticity (for O-D pairs) 10.0% 30.7% -0.69 

Initial Project Costs  10.0% 30.7% $71.8M - $80.5M 

Maint. & Operat. Costs 10.0% 30.7% $409,000 - $1.13M 
 337 
Note: User class shares and mode split shares must sum to one, so sets of drawn values were normalized (after 338 
mean-one draws were multiplied by base shares, and heavy-truck shares were removed from consideration). 339 
 340 
ANALYSIS OF SENSITIVITY TEST RESULTS  341 
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 342 
Since benefit-cost (B/C) ratios drive many projects decisions, this output was examined first.  343 
B/C variations were dramatic, suggesting that input uncertainty can easily make or break a 344 
project.  15% of the 600 runs had B/C ratios below -100, and 17% had B/C ratios greater than 345 
100 in both scenarios.  However, B/C output distribution of was very similar for both sets of 346 
sensitivity test parameters (i.e., both high and low CoV values), likely due to the invariance of 347 
CoV (held at 10 percent) in the BPR link-performance parameters (, , and link capacities, c). 348 
These sets of parameters are found to be key to impact assessment, since they regulate the 349 
estimated traffic speed on each traveled link (ݏ௔) via the Bureau of Public Roads link 350 
performance function (TRB 2000), as follows: 351 
 352 

௔ݏ ൌ
௦ೌ
బ

ଵାఈቀ
ೡೌ
೎ೌ
ቁ
ഁ (5) 353 

 354 
where ݏ௔

଴ is the link’s free-flow speed (obtained from Cambridge Systematics [2008]), ݒ௔ ܿ௔⁄  is 355 
the link’s volume-capacity ratio, and α and β are behavioral parameters. 356 
 357 
Given their similar results, the low and high variation (CoV) sets of runs were combined for 358 
further evaluation.  A histogram of the combined B/C ratios shows a very wide distribution of 359 
values, with a compact center, as shown in Figure 2. 360 
 361 

 362 
 363 

Figure 2: B/C Ratios (with values beyond +/- 100 not shown) 364 
 365 

Shares of B/C ratios were similar across both scenarios, with 54% (Freeway) and 56% (Tollway) 366 
of outcomes falling in the -20 to +30 band of reasonable B/C ratios, 21% (Freeway) and 19% 367 
(Tollway) falling below -20 and 25% (both scenarios) lying above +30.  In other words, there 368 
was much more variation in performance measures across test runs than across project 369 
alternatives. Nevertheless, important differences across project alternatives can be observed near 370 
the median values.  The median B/C value for the Freeway scenario was 10.3, compared to 4.0 371 
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for the Tollway scenario, as apparent in Figure 2’s distribution spikes.  In fact, in 63 percent of 372 
alternative comparisons, the Freeway scenario bested its competitors (Base-Case and Tollway 373 
scenarios) while the Tollway scenario was preferred in just 22 percent of trials.  In the remaining 374 
instances, both alternatives showed B/C ratios less than 1.0, indicating a Base-Case (no-build) 375 
preference.  This shows how complex transportation networks can have unpredictable 376 
consequences (similar to Braess’ Paradox), and how improving travel for some travelers (even at 377 
zero cost) may negatively impact others, particularly when modeling elastic demand under 378 
congested conditions.  379 
 380 
Also of note, the median B/C ratios across both alternative scenarios were less than the B/C 381 
ratios estimated at mean parameter values.  When PET was run without parameter variation, the 382 
scenarios yielded favorable B/C ratios of 14.1 and 6.2 for the Freeway and Tollway scenarios, 383 
respectively.  In both instances, the 14.1 and 6.2 values fell around the 62nd percentile of the 384 
sensitivity-test outcomes, suggesting that false certainty in model parameter values can mask 385 
potential project downsides. 386 
 387 
One clear factor in extreme B/C cases is a dramatic increase (or decrease) in total VMT versus 388 
the Base-Case scenario.  In instances with B/C ratios lower than -100, VMT averaged a 24% 389 
design-year decrease vs. the Base-Case scenario, compared to a 51% VMT increase in instances 390 
where the V/C ratio was greater than 100 and an average VMT decrease of 1.7% for all other 391 
instances.  Initial-year comparisons show similar patterns, though to a much smaller degree 392 
(1.4% average decrease vs.  4.8% average increase).  Alternative scenarios’ design-year VMTs 393 
grew in almost all sampled runs, though sometimes at a lower rate than the corresponding Base-394 
Case scenario.  Large VMT changes also coincided with dramatic changes in traveler welfare 395 
and reliability.  More VMT ties to higher welfare estimates for induced travelers (thanks to the 396 
Rule of Half), but can congest roadways, resulting in negative reliability impacts and often 397 
resulting in negative welfare impacts for existing travelers.  Therefore, depending on the specific 398 
nature of the VMT increase, it can quickly lead to either much higher or lower overall welfare 399 
values.  400 
 401 
Since each scenario is distinct (e.g., some are weak proposals and others strong), there is no 402 
guarantee inputs will impact outputs similarly across scenarios. Therefore, regression analyses 403 
were conducted separately for each scenario (using stepwise deletion and addition of input 404 
values as covariates, with a p-value cutoff of 0.05).  The best fits were found using the natural 405 
log of the absolute value of the simulated B/C ratios.  Other specifications were investigated, 406 
using B/C ratios directly or attaching a sign to their logarithm (to reflect the original ratio’s sign), 407 
but these performed poorly (with R2 values less than 0.11).  This is likely due to extreme B/C 408 
values or outliers (causing non-linear impacts for extreme outcomes) and common factors that 409 
contributed to both positive and negative outliers.  These regression results are shown for B/C 410 
ratios in Table 3. 411 
 412 
One important limitation of using Y = ln(|B/C|) is that it fails to predict whether a particular, 413 
random setting will result in a win (B/C > 1) or a loss (B/C < 1).  In the presence of extreme (and 414 
unlikely) outcomes, it remains important to determine which input factors influence the direction 415 
and sign of project impacts, in addition to magnitude.  Beyond B/C values, crash counts, 416 
emissions estimates, link volumes, toll revenues and other PET outputs exhibited similar 417 
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outlying values, with most outliers emerging in the design-year (rather than in the initial-year, 418 
which is unaffected by the trip growth rate factor).  To address the issue of outcome sign, 419 
standard linear regressions were performed (using untransformed outputs – e.g., Y = B/C) on the 420 
middle 50% of initial-year values (in the B/C case) and middle 90% of initial-year outcomes (for 421 
other outputs), by simply discarding the top and bottom 25 or 5% of points, in order to eliminate 422 
the disproportionate impact of outliers.  Such results are also shown, for the B/C values, in the 423 
final columns of Table 3, and in Tables 4 and 5 for other impacts.  424 
 425 

Table 3: B/C Ratios Regression Model Estimates for Freeway and Tollway Scenarios 426 
 427 

y = ln(|B/C Ratio|) 
y = B/C 

(50 % truncated sample) 

Freeway Tollway Freeway Tollway 

Constant 2.408 1.879 38.522 20.889 

Value of Travel Time 2.881 2.552 7.390 8.408 

Value of Reliability 0.665       
Vehicle Operating Costs -1.436 -0.938 -5.737   

Emissions Values     1.904 1.294 

Link Capacities -14.946 -17.950 -31.156 -39.275 
Link Performance Params. 7.914 10.130 10.508 18.561 
Free Flow Speeds       -7.278 

Reliability Parameters     3.749 1.620 

Emissions Rate Calibration 
Factor 

-0.596       

Time of Day Scale Parameter 0.435 0.886 -1.599   
User Class Share: Heavy-
Truck Driver (High VOT) 

2.346 2.089 5.198   

User Class Share: Work 
Related (High VOT)       2.487 

User Class Share: Non-Work 
Related (Low VOT) 

-1.311 -1.020 -3.739   

Mode Probability: SOV   -0.576     
Mode Probability: HOV2 0.761       
Mode Probability: Transit     -3.338 -3.169 

Annual Trip Growth Rate 3.207 3.853   5.994 

Demand Elasticity 2.741 3.137     
Initial Project Costs -1.306 -1.027 -8.351 -1.752 

Nobs 600 600 300 300 

R2 0.655 0.732 0.403 0.438 

R2
Adj 0.647 0.727 0.380 0.419 

 428 
Several significant findings emerge from Table 3’s parameter estimates.  First, the signs on 429 
estimated parameters are the same using transformed and untransformed B/C values, in the two 430 
datasets (n=600 vs. n=300).  Similarly, the most important factors in the first model are also key 431 
in the second.  The results suggest that, while networks that congest more quickly (due to link-432 



13 
 

performance parameter value shifts), lower initial costs, and higher values of travel time, trip 433 
growth and demand elasticity tend to produce more extreme B/C values, most lead to positive 434 
B/C results, on average. 435 
 436 
Such results are mostly intuitive, and encouraging. In less extreme input-set cases, α and β 437 
increases and constraints on system capacity appear to benefit travelers greatly.  Capacity 438 
reductions make travel speeds more responsive to demand levels, thus enhancing the value of the 439 
two scenarios’ capacity increases.  The importance of these parameters is consistent with 440 
Krishnamurthy and Kockelman’s (2003) propagation of uncertainty tests (in land use-441 
transportation model applications for Austin).  Additionally, when the outcome results in a high 442 
negative cost, it makes sense that further constriction of system capacity and increases in α and β 443 
can make a bad situation worse.  In the most extreme cases, low capacity and high  and  444 
values resulted in instances where system VMT was nearly 8 times larger or smaller in the two 445 
expanded-capacity scenarios than in the same-iteration Base-Case scenario, thereby generating 446 
the unlikely results. 447 
 448 
As noted earlier, the importance of these parameters also explains why the B/C distributions for 449 
the high- and low-variation (Table 2) sets of runs were so similar. Capacity values and the other 450 
two link performance parameters ( and ) were modeled with a single 10% CoV in both sets of 451 
sensitivity testing runs. While other parameters were allowed to vary more (in the high-variation 452 
runs), capacity and link performance parameters remain the driving force behind B/C outcomes.  453 
They clearly dominate results, suggesting that link-performance assumptions deserve careful 454 
generation and treatment. 455 
 456 
Though their parameter values are not quite as large, sizable increases in VOTTs and the share of 457 
heavy-trucks (which effectively diminishes link capacities) also improved B/C ratios (Table 3).  458 
Interestingly, the values of traffic growth and demand elasticity appear to have greater impact on 459 
the size – rather than sign – of the B/C outcomes. All parameters with Table 3 coefficients 460 
exceeding the project-cost coefficient are practically most important. Initial project costs 461 
comprise 90% or more of these two scenario’s project lifecycle costs and so serve as a useful 462 
reference point: essentially, a doubling of initial costs should reduce the B/C ratio’s magnitude 463 
by about 50 percent. 464 
 465 
The impact of parameter variation on other key impacts was also evaluated. These assessed 466 
impacts included the impact of variation changes on crashes, emissions, traffic volumes on the 467 
impacted segment and system-wide tolling revenues.  Even with a benefit-cost ratio in hand, 468 
each of these key measures is likely still independently important to decision makers attempting 469 
to discern which alternative scenario to fund, if either.  Crashes in this evaluation were 470 
monetized, using crash valuations as noted by Blincoe et al. (2002) inflated to current (2010) 471 
values.  However, non-economic “soft” crash components (such as the value of life and pain and 472 
suffering) were not monetized and should therefore be independently evaluated.  Changes five 473 
emissions species (Hydrocarbons, Nitrous Oxide, Carbon Monoxide, Particulate Matter < 2.5 µm 474 
and Particulate Matter < 10 µm) were also monetized using EU data (Mailbach et al. 2008).  475 
These emissions values may be important to cities seeking to meet air quality attainment goals 476 
and the “monetary emissions benefits” output provides a framework for users measure broad 477 
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impacts across all five monetized species.  Table 4 details the initial-year regression outputs for 478 
number of crashes and emissions costs: 479 
 480 

Table 4: Impacts on Initial-Year Crashes & Emissions Costs (mid 90%) 481 
 482 

Initial-Year Crashes 
(Fatal & Injurious) Initial-Year Emissions ($M) 

  Freeway Tollway Freeway Tollway 

Constant -5.63 -7.23 -4.99 -3.93 

Value of Travel Time -1.94 -3.63   -0.25 

Vehicle Operating Costs     0.20   

Emissions Values     -0.40 -0.39 

Link Capacities 10.97 11.92 4.90 4.59 

Link Performance Params. -4.94 -4.83 -1.30 -1.15 

Free Flow Speeds     1.35 1.11 

Local Crash Calibration 
Factor -16.86 -15.11     

Emissions Rate Calibration 
Factor     -0.54 -0.39 

User Class Share: Heavy-
Truck Driver (High VOT)   -2.01 -0.23 -0.24 

User Class Share: Non-
Work Related (Low VOT) 1.82 1.74     

Mode Probability: HOV 3+   1.91 0.22   

Nobs 540 540 540 540 

R2 0.563 0.479 0.522 0.451 

R2
Adj 0.558 0.473 0.515 0.443 

 483 
Several fundamental inferences may be made from Table 4.  As with the B/C ratio results, 484 
capacity and the link performance parameters were influential in predicting crash and emissions 485 
changes vs. the Base-Case scenario.  As link capacities increase, more people travel in the 486 
alternative scenarios than the Base-Case, resulting in more crashes and lower emissions savings 487 
(or higher costs).  One major difference between the crash and emissions models, however, is 488 
that the local crash calibration factor is more influential in predicting crashes than the emissions 489 
rate calibration factor for predicting emissions costs.  This indicates that estimated crash 490 
predictions are much more stable than emissions costs, since a 10% increase in either value 491 
should result in a 10% respective increase in crashes or emissions. 492 
 493 
In addition to reviewing crash and emissions impacts, traffic volumes and tolling revenues were 494 
also analyzed.  Transportation agencies spending money to improve a facility want to know how 495 
much it will be used.  Furthermore, tolling revenues were not included in the overall benefit-cost 496 
ratio as collected tolls were assumed to be a benefit-neutral transfer payment from individual 497 
travelers to society (Kockelman et al. 2010).  However, transportation agencies (or private 498 
enterprise) using PET will undoubtedly be interested in revenues as this may be the mechanism 499 
used to pay for the project.  Additionally, PET’s tolling output is structured such that system 500 
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revenues are reported rather than just for the improved link.  This is particularly key in this case 501 
study as the project could impact collected tolls on an adjacent priced facility. 502 
 503 
As with crashes and emissions, linear regression models were run for initial-year upgraded 504 
segment traffic volumes in both scenarios, though only for the changes in tolling revenues for the 505 
Tollway scenario, as shown in Table 5: 506 
 507 

Table 5: Impacts on Traffic Volume & Tolling Revenues (mid 90%) 508 
 509 

Initial-Year US 290 AADT Initial-Year Tolls ($M) 

  Freeway Tollway Tollway 

Constant 1039 716 8.06 

Value of Travel Time 72 1118 1.43 

Vehicle Operating Costs -51 1638 2.03 

Link Capacities -1591 -2488 -1.44 

Link Performance Params. 722 662   

Free Flow Speeds -1396   

Mode Scale Parameter 23 -195 0.56 
Time of Day Scale 
Parameter   0.40 
Average Vehicle 
Occupancy 56   0.60 

User Class Share: Heavy-
Truck Driver (High VOT) 84 246 2.93 

User Class Share: Work 
Related (High VOT) 32     

User Class Share: 
Commuter (Mid VOTT) -34     

User Class Share: Non-
Work Related (Low VOT) -62 -505 -0.71 

Mode Probability: SOV -253 0.76 

Mode Probability: HOV 2 44     

Mode Probability: Transit 196 0.76 

Demand Elasticity -34     

Nobs 540 540 540 

R2 0.811 0.540 0.284 

R2
Adj 0.806 0.531 0.271 

 510 
Again, capacity and the link performance parameters were found to be highly influential in 511 
estimating traffic volumes.  As capacity increases, travelers have less incentive to use the 512 
improved link, as opposed to other routes.  However, for the Tollway scenario, numerous other 513 
inputs had substantial impact.  Values of travel time (VOTTs) and operating costs appear critical 514 
in determining traveler route choices and revenues.  When either fall, travelers choose alternative 515 
non-tolled routes.  Also, user shares substantially impacted revenues and traffic volumes on the 516 
Tollway.  The Heavy-Truck Driver user class has the highest VOTT (and pays the highest fare), 517 
while the Non-Work Related user class has the lowest VOTT.  Therefore, any increases in the 518 



16 
 

proportion of the Heavy-Truck Driver user class or decreases in the Non-Work Related user class 519 
resulted in more travelers on US 290 and more tolling revenues. 520 
 521 
Finally, a series of log-linear ordinary least squares regression estimates was conducted on the 522 
natural-log transformed (ln|y|) values of design-year crashes, emissions, traffic volumes and 523 
tolling revenues, as shown in Table 6.  As with the B/C ratio estimates, the best fits were found 524 
using this transformation, though other specifications were investigated.  Again, attaching a sign 525 
outside the transformation resulted in weak fit statistics, likely due to non-linear impacts for the 526 
more extreme outcomes and common factors that contributed to both positive and negative 527 
outliers.  528 
 529 

Table 6: Estimating the Variation in Design-Year Impacts 530 
 531 

Crashes Emissions US 290 AADT Tolls 

  Freeway/Tollway Freeway/Tollway Freeway/Tollway Tollway 

Constant 0.84 13.24 6.33 16.209 

Value of Travel Time 0.74 1.49 0.65   

Vehicle Operating Costs -0.72 -1.20 -0.78 (Tollway)   

Link Capacities -7.34 -15.58 -9.33 -2.158 

Link Performance Params. 4.95 9.82 5.20 0.821 

Local Crash Calibration 
Factor 0.84       

Emissions Rate Calibration 
Factor   1.03     

Mode Scale Parameter       0.156 
Time of Day Scale 
Parameter   0.53 0.26 (Tollway)   

Ambient Temperatures   -0.55     
Average Vehicle 
Occupancy 0.43 (Tollway)     0.297 

User Class Share: Heavy-
Truck Driver (High VOT) 

1.08 (Freeway) 
0.65 (Tollway) 1.68 0.85   

User Class Share: Work 
Related (High VOT)     0.49   

User Class Share: Non-
Work Related (Low VOT) -0.45 -1.01 -0.62 (Freeway)   

Mode Probability: HOV 2 0.33 0.90 0.30   

Mode Probability: HOV 3+     0.35   

Annual Trip Growth Rate 2.01 3.52 1.89 0.713 

Demand Elasticity 2.36 2.82 1.44 0.86 

Nobs 1200 1200 1200 600 

R2 0.511 0.640 0.511 0.192 

R2
Adj 0.506 0.636 0.506 0.183 
Note: Table shows OLS regression results of the natural log of crash counts, emissions tons, AADT, and 532 
tolls revenues on variable inputs. 533 

 534 
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As noted earlier, the purpose of this investigation was to determine which factors most influence 535 
the design-year output levels.  Unsurprisingly, capacity and the link performance parameters 536 
dominated the outcomes’ magnitude in all cases, with outputs rising as capacity becomes 537 
constrained.  The next parameter sets exhibiting important impacts are consistent across all 538 
alternatives: annual trip growth rate and demand elasticity.  In all four models, these two 539 
parameters had a greater impact than any other, excluding capacity and the link performance 540 
parameters.  This makes sense, since the impacts of a trip growth rate will be compounded over 541 
time and demand elasticity will regulate the additional number of trips that occur as travel costs 542 
change, both crucial elements in the Freeway and Tollway scenarios. 543 
 544 
CONCLUSION 545 
 546 
This paper conducted a thorough investigation into the impacts of parameter uncertainty on 547 
highway project outcomes.  Twenty-eight parameter variations and their effects on benefit-cost 548 
ratios, crashes, emissions, traffic volumes and tolling revenues were examined in detail.  From 549 
this evaluation it quickly became clear that if analysts underestimate capacity or overestimate 550 
link performance parameters the benefit-cost ratio may quickly become unreasonable.  Another 551 
crucial finding showed that the median B/C ratio was significantly lower than the B/C ratio when 552 
no variation was assumed.  This is particularly important as these results would lead analysts to 553 
expect lower probable benefits from these scenarios than the no-variation case would suggest. 554 
 555 
Even when omitting extreme outcome variations, capacity and the link performance parameters 556 
had greater impact on B/C ratios, crashes, emissions, traffic volumes, and tolling revenues than 557 
any other examined inputs.  B/C ratios were strongly depended on VOTTs in both scenarios, 558 
though the value of time (and operating costs) impacted the actual use and collected revenues of 559 
the improved facility for the Tollway much more heavily than in the Freeway scenario.  Crashes 560 
were found insensitive to congestion relative to emissions, though both were impacted.  Finally, 561 
the magnitude of final design-year outcomes was strongly influenced by travel growth rate and 562 
demand elasticity parameters. 563 
 564 
In summary, this paper illustrated potential applications of PET and provides detailed analysis 565 
conducted of its outputs using sensitivity testing and input variation.  Transportation planners 566 
may employ similar methods, using the Toolkit to produce a range of likely outcomes, rather 567 
than a single point estimate.  This paper details which parameter variations tend to cause the 568 
greatest variations in impacts under two scenarios, though ultimate results will depend on the 569 
nature of any future project under consideration.  These methods and findings should enhance 570 
the ability of decision makers to allocate limited transportation funding resources while 571 
providing the most beneficial outcomes for society at large. 572 
 573 
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