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ABSTRACT 

This paper develops two new models and evaluates the impact of using different weight matrices 

on parameter estimates and inference in three distinct spatial specifications for discrete response. 

These specifications rely on a conventional, sparse, inverse-distance weight matrix for a spatial 

auto-regressive probit (SARP), a spatial autoregressive approach where the weight matrix 
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includes an endogenous distance-decay parameter (SARP), and a matrix exponential spatial 

specification for probit (MESSP). These are applied in a binary choice setting using both 

simulated data and parcel-level land use data. Parameters of all models are estimated using 

Bayesian methods. 

 

In simulated tests, adding a distance-decay parameter term to the spatial weight matrix improved 

the quality of estimation and inference, as reflected by a lower DIC value, but the added 

sampling loop required to estimate the distance-decay parameter substantially increased 

computing times. In contrast, the MESSP model’s obvious advantage is its fast computing time, 

thanks to elimination of a log-determinant calculation for the weight matrix. In the model tests 

using actual land use data, the MESSP approach emerged as the clear winner, in terms of fit and 

computing times. Results from all three models offer consistent interpretation of parameter 

estimates, with locations farther away from the regional CBD and closer to roadways being more 

prone to (mostly residential) development (as expected). Again, the MESSP model offered the 

greatest computing-time savings benefits, but all three specifications yielded similar marginal 

effects estimates, showing how a focus on the spatial interactions and net (direct plus indirect) 

effects across observational units is more important than a focus on slope-parameter estimates, 

when properly analyzing spatial data. 

Keywords: spatial autoregressive probit model, matrix exponential spatial specification, distance 

decay, Bayesian estimation, land use change 

INTRODUCTION 

Like many things in life, transportation involves spatial relationships. Whether one is 

investigating traffic counts, crash rates, vehicle ownership levels, or mode choices, a reflection 
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of spatial dependence is valuable, both for prediction and behavioral understanding. In the 

application of spatial statistics and spatial econometrics, weight matrices (ܹ ൌ ሾݓ௜௝ሿ) are crucial 

components; these represent the underlying spatial interdependence among proximate units , 

such as the simple inverse of network distances between traffic detectors, contiguity indicators of 

census tracts across a region, and who qualifies as a K-nearest neighbor within a social network.  

 

The functional specification of appropriate weight matrices has long proven a controversial topic 

in spatial econometrics (as discussed in Anselin [1988] and Kostov [2010]). Nearly all weight 

matrices are specified a priori, simply as a function of distance or contiguity, raising the question 

of whether weight-matrix specification carries any important implications for interpretation of 

model results.  In one of the literature’s more unusual proposals, Cliff and Ord (1981) suggested 

combining an inverse-distance measure (or negative exponential) and the relative length of the 

common border between two spatial units: ݓ௜௝ ൌ ݀௜௝
ି௔ߚ௜௝

௕  (where ݀௜௝ is the distance between units 

i and j and ߚ௜௝ as the proportion of the boundary of unit i shared by unit j). Another proposal, by 

Bodson and Peeters (1975), relies on a logistic function for relative levels of spatial interaction, 

with (a, b and ܿ) parameters to be estimated via classical likelihood maximization: ݓ௜௝ ൌ

∑ ௔

ଵା௕∙ୣ୶୮ሺି௖ௗ೔ೕሻ
௝ . These sorts of weight matrices were rarely used in practice due to estimation 

challenges and identification issues. In most applications, the weight matrix is more likely to be 

based on distance between units, or simply contiguity (Anselin 1988, Anselin 2002, LeSage and 

Pace 2009, Kostov 2010). 

 

In practice, as noted earlier, weight matrices (and any associated parameters) are almost always 

assumed to be exogenous (see, e.g., Anselin [1988] and Anastasopoulos et al. [2010]), and 
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commonly rely either on distances between observational units in the data set, or their contiguity. 

By construction, all have zero diagonals (since the perfect correlation of a unit’s error term with 

itself is implicit in the statistical model), and most are row-standardized (such that each row’s 

values sum to one, in order to ensure that the largest eigenvalue of the weight matrix is 1 and the 

lowest eigenvalue is -1, facilitating maximum likelihood estimation or draws of the 

autocorrelation parameter ρ in a Bayesian scheme [LeSage and Pace 2009]). Row-

standardization does not change the relative weight neighbors exert on other units, but it does 

alter the magnitude of the collective impact, which is then scaled appropriately by the 

multiplicative spatial autocorrelation parameter ρ (Parker 2011).  

 

The focus of this paper is to explore how endogenous W’s structure impacts discrete-response 

prediction. There have been several papers attempting to examine weight matrices’ impact on 

model inference. Mizruchi and Neuman (2008) found that strongly connected (or highly 

dense/non-sparse) weight matrices tend to cause downward bias in the maximum-likelihood 

estimates of SAR’s spatial autocorrelation parameter, ρ. Farber et al. (2008) found similar results 

when simulating  how network topology influences spatial autocorrelation. However, their work 

compares specifications solely based on estimates of parameters, such as ρ, and these are subject 

to change under different assumptions of the underlying spatial data generating process. Thus, 

they should not be used as the yardstick for model comparisons. In addition, dense spatial 

matrices are rarely used in empirical studies for asymptotic theory to hold and out of 

consideration of behavioral realism (e.g., distant geographic units tend to exert little effect on 

one another), limiting the validity of these endeavors. In addition, both Mizruchi and Neuman 



5 
 

(2008) and Farber et al. (2008) treated the weight matrices (W) as fixed/exogenous, an 

assumption that is relaxed here.  

 

LeSage and Pace’s (2011) very recent study compares estimates and inferences of SAR models 

and spatial Durbin models (SDMs) for continuous response (with y equaling the share of adults 

voting across counties), with different spatial weight matrices achieved by varying the number of 

nearest neighbors (m) or the distance decay parameter (r). As LeSage and Pace (2011) observe, 

many spatial econometric papers focus on slope estimates, β, to represent the magnitude of 

covariate effects, thereby overlooking the important indirect effects that emerge through spatial 

associations.  In other words, the true marginal effect of a covariate xi – expressed as 
డ௬

డ௫ೝ
– 

requires far more than its associated ߚ௥.  Instead, it is the totaled set of direct and indirect effects 

that characterizes each attribute’s (e.g., ground slope or distance to the nearest highway) effect 

on the response variable (as described in the Methodology section of this paper).  As LeSage and 

Pace (2011) show, direct and indirect effects of SAR and SDM models are very stable/similar 

across different choices of m and r.  Their results dispel the “myth” that it is useful or necessary 

to fine-tune one’s spatial weight matrix (by altering m and r for example) because estimates and 

inferences are sensitive to moderate changes in these specifications. However, LeSage and Pace 

(2011) did note that significantly different matrix choices can indeed impact such inferences in 

meaningful ways. 

 

Most of the relevant research relies on fixed weight structure, rather than allowing the data to 

explain their degree of connectedness, via the use of some parameters in the weight values’ 

specification. This somewhat naïve and arbitrary approach to pre-assigning weights can call into 



6 
 

question the value and validity of spatial econometric specifications and results.  In many cases, 

the dependence structure itself is a subject of interest. Kakamu (2005) suggested that fairly 

simple structures may mask spatial decay patterns. But his model focused on continuous 

response, rather than discrete response (e.g., land development, mode choice and other variables 

common to transportation studies). Thus, the long-pondered question remains: what type or types 

of weight matrix should be used in spatial econometric applications (Anselin 1988)?  

 

This paper takes off from LeSage and Pace (2011) by comparing the impacts of the weight-

matrix specification in a standard SAR model (with a pre-determined/fixed weight matrix), a 

SAR model with an endogenously determined distance-decay parameter, and a matrix 

exponential spatial specification (MESS) – all within a binary-response  setting. This paper aims 

to answer the question left in LeSage and Pace (2011) on the model inference impacts of spatial 

specifications with more distinct weight structures, and to provide evidence/guidance on weight 

matrix choice in modeling binary responses. The models were run using simulated data sets to 

match each model specification as well as year-2008 Austin land use data.  Details about the 

sampling schemes are discussed below, followed by a description of the data sets used, modeling 

results, and paper conclusions. 

 

METHODOLOGY 

Use of Markov chain Monte Carlo (MCMC) sampling in a Bayesian estimation setting allows 

analysts to avoid the often impossibly complex computation of posterior distributions into 

simpler problems using parameters’ conditional distributions, thus greatly facilitating model 

estimation and inferences (LeSage and Pace 2009, Gelman et al. 2004). Due to the discrete 
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nature of the responses being analyzed, the three models described and applied here rely on 

Bayesian MCMC estimation techniques. The SAR binary Probit (SARP) specification follows 

Chapter 10 of LeSage and Pace’s (2009) book directly, and the SARP model is an extension of 

this. The MESS Probit (MESSP) model, described below, is an extension of the continuous 

MESS model presented in their Chapter 9 (LeSage and Pace 2009).  

 

The MESS was first introduced by Pace and LeSage in 2000. This specification enjoys an 

important computational advantage over SAR approaches: it eliminates computation of the 

likelihood function’s log-determinant term, along with the spatial dependence parameter’s 

conditional posterior distribution (typically needed in the Bayesian estimation process). By 

contrast, implementation of SAR models is impeded due to formidable computing efforts 

involved in computing the log-determinant during Markov chain Monte Carlo (MCMC) 

sampling (Authors et al. 2011). LeSage and Pace (2004) report MESS estimation to run 

approximately 6 times faster than conventional SAR models in the MCMC paradigm for a 

continuous response.  LeSage and Pace (2004) adapted their MESS model to accommodate 

binary and censored response data, and introduced hyperparameters to control the number of 

neighbors selected and distance decay over space. 

 

Bayesian methods are used to estimate parameters for the three binary-response model 

specifications being compared here. This technique decomposes the complex estimation task into 

much simpler conditional distributions of parameters and offers much specification flexibility 

(Koop 2003). LeSage and Pace (2004) had also discussed Bayesian estimation for MESS Tobit 

and probit models. As they point out, prior information regarding regression coefficients (β) is 
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unlikely to exert much influence on parameter estimates in large samples (typically available in 

transportation and land use contexts), but priors imposed on parameters in the weight structure 

could have a more noticeable influence since these dimensions of a spatial model retain much of 

their influences even in large samples. 

 

Specification of the SARP Model (with Fixed Weight Matrix) 

The SARP model takes the form: ݕ∗ ൌ ∗ݕܹߩ ൅ ߚܺ ൅  is ∗ݕ where ,(LeSage and Pace, 2009) ߝ

the unobserved response variable with a positive value leading to a y = 1 outcome, and zero 

otherwise.  is the spatial autocorrelation coefficient characterizing the strength of spatial 

association in response values (after controlling for X factors), and W is an n by n row-

standardized version of an initial weight matrix D, as described below.  ܺ  is an n by K covariate 

matrix, with n denoting the number of observational units (e.g., parcels over space) under study 

and K the dimension of the parameter vector . The error term,	ߝ, is assumed to have an iid 

normal distribution: ߝ	~	ܰሺ0,  ௡ሻ. To ensure identification (as present in any latent-responseܫଶߪ

model), the homoscedastic error term is set to unity.   

 

A qth nearest-neighbor setup is used here to define this exogenous matrix, where elements 

௜௝ܦ ൌ
ଵ

ௗ೔ೕ
, if	݀௜௝ ൏ ݀୫ୟ୶, and   ܦ௜௝ ൌ 0, if ݀௜௝ ൒ ݀୫ୟ୶, with ݀୫ୟ୶ being the distance of the qth 

nearest neighbor. This popular approach reflects the impacts of distance (rather than simple 

contiguity) while keeping the weight matrix reasonably sparse (with many zero-valued cells) and 

preserving data point boundaries.  By construction, the diagonal elements of ܹ are zeros. Row 

standardization (where each row’s elements sum to 1) ensures that the largest and smallest 

eigenvalues are 1 and -1, respectively, facilitating ρ draws (Horn and Johnson 1993, LeSage and 
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Pace 2009).   MCMC sampling strategies for the posterior distributions of the conventional 

SARP model’s parameters are provided in LeSage and Pace (2009).  

 

Specification of the SARP Model  

In empirical studies, the focus may not rest solely on the spatial interaction reflected by the 

parameter ρ, but also on the spatial decay patterns evident in the matrix D. Kakamu (2005) 

proposed and the estimated an exponent () on the distance values (dij) in a standard SAR model 

(for continuous response). To the authors’ knowledge, this work is the first to extend this idea 

extension to the discrete-response setting.  

 

The proposed (SARP) model retains the basic structure of the SARP model:	ݕ∗ ൌ ߩ ఈܹݕ∗ ൅

ߚܺ ൅  as described above. The only difference lies in the spatial weight matrix used. Here, ఈܹ , ߝ

is a function of the distance decay parameter ߙ, such that ܦ௜௝ ൌ ݀௜௝
ఈ , if	݀௜௝ ൏ ݀୫ୟ୶, and   ܦ௜௝ ൌ 0 

otherwise.	 ఈܹ is the row-standardized version of D.  The prior distributions for unknown 

parameters ߚ, ,ߙ and	ߩ are assumed independent, such that ߨሺߚ, ,ߙ ሻߩ ൌ ሻߚሺߨ ∙ ሻߙሺߨ ∙  .ሻߩሺߨ

Under assumptions of a normal prior for β and uniform priors for ߙ and ߩ,  the conditional 

posterior for the parameter β is a multivariate normal distribution: 

,ߙ|ߚሺ݌ ,ߩ ,∗ሺܸܿܰܯ	~	ሻ∗ݕ ܶ∗ሻ 

ܿ∗ ൌ ܶ∗ሾܺ′ሺܫ െ ߩ ఈܹሻݕ∗ ൅ ܶିଵܿሿ 

ܶ∗ ൌ ሺܺ′ܺ ൅ ܶିଵሻିଵ 
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where I is an n by n identity matrix, and c and T are the prior mean and variance for β. A rather 

diffuse prior can be used for β (as represented by a c of zero and a fairly large value for T), and is 

typically used for large spatial data sets (LeSage and Pace 2009).  In contrast, the choice of 

priors for α and ρ tends to have a greater impact on the estimations of the whole model due to the 

positions they have in the weight structure (ܫ െ ߩ ఈܹ). The parameter ߩ denotes the degree of 

spatial autocorrelation whereas ߙ serves as the distance decay parameter. The posterior 

distribution of parameter ρ can be approximated by application of the Metropolis-Hastings 

algorithm or univariate integration (Gelman et al. 2004) and is expressed as follows: 

,ߙ|ߩሺ݌ ,ߚ ሻ∗ݕ 	∝ ௡ܫ| െ ߩ ఈܹ| ∙ exp ቂെ
ଵ

ଶ
ሺܵݕ∗ െ ∗ݕሻ′ሺܵߚܺ െ ሻቃߚܺ , with	ܵ ൌ ௡ܫ െ ߩ ఈܹ. 

 

Under the assumption of an uniform prior for the parameterߙ, its posterior takes the same form 

as that of ߩ. 

 

The last step is to update the latent response ݕ∗, which follows a truncated multivariate normal 

distribution: ܸܶܰܯሺܵିଵܺߚ, ሾܵ′ܵሿିଵሻ with ൌ ௡ܫ െ ߩ ఈܹ . Geweke (1991)’s m-step Gibbs 

sampler was used to accomplish this task. 

 

Matrix Exponential Spatial Specification Binary Probit (MESSP) 

For model comparability, a similar qth-nearest-neighbor row-standardized weight matrix ܹ is 

used in the MESSP model. As noted in the Introduction, a key benefit of the MESS approach is 

that the analysis avoids computation of the logarithmic Jacobian term (i.e., ln[|ܫ௡ െ ߩ ఈܹ|ሿ). A 

MESS model assumes a matrix exponential decay pattern for neighbors, with diagonal weights 
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exceeding 1.  The MESS model for a continuous response vector (ݕ) takes the following form 

(LeSage and Pace, 2007): 

ݕܵ ൌ ߚܺ ൅  ߝ

ݕ ൌ ܵିଵܺߚ ൅ ܵିଵߝ 

 

where ܺ,  ,are as defined earlier. The matrix S relies on the matrix exponential operation ߝ and 	ߚ

whose inverse can be expressed as follows: 

ܵିଵሺߙሻ ൌ ݁ିఈௐ ൌ ܫ െ ܹߙ	 ൅	
ଶߙ

2
ܹଶ ൅⋯൅

ሺെߙሻ௧

ݐ
ܹ௧ ൅ ⋯ 

 

where ܹ is as defined earlier and ߙ is a distance decay parameter, with ߙ ൏ 0	 when positive 

spatial autocorrelation exists (the standard condition). By construction, ௜ܹ௜= 0, ௜ܹ௝  > 0 if i and j 

are neighbors, and ௜ܹ௝ = 0 otherwise. ܹ௞ is a weight matrix based on kth-order neighbors. An α 

value close to zero indicates the absence of spatial autocorrelation in the underlying data 

generating process (since the matrix exponential of a zero matrix will result in an identity matrix 

for ܵሺߙሻ).  

 

As desired, the matrix exponential form ensures less influence for higher-order/more-distant 

neighbors (LeSage and Pace 2004). A positive spatial autocorrelation, reflected by a positive ρ 

(in SAR models) or a negative α term (in the MESS model), is more common than negative 

spatial autocorrelation and is expected in transport and land use applications (since similar 

behaviors and preferences can “spill over” to nearby sites and decision makers, and unobserved 

variables causing one section of roadway, person, or parcel to behave in a certain way are likely 

to influence nearby units similarly).  
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For the binary setup, the conditional posteriors take the form1:  

,ߙ|ߚሺ݌  ,∗ݕ ߪ ൌ 1ሻ, ,ߚ|ߙሺ݌ ,∗ݕ ߪ ൌ 1ሻ, and ݌ሺߙ|∗ݕ, ,ߚ ߪ ൌ 1,  .ሻݕ

 

Here, the latent response ݕ∗ is treated as unknown parameter to be estimated, a procedure known 

as data augmentation (Robert and Casella, 2004). It follows a truncated normal distribution: 

,ߚሼܵିଵܸܺܰܯܶ	~∗ݕ ሺܵ′ܵሻିଵሽ. Geweke’s m-step procedure is used to draw the n-variate latent 

response ݕ∗. A multivariate normal prior is assigned for β with fairly large variance and zero 

means, and arbitrary uniform prior for α. The error term is forced to unity (ߪ ൌ 1) for parameter 

identification. The kernel posterior is then expressed as: ݌ሺߚ, ሻ∗ݕ|ߙ ∝ exp	ሾെ ଵ

ଶ
ሺܵݕ∗ െ

∗ݕሻ′ሺܵߚܺ െ ሻሿߚܺ ∙ ሻߙሺߨ ∙  ሻ. When computing the posterior of the parameter β conditionalߚሺߨ

on ߙ and ݕ∗, the prior ߨሺߙሻ can be regarded as a constant thereby omitted from the kernel 

posterior. Using a procedure termed “completing the square” (LeSage and Pace 2009), the 

conditional posterior can be written as: 	

,ߙ|ߚሺ݌ ,∗ሺܸܿܰܯ	~	ሻ∗ݕ ܶ∗ሻ 

ܿ∗ ൌ ܶ∗ሾܺ′ ∙ ܵ ∙ ∗ݕ ൅ ܿܶିଵሿ	

ܶ∗ ൌ ሺܺ′ܺ ൅ ܶିଵሻିଵ	

The conditional posterior for the parameter α is expressed as:  

,ߚ|ߙሺ݌ ሻ∗ݕ ∝ ሾݕܵܯ′ܵ′∗ݕ∗ሿିሺ௡ି௞ሻ/ଶ ∙  ሻߙሺߨ

where k is the number of parameter to be estimated and M is an idempotent matrix expressed 

asሺܫ௡ െ
௑′௑

௡
ሻ. The Metropolis-Hastings algorithm was used to draw this parameter. 

 
1 Notes that the binary MESS model takes the form: ܵݕ∗ ൌ ߚܺ ൅ ,ߝ where	ߝ	~	ܰሺ0,1ሻ and ݕ ൌ 1, if ݕ∗ ൐ 0 
ݕ) ൌ 0	otherwise). 
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Computing Direct and Indirect Effects of Covariates across Space 

In a spatial context, the expectation of the marginal effects (on all y values) of perturbing the kth 

covariate’s value (at any of the n locations) should be represented as an n by n matrix: 

ሻܺ|ݕሺܧ߲
௥ݔ߲

ൌ ሺܫ௡ െ  ௥ߚ௡ܫሻିଵܹߩ

 

as shown in LeSage and Pace (2011). The cell in the ith row and jth column denotes the change in 

the dependent variable (y) at location i in response to a one-unit change in the kth covariate at 

location j. In the binary-response version of this setup for the SARP and SARP models, the 

marginal effects also are represented by an n by n matrix (LeSage and Pace 2009): 

ሻܺ|ݕሺܧ߲
௥ݔ߲

ൌ ߶ሾሺܫ௡ െ ௥ሿߚ௥ݔ௡̅ܫሻିଵܹߩ ⊙	ሺܫ௡ െ  ௥ߚ௡ܫሻିଵܹߩ

 

where ߶ is the standard normal distribution’s density function, and the i,j cell value indicates the 

change in the probability that y = 1 is observed at the ith geographic unit corresponding to a unit 

change in the covariate ݔ௥ at the jth location. The operator ⊙ denotes element-by-element 

multiplication between two matrices. 

 

Direct effects lie on the diagonal of these matrices, and indirect effects lie off the diagonals.  The 

average total effect of a covariate xk is the mean of all the rows’ sums. And the average direct 

effect is the mean of just the diagonal elements. The difference between the averaged total effect 

and direct effect yields what is called the averaged indirect effect (LeSage and Pace 2011). 
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Model Fit Statistics 

To aid in evaluation of the distinct models, deviance information criteria (DIC) values – which 

are highly regarded Bayesian goodness-of-fit statistics (Carlin and Louis 2000) – were computed, 

along with other measures of model performance, such as log-likelihood values evaluated at the 

mean values of all parameter estimates. The DIC statistic is computed as: ܥܫܦ ൌ ஽݌ ൅  ഥ, whereܦ

 ഥ is the average of all posterior likelihoods across samplingܦ ஽ is a penalizing term and݌

iterations. ݌஽, also known as the number of effective parameters, is defined as ܦഥ െ  ሻ, withߠሺ̅ܦ

 ሻ computed as the posterior likelihood at the mean posterior of parameters. The devianceߠሺ̅ܦ

term D is defined as: Dሺߠሻ ൌ െ2 logሾܮሺߠ|ݕሻሿ ൅  is the set of ߠ ,where y is observed data ,ܥ

unknown parameters (to be estimated), and ܮሺߠ|ݕሻ denotes the likelihood function. C is a 

constant that cancels out when comparing DIC values among different models. Models with 

smaller DIC value should be preferred over models with larger DIC values (Carlin and Louis 

2000).  

 

In the case of a continuous SAR model, the likelihood can be written as: ܮሺߚ|ݕ, ,ߪ ሻߩ ൌ

ሺ2ߪߨଶሻି௡/ଶ ∙ |ܣ| ∙ exp	ሾെ ଵ

ଶఙమ
ሺݕܣ െ ݕܣሻᇱሺߚܺ െ   .ሻሿ, as described in LeSage and Pace (2009)ߚܺ

For the binary SARP, SARPα and MESSP models, the sampled latent variable y* is used in the 

likelihood computation. 

DATA SETS FOR MODEL EVALUATIONS 

Two styles of data were used to compare model results here, a set of three simulated data sets 

(one for each model type), and a land use data set from Austin, Texas.  The first set (of simulated 

data) were generated with known/assumed parameter values and sample size n = 1,000, in order 
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to evaluate each model's proper recovery of parameter values2. Rather than relying on purely 

random spatial coordinates to define observational units in this simulated data set, these data 

points’ coordinates were randomly drawn from the centroids of year-2003 undeveloped parcels, 

thus offering a somewhat realistic geographic setting. Three sets of data values (each model 

specific), including 4 covariates (X’s) and error terms (’s) (in each model), were generated from 

iid standard normal distributions. In addition to a simulated set of data (for model-estimation 

testing purposes), the set of Texas parcel data applied in the work by  Authors et al. (2011) was 

used here. Only 42,589 of the undeveloped parcels across the County of Travis that were 

privately held in 2003 and had the potential to develop but showed no signs of subdivision (or 

merge) through 2008 were used here. Their year-2008 land use categories were collapsed into 

“developed” (residential, commercial, and industrial land use types) and “undeveloped” 

categories.  And their land use-change status (remaining as undeveloped, y = 0, or changing to 

developed status, y = 1) were modeled as functions of eight regressors: network distance (in 

miles) to Austin’s central business district (DistCBD), Euclidean distances (in miles) to the 

nearest minor arterial, major arterial and freeway (DistMnrArt, DistMajArt, and DistFwy), soil 

slope (Slope) in percent rise, a logsum measure of accessibility (Access), parcel size in acres 

(Area), and ratio between parcel perimeter and size (PeriArea) in 1/ft.  These are described in 

more detail below. 

Parcels with the potential to develop exclude parks, preserved land, greenbelts and water. Among 

the sample’s 42,589 parcels, 64.8 percent remained undeveloped during the 5-year period. 

Among those that developed by 2008, the vast majority (98.7%) developed into residential 

(either single-family or multi-family) uses.   

 
2 A corresponding model for the continuous response y* was also specified and estimated first, to provide an initial 
check on the estimation code. 
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Covariates for Binary Models of Land Use Change  

The two land use types described above serve as response categories for land use change from an 

undeveloped state in 2003. A variety of attributes or “covariates” are expected to influence the 

various likelihoods of development, including soil slope and parcel geometry, distance to the 

region’s CBD, distances to various roadway types and regional accessibility.  

Here, slopes first took the form of a raster layer (at 10 m resolution) in percent. The Slope 

attribute was averaged over each parcel’s spatial extent, to use in the regression models. Distance 

to the region’s CBD regularly is a powerful covariate in models of land value and land use (Zhou 

and Author  2008, Haider and Miller 2000, Srour et al. 2002). Here, this attribute was computed 

as the shortest-path network distance from each parcel’s centroid to the Texas State Capitol, 

based on Travis County’s 2005 coded network.  Distances to the nearest freeway, major arterial 

and minor arterial can also play important roles in a site’s viability for development (Srour et al. 

2002, Iacono et al. 2008), with access of interest to most developers. The expected-maximum-

utility or logsum measure obtained from discrete choice models of destination choice can 

account for the behavioral nature of such choices (Niemeier 1997), so such a measure was 

calibrated by running a conditional logit model of destination TAZ choice for all 13,942 trips in 

the 2006 Austin Travel Survey. Detailed descriptions of these covariates can be found in  

Authors et al.’s (2011) work on geographically weighted multinomial logit regression (GWR 

MNL).  

DATA ANALYSIS AND MODEL COMPARISONS 

The three model specifications were compared – first using simulated data and then using the 

Travis County land use data, as described earlier. 
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Table 1. SARP Model Estimates Using Simulated Data.  

 

  

SAR SARP  

Parameter Mean 

Monte 
Carlo 
Error 

Pseudo T-
stat. 

Avg. Dir. 
Effect 

Avg. 
Indir. 
Effect Mean 

Monte 
Carlo 
Error 

Pseudo T-
stat. MSE 

Avg. 
Dir. 

Effect 

Avg. 
Dir. 

Effect 

Avg. 
Indir. 
Effect 

Avg. 
Dir. 

Effect 

o=2 1.955 0.067 29.412 - - 1.986 0.238 8.337 0.057 - - - - 

β1 = -1 
-

1.005 0.034 -29.894 -1.141 -2.253 -0.863 0.191 -4.506 0.056 -0.029 -0.029 -0.045 
-

0.451 

β2 = -2.5 
-

2.471 0.031 -80.547 -2.804 -5.537 -2.259 0.338 -6.675 0.173 -0.075 -0.075 -0.118 
-

1.127 

β3 = 1 0.993 0.033 29.904 1.126 2.224 0.669 0.156 4.292 0.134 0.022 0.022 0.035 0.452 

ρ =0.7 0.704 0.009 76.016 - - 0.629 0.060 10.507 0.009 - - - - 

σ=1 1.002 0.045 22.334 - - - - - - - - - - 

# of Obs. 1000 1000  

# of Draws 2000 2000 
Total Time of 

Sampling* 
6 sec. 1,340 sec. 

R2 0.901 - 

Adjusted R2 0.900 - 

Log-Lik at 
Means 

-6287 -5362 

DIC 12,708 11,198 

 ஽ 67.3 237.0݌

 ഥ 12,640 10,960ܦ

 ሻ 12,573 10,723ߠሺ̅ܦ
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Figure 1. Posterior Density of Parameters for SARP and SAR (latent response y*) Models Using 
Simulated Data 
 
 

 

Figure 2. Posterior Density of Parameters for SARPα and SARα (latent response y*) Models 
Using Simulated Data.  

 
 



19 
 

 
Figure 3. Posterior Density of Parameters for MESSP and MESS (latent response y*) Models 
Using Simulated Data. 
 

Numeric Results for Simulated Data Sets 

Table 1 summarizes the results for the SARP model and the associated continuous SAR model 

(for y*) using the simulated data set.  The SAR model generated parameter estimates much closer 

to their true values than the SARP model, as reflected by the average parameter draws (after the 

500-draw burn-in period [which allowed draws for the posterior distribution of parameter 

estimates to stabilize]), and shown in Figure 1. Results show how access to the latent response, 

y*, reduces uncertainty in those mean estimates (as shown in Figures 1, 2 and 3), as expected, as 

along with variance in the averaged direct and indirect effects. Sampling time was remarkably 

(but not prohibitively) higher for Bayesian estimation of the SARP model, relative to its 

continuous counterpart (as expected), for the same 2000 sampling draws. Such computing time 

differences are a result of the burden of drawing the latent response, requiring the n x n inverse 

term ሺܫ௡ െ   .ሻିଵܹߩ
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Moran’s I statistic (as discussed in Anselin [1988] and Banerjee et al. [2004] for example) can be 

used to characterize any spatial autocorrelation remaining in the models’ residual terms. In a 

binary response setting, the residual is defined as the difference between the observed response 

and predicted response, which will result in 1’s, 0’s, and -1’s. Here, Moran’s I was computed for 

the real land use data set, to get a sense of how much spatial autocorrelation may remain even 

after applying a spatial model specification. To test the statistical significance of Moran’s I, its 

value was divided by its variance, resulting in relatively low Z-scores (or t-statistics) in Tables 4 

through 6, suggesting no statistically significant spatial autocorrelation. 
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Table 2. SARP Model Estimates Using Simulated Data.   

SAR with distance decay parameter SARP  

Parameter Mean 

Monte 
Carlo 
Error 

Pseudo 
T-stat. 

Avg. 
Dir. 

Effect 

Avg. 
Indir. 
Effect Mean 

Monte 
Carlo 
Error 

Pseudo 
T-stat. MSE 

Avg. 
Dir. 

Effect 

Avg. 
Indir. 
Effect 

True Avg. 
Dir. Effect 

True Avg. 
Indir. 
Effect 

o=2 1.990 0.068 29.376 - - 2.011 0.253 7.947 0.064 - - - - 

β1 = -1 -1.003 0.034 -29.286 -1.277 -2.101 -0.935 0.243 -3.846 0.063 -0.459 -0.707 -0.509 -0.820 

β2 = -2.5 -2.574 0.037 -69.653 -3.277 -5.392 -2.461 0.471 -5.227 0.223 -1.207 -1.862 -1.271 -2.051 

β3 = 1 1.049 0.032 33.041 1.336 2.198 0.961 0.227 4.225 0.053 0.472 0.727 0.509 0.821 

ρ =0.7 0.703 0.008 85.720 - - 0.680 0.058 11.729 0.004 - - - - 

α = -1.5 -1.421 0.065 -21.723 - - -1.373 0.194 -7.076 0.054 - - - - 

σ=1 2.968 0.050 59.007 - - 1.000 - - - - - - - 

# of Obs. 1000 1000  

# of Draws 2000 2000 
Total Time of 

Sampling* 
8,398 sec. 9,855 sec. 

R2 0.887 - 

Adjusted R2 0.887 - 

Log-Lik at 
Means 

-3099.7 -1036.3 

DIC 3124.0 3924.8 

 ஽ 12.1 926.1݌

 ഥ 3111.9 2998.7ܦ

 ሻ 3099.7 2072.6ߠሺ̅ܦ
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As shown in Table 2, the SARPα model’s inclusion of a distance decay parameter (α) does 

improve the accuracy of parameter estimates to their true values to some extent. Not surprisingly, 

with the new weight-matrix structure used in Table 4’s model specification, all three covariates’ 

marginal effects seem to increase, as compared to those estimated in the SARP model.  In 

addition, it took around 2.74 hours (on an Intel Core i5 2.27GHz laptop with 4.00 GB RAM) to 

complete the 2000 draws for each of the six parameters in the SARPα model for simulated data 

(with a sample size of 1000), 7 times the computing time needed for the SARP specifications, 

which shows how adding a distance decay parameter to the weight structure can require 

substantially more computing time and efforts. One clear advantage of the MESSP model is its 

fast estimation: here it required 42% and 92% less computing time than SARP and SARPα 

models, respectively. 
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Table 3. MESSP Model Estimates Using Simulated Data.  
MESS MESSP  

Parameter Mean 

Monte 
Carlo 
Error 

Pseudo T-
stat. 

Avg. 
Dir. 

Effect 

Avg. 
Indir. 
Effect Mean 

Monte 
Carlo Error 

Pseudo 
T-stat. MSE 

Avg. Dir. 
Effect 

Avg. 
Indir. 
Effect 

True 
Avg. 
Dir. 

Effect 

True 
Avg. 
Indir. 
Effect 

o=2 2.984 0.099 30.075 - - 2.549 0.843 3.025 1.011 - - - - 

β1 = -1 -1.056 0.057 -18.628 -1.300 -4.423 -1.090 0.268 -4.069 0.080 -0.307 -0.080 -0.541 -2.406 

β2 = -2.5 -2.635 0.058 -45.200 -3.244 -11.041 -2.093 0.633 -3.309 0.565 -0.773 -0.202 -1.342 -6.003 

β3 = 1 1.056 0.055 19.172 1.300 4.426 0.968 0.268 3.608 0.073 0.258 0.067 0.541 2.405 
α = -2 -1.690 0.033 -51.789 - - -1.188 0.146 -8.155 0.681 - - - - 

σ=1  3.258 0.146 22.395 - - 1.000 - -  - - - - - 

# of Obs. 1000 1000  

# of Draws 2000 2000 
Total Time of 

Sampling* 
4 sec. 832 sec. 

R2 0.9287 - 

Adjusted R2 0.9285 - 
Log-Lik at 

Means 
-2159.4 -1792.4 

DIC 4319.2 5978.3 

 ஽ 0.2 1196.8݌

 ഥ 4319.04 4781.5ܦ

 ሻ 4318.9 3584.7ߠሺ̅ܦ
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As shown in Table 3, the continuous-response (y*) and discrete-response (y) parameter estimates 

for the MESS-based specifications differ noticeably from their true values. A plausible cause is 

the assumption of a matrix-exponential decay pattern, which is conceptually and mathematically 

distinct from the standard decay patterns assumed in the SARP3 and SARPα models. 

In sum, all three specifications managed to recover their underlying (simulated-data) parameter 

values, using Bayesian estimation methods. As expected, the continuous model structures, which 

lacked any latent structure, offered far tighter estimation of slope and autocorrelation or distance-

decay parameters, as expected. Interestingly, adding the distance decay parameter ߙ did not 

much alter estimation and inference of the spatial autocorrelation term (denoted as ߩ), with the 

SARP and SARPα models producing similar mean values and variance of sampling draws and 

95% intervals for 	ߩ . The DIC values and marginal effects are not directly comparable across 

these distinct data sets (since y* and y values generated differ, due to the different spatial 

structures), though it is interesting to see how much they can vary among seemingly similar 

model specifications.  Run times are meaningful for comparison, with the ߙ term’s sampling 

loop resulting in a substantial increase, and the MESSP specification dominating, thanks to its 

avoidance of any log-determinant calculations. Model comparisons using a single, actual data set 

offer another opportunity for model comparisons, as discussed in the next section. 

 

Estimation Results using Austin’s Land Use Data 

These three model specifications were evaluated using Austin’s land use data set. To moderate 

estimation times, a sample of 1000 parcels was randomly drawn from the 42,589 undeveloped 

 
3 The SARP specification also relies on such a distance-decay weight structure, with  = -1.  
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parcels described earlier. Among these, 452 had been developed over the 5-year period (from 

2003 to 2008), whereas the remaining 548 lay undeveloped through 2008. 

Table 4. SARP Model Estimates for Austin Land Data. 
SARP 

Covariates Mean 
Monte 
Carlo 
Error 

Pseudo T-
stat 

Avg. Dir. 
Effect 

Avg. Indir. 
Effect 

Constant 0.735 2.101 0.350 - - 

DistCBD 0.052 0.038 1.354 0.019 0.011 

DistMin -0.154 0.062 -2.473 -0.058 -0.033 

DistMaj 0.454 0.171 2.660 0.171 0.097 

DistFwy 0.193 0.074 2.606 0.073 0.041 

Slope -0.034 0.014 -2.473 -0.013 -0.007 

Access -0.446 0.704 -0.633 -0.168 -0.093 

PeriArea 2.760 1.632 1.691 1.041 0.587 

Area -6.13E-07 2.11E-07 -2.901 -2.31E-07 -1.27E-07 

ρ 0.377 0.060 6.299 - - 

# of Obs. 1,000 

# of Draws 2,500 
Total Time of 

Sampling 
2,859 seconds  

Log Likelihood at 
Means 

-624.8 

Likelihood Ratio 487.5 > ߯଴.଴ହ
ଶ ሺ9ሻ=16.9 

DIC 4609.3 

 ஽ 1679.8݌

 ഥ 2929.5ܦ

 ሻ 1249.6ߠሺ̅ܦ

Moran’s I -0.012 
Var(I) 0.023 

Z-score of I 0.52 

Notes: Moran’s I is computed as ܫ ൌ
௡∑ ∑ ௪೔ೕሺఌ೔ିఌതሻሺఌೕିఌതሻೕ೔

൫∑ ௪೔ೕ೔ಯೕ ൯∑ ሺఌ೔ିఌതሻమ೔
, where ݓ௜௝ denotes the ijth element of the weight 

matrix W, ߝ௜ is the observed residual for site i, and ߝ ̅indicates the average of the n ߝ௜’s. This statistic’s 

variance is formulated as  varሺܫሻ ൌ
௡మሺ௡ିଵሻௌభି௡ሺ௡ିଵሻௌమିଶௌబ

మ

ሺ௡ାଵሻሺ௡ିଵሻమௌబ
మ , where ܵ଴ ൌ ∑ ௜௝௜ஷ௝ݓ , ଵܵ ൌ

ଵ

ଶ
∑ ൫ݓ௜௝ ൅௜ஷ௝

௝௜൯ݓ
ଶ
, and ܵଶ ൌ ∑ ൫∑ ௞௝௝ݓ ൅ ∑ ௜௞௜ݓ ൯

ଶ
௞  (Banerjee et al. [2004]).  
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Table 4 summarizes parameter and marginal effects estimates, as well as goodness-of-fit 

statistics, for the SARP model. ρ  is estimated to be a statistically and practically significant, with 

a mean value of 0.38. As parameter signs suggest, undeveloped parcels farther from Austin’s 

CBD appear to have experienced more land development, ceteris paribus. But the influence is 

not statistically significant or practically significant, as reflected by the 95% interval’s inclusion 

of zero. Distance-to-roadway terms have more statistically significant effects, as reflected by 

Table 4’s fairly large pseudo-t-statistics. Proximity to minor arterials tends to increase the 

likelihood of land development, while proximities to major arterials and freeways have the 

opposite effect. A one-mile increase in distance to the nearest minor arterials is estimated, on 

average, to reduce the probability a parcel being developed by 0.06 whereas a one mile increase 

in proximity to major arterial and freeway tends to boost the average parcel’s development 

probability by 0.17 and 0.07, respectively.  The estimated direct and indirect effects for 

transportation access measures appear to be larger than those for soil slope and parcel geometries, 

suggesting that transport access tends to play a more important role in Austin’s land development. 

Overall, however, the estimated direct and indirect effects are quite small, suggesting that far 

more than transport access and location centrality may be at play in parcel choices for new 

development in the Austin region. As expected, milder slopes tend to enhance the likelihood of a 

property’s development, in statistically significant ways (but with only moderately practical 

significance: Average Direct Effect = -0.0126 probability per percent slope). Interestingly, a 

larger perimeter-to-area ratio is positively associated with development, with strong practical 

significance but only weak statistical significance. Parcel area also was estimated to have a 

positive effect, though its practical significance (as reflected by estimates of marginal effects) is 

at most moderate. Somewhat unexpectedly, the accessibility index was negatively related with 
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land use development in a practically significant way.  Perhaps land values and development 

constraints in less accessible locations are such that they attract more development. A more-

detailed, market-based model for development choices would be valuable here. 

Table 5. SARP Model Estimates for Austin Land Use Data. 
SARP 

Covariates Mean 
Monte 
Carlo 
Error 

Pseudo T-
stat 

Avg. Dir. 
Effect 

Avg. Indir. 
Effect 

Constant -3.535 2.097 -1.686 - - 

DistCBD 0.151 0.037 4.052 0.033 0.005 

DistMin -0.218 0.060 -3.615 -0.084 -0.007 

DistMaj 0.585 0.166 3.515 0.232 0.018 

DistFwy 0.165 0.072 2.296 0.065 0.005 

Slope -0.040 0.015 -2.655 -0.016 -0.001 

Access 0.924 0.704 1.312 0.023 0.027 

PeriArea 5.006 1.956 2.560 2.037 0.160 

Area -7.85E-07 2.39E-07 -3.290 -3.10E-07 -2.39E-08 

ρ 0.062 0.064 0.973 - - 

α  -4.216 2.969 -1.420 - - 

# of Obs. 1000 

# of Draws 2500 

Total Sampling Time 11,965 seconds  
Log Likelihood at 

Means 
-1342.3 

Likelihood Ratio 133.3 > ߯଴.଴ହ
ଶ ሺ10ሻ=18.3 

DIC 3517.5 

 ஽ 417.0݌

 ഥ 3101.5ܦ

 ሻ 2685.6ߠሺ̅ܦ

Moran’s I  0.115 

Var(I) 0.151 
Z-score of I 0.76 

 
Table 5’s SARPα model results deliver a very minor spatial autocorrelation estimate (averaging 

just 0.062), in large part because the specification allows for a sizable distance decay parameter 

(mean α of -4.2). However, neither of these mean spatial-parameter estimates is far from zero, in 

a statistical sense. The lost significance seems to have been picked up by the covariates, with 
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pseudo-t statistics for all covariates slightly larger than those delivered by the SARP model. 

Signs on all parameter estimates are consistent across Tables 4 and 5, except that the sign on the 

Access variable changed, though it is not quite statistically significant. Distances to roadways are 

shown to have statistically significant impact on land development decisions, with somewhat 

larger direct and indirect effects than those with slope and parcel size measures. Proximity to 

minor arterials tends to encourage development, while proximity to higher-class (and higher-

speed) roadways is likely to dampen a parcel’s developmental chances. The SARPα model 

yielded a lower (better) DIC value than the SARP specification, but required approximately 4.2 

times the computing time. Moran’s I is not statistically significant, as reflected by its small t-

statistic (0.115/0.151=0.76). 

Table 6. MESSP model estimates for Austin land use data. 
MESSP 

Covariates Mean 
Monte 
Carlo 
Error 

Pseudo T-
stat. 

Avg. Dir. 
Effect 

Avg. Indir. 
Effect 

Constant -2.356 3.190 -0.739 - - 

DistCBD 0.161 0.047 3.451 0.034 0.009 

DistMin -0.261 0.105 -2.482 -0.082 -0.013 

DistMaj 0.661 0.216 3.059 0.226 0.035 

DistFwy 0.128 0.100 1.284 0.064 0.010 

Slope -0.037 0.018 -2.041 -0.017 -0.003 

Access 0.518 1.090 0.475 0.019 0.056 

PeriArea 4.324 2.368 1.826 1.848 0.283 

Area -9.13E-07 2.71E-07 -3.36E+00 -3.40E-07 -5.12E-08 

α  -2.480 0.608 -4.079 - - 

# of Obs. 1000 

# of Draws 2500 

Total Sampling Time 1,962 seconds 

Log-Lik at Means -1429 

Likelihood Ratio 662.4 > ߯଴.଴ହ
ଶ ሺ9ሻ=16.9 

DIC 3039 

 ஽ 91݌

 ഥ 2948ܦ

 ሻ 2857ߠሺ̅ܦ
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Moran’s I  0.238 

Var(I) 0.183 

Z-score of I 1.30 
 

Table 6’s MESSP parameter estimates are very consistent with those of the SARPα model 

(including marginal effects). Interestingly, the MESSP model enjoys the lowest DIC among all 

models, as well as the greatest-time savings (running in just over 30 minutes on a standard 

desktop, suggesting it is a winner.  More importantly, parameter estimation and inference of 

covariates do not vary much under different weight matrix choices, at least for the two more 

flexible specifications as reflected by the closely resembled mean of draws after burn-in and 

average direct effects in Tables 4 and 5.  

 

CONCLUSIONS 

This paper develops and then compares the specifications, parameter estimates, and implications 

of SARP, SARP and MESSP models, using simulated data sets and actual land use data (at the 

parcel level, from Austin, Texas). Marginal effects of various covariates were computed 

reflecting the spatial relationships that exist in these three distinct model types, all to anticipate 

binary response over space. DIC values and other goodness-of-fit statistics were used to compare 

model applications, along with run times, recovery of true parameters (in the case of the 

simulated data sets), and estimates of marginal effects. 

 

As expected, direct estimation of simulated latent response values (y*’s) produced far more 

precise and accurate parameter estimates (when using simulated data, where parameter values 

were given) than their corresponding binary-response models (which operate under a blinder of 

discretized information).  And, with the single land use data, the more flexible SARP and 
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MESSP models out-performed the SARP model, though results (measured using marginal effects, 

since slope parameters are deceiving in a context with spatial autocorrelation) are largely 

consistent (in sign and magnitude) across all three specifications.   

 

The MESSP out-performed the others, particularly in its computational complexity and 

associated run times, suggesting it may be of great value for further spatial econometric 

specifications, with large data sets and both continuous and discrete response types. The 

magnitudes of direct and indirect marginal effects appear quite small in the model for land use 

change, as compared to the SARP and SARP model results, suggesting that the MESSP model 

may not be appropriate for this particular data set. Results of covariate effects appear consistent 

with  Author et al.’s (2011) findings, which calibrated a GWR MNL model for the Austin data 

set (across six land use categories, with residential dominating here).  

In conclusion, adding a distance decay parameter to a spatial autoregressive model is likely to 

boost model performance, as reflected by a lower DIC value, but can potentially present 

computing-time problems in large data sets. An MESSP structure appears easiest to work with 

and perform better in prediction, but all models, with their different spatial weighting structures, 

deliver – as LeSage and Pace (2009) predicted – the same behavioral implications for marginal 

effects.  This is reassuring, though relatively few spatial modelers compute marginal effects (and 

may be distracted by slope coefficients). 

 

This work operationalizes SARP for the first timwith a demonstration to land use change data, 

which are important for long-term transportation planning applications, among other motivations. 

Clear extensions of this work include applications for multinomial-response settings (where 



31 
 

statistical identification of some parameters can pose problems, as seen in the dynamic 

multinomial probit spatial models developed in  Author et al. [2011]) and more rigorous 

Bayesian analysis, with modified (reduced) autocorrelation between MCMC draws.  

Additionally, the endogeneity issue should be considered because, in theory, an SAR 

specification leads to a non-diagonal variance-covariance matrix for response values and 

the error terms, and because an instrumental variable (IV) matrix should be used in order to 

achieve consistent estimation. Endogeneity and identification issues remain central to debates 

and sophisticated contributions on-going in the spatial econometrics field. A great deal of work 

remains for spatial modelers, and transportation is a terrific context for such investigations. 
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