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ABSTRACT 

Access to electric vehicle (EV) charging stations will impact EV adoption rates, use decisions, electrified 
mile shares, petroleum demand, and power consumption across times of day. This work uses parking 
information from over 30,000 personal-trip records in the Puget Sound Regional Council’s 2006 
household travel survey to determine public (non-residential) parking locations and durations. Regression 
equations predict parking demand variables (total vehicle-hours per zone/neighborhood and parked-time 
per vehicle-trip) as a function of site accessibility, local jobs and population densities, trip attributes, and 
other variables available in most regions and travel surveys. Several of these variables are key inputs for a 
mixed integer programming problem, developed here for optimal EV-charging-station location 
assignments. The algorithm minimizes EV users’ station access costs while penalizing unmet demand. 
This useful specification was used to determine top locations for installing a constrained number of 
charging stations within 10 miles of Seattle’s downtown, showing how charging location schemes’ access 
costs respond to parking demand and station locations. The models developed here are generalizable to 
data sets available for most any region, and can be used to make more informed decisions on station 
locations around the world. 

Key words: Plug-in Electric Vehicles, Charging Stations, Location Assignment Problem, Mixed Integer 
Programming 
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BACKGROUND 

As electric vehicles (EVs) enter the market, there is rising demand for public charging stations. 
Symbiotically, the demand for EVs is influenced by the availability of refueling infrastructure: “Without 
infrastructure, the vehicle of the future will remain just that – the vehicle of the future” (1). Provision of 
public charging stations can diminish owners’ (potential and actual) range anxieties (2), thus increasing 
EV purchase and use decisions. Morrow et al. (3) showed how an EV-based transport system’s overall 
cost can be reduced by providing more charging infrastructure instead of investing in bigger batteries 
(with greater range). They estimated that the marginal cost of increasing a car’s all-electric range (AER) 
from 10 miles to 40 miles is $8,268, and the cost of installing an additional level-2 commercial charging 
station (including administrative and circuit installation costs, assuming 10 charge cords per facility) is 
$18,520. While the EV charging station location problem is a very new topic area, some important strides 
have been made in the past few years. 
 
Wang et al. (4) created a numerical method for the layout of charging stations using a multi-objective 
planning model. Accounting for charging station attributes, distribution of gas-station demands (rather 
than parking decisions, as a proxy for charging demands), and power grid infrastructure, among other 
variables, the researchers tested and verified their model using data from Chengdu, China. Sweda and 
Klabjan (5) used an agent-based decision support system to identify patterns of residential EV ownership 
and driving activities to determine strategic locations for new charging infrastructure, with the Chicago 
region as a case study. 
 
Most station location problems are based on existing optimization routines/heuristics. For example, 
Worley et al. (6) formulated the problem of locating stations and optimal EV routings as a discrete integer 
programming problem, based on the classic Vehicle Routing Problem (VRP). Ge et al. (7) proposed a 
method based on grid partition using genetic algorithms. Their routine focuses on minimizing users' loss 
or cost to access charging stations after zoning the planning area with a grid partition methodby choosing 
the best location within each partition, to reflect traffic density and station capacity constraints (which 
include charging power, efficiency, and number of chargers per station). Li et al (8) also used genetic 
algorithms to identify top locations for charging infrastructure. Their method is based on conservation 
theory of regional traffic flows, taking EVs within each district as fixed load points for charging stations. 
The number and distribution of EVs are forecasted, and the cost-minimizing charging station problem is 
(heuristically) solved using genetic algorithms.  
 
Frade et al. (9) used Lisbon, Portugal as a case study, for application of a maximal covering location 
model (10) to maximize the EV charging demand served by an acceptable level of service. They 
determined not just the locations, but also the capacity of stations to be installed at each location. Finally, 
Kameda and Mukai (11) developed an optimization routine for locating charging stations, relying on taxi 
data and focusing on stations for Japan’s recently introduced on-demand bus system.  
 
This paper adds to the growing field of charging station location solutions by providing behavioral 
models to predict when and where vehicles are likely to be parked. It also takes a different approach for 
anticipating charging demand, using parking demand as a proxy. The optimization routine used 
recognizes parking demands across Seattle neighborhoods/zones, and ensures that stations are not too 
clustered, by minimizing total system travel distances to the closest charging station, after assuming a 
maximum cost for those parking beyond the limit of reasonable walk access. The mixed integer program 
(MIP) developed here is based on the “fixed-charge facility location model” (12), which identifies a set of 
facility sites to minimize the cost of serving a set of demands (located over space/across sites). This type 
of model has been used to design communication networks (13), locate off-shore drilling platforms (14), 
and locate freight distribution centers (15). Within the realm of EV charging station location work, the 
closest parallel to this research is likely Hanabusa and Horiguchi’s (16) framework, minimizing EV travel 



costs while maintaining a minimum buffer distance around each charging station. Their EV travel cost is 
a function of travel time and waiting time at each charging station, and they define demand at each 
charging station via a traffic assignment algorithm (based on route choice behavior). The current paper 
attempts to best satisfy demand for public charging of EVs based on parking durations, land use 
attributes, and (in the case of individual parking durations) trip characteristics. Optimal station locations 
are determined as a function of parking demand and access (walk) distances/costs.  
 
DATA DESCRIPTION 
 
The data used for this project was obtained from the Puget Sound Regional Council’s (PSRC) 2006 
household travel survey. The trip data contains trip information of 4,741 households and 10,510 
individuals residing in the King, Kitsap, Pierce and Snohomish counties of Washington State. Each 
respondent was asked to keep a travel diary for two consecutive days, all of which were weekdays. The 
region consists of 3,700 Traffic Analysis Zones (TAZs), as shown in Figure 1.  

 
The entire region consists of 1,177,140 parcels, and each trip in the trip file is connected to an origin and 
destination parcel identification number or “ID”. Each household is also connected to its home-location 
parcel ID. In contrast to other regions’ TAZ-based land use data sets, PSRC land-use information is 
available for each parcel, and each trip in the Seattle data is associated with an origin parcel and a 
destination parcel, along with parking, transit and land use attributes within quarter-mile and half-mile 
buffers/radii around each of these parcels. Buffer-based variables include number of housing units, 
numbers of jobs (by sector: education, food service, government, industrial, medical, office, construction, 
retail and service), average costs of nearby parking (both hourly and daily), number of free off-street 
parking spaces, number of intersections (by type: four-way, three-way, and “point” nodes/dead-ends), 
number of local and express bus stops, (network) distance to nearest bus stop, and other variables. The 
wealth and resolution of information provided makes this data set unusual and well suited for analyses 
performed in this paper. 
 
Table 1 shows various descriptive statistics for Seattle’s surveyed persons and households. The average 
respondent is 42 years old, and 47% of respondents are males. 78 percent are licensed drivers, and the 
average numbers of persons, workers and vehicles in each household are 2.22, 1.13 and 1.89, 
respectively.  
 
METHODOLOGY 
 
In order to relate the Seattle region household travel survey data to optimal charging station locations for 
parked EVs, this study took a three step approach. First, parking locations (by parcel, then aggregated by 
TAZ) and durations were determined for all trips away from home and of at least 15 minutes in duration 
(i.e., those that serve as plausible candidates for public charging, if an EV had been used). This parking 
duration information was then used for regression models that relate (1) zone-level parking demands 
(aggregated across sampled trips) to land use attributes and (2) trip-level parking demand to individual 
trip characteristics. Parking demands were also used as inputs for identifying optimal charging station 
locations, to satisfy as much demand as possible, subject to certain constraints (on access and station 
supply). The formulation of a mixed-integer optimization problem is presented here, along with an 
illustrative application to 900 TAZs near the region’s center.  
 
Determining Parking Locations and Duration 
 
Parcel-level parking information was extracted from the trip data file in order to determine where vehicles 
are parked in the region and for how long. A snapshot of the trip data is shown in Table 2.  



The trip data consist of 87,600 person-trips, but not all were by car or light truck. After eliminating all 
passenger trips (in order to avoid duplicating driver trips) and keeping only trips made by light-duty 
vehicles, 48,789 trips remained in the data set. To estimate public charging demand at different parcels 
(and then at the level of TAZs), the following steps were used: 

1. Consecutive trips were identified, where the destination of the earlier trip coincides with the 
origin of the later trip. The time between these two trips is when a vehicle is parked at that unique 
parcel. 

2. No parking at one’s home parcel is counted, since parking locations at home are not of interest for 
locating public charging stations. 

3. Parking durations of less than 15 minutes were removed, since those are not enough for Level II 
charging. (Level III charging stations would not have this restriction.) 

A MATLAB script was written to perform the above analysis for all 48,789 trips. As a result, 30,085 
candidate parking durations for public charging emerged. The output consists of tripmaker ID, parking 
parcel ID, and parking duration. The parking information (at the parcel level) was then aggregated by 
TAZ for neighborhood analyses of parking demand, as described below.  

Forecasting Zone-Level Parking Demand  
 
The demand for public EV charging in each TAZ may be roughly proportional to the total duration of 
parking for all surveyed light-duty vehicles at that TAZ (outside of those that park at their home parcels). 
This parking duration was first normalized, by dividing by parcel size, resulting in values of parking 
duration per square mile, for each TAZ. Out of the 3700 TAZs in the Seattle region, eight did not contain 
any parcels identified with land use attributes and were not used in the zone-based analyses. Summary 
statistics for total surveyed parking durations and other variables of interest (as predictors of parking 
demand) of the remaining 3692 TAZs are shown in Table 3.  
 
Table 4 shows the parameter estimation results of an ordinary least squares (OLS) regression of parking 
duration (per square mile) on covariates like population and jobs densities. All relevant land use, access, 
and network connectivity variables were tested as covariates in initial regression model specifications, 
with statistically significant regressors (at the .05 level) retained in the final model. Standardized 
coefficients are also shown, to highlight levels of practical significance. These represent the number of 
standard deviation (SD) changes in the response variable (parking duration per square mile) following a 
one SD change in the associated covariate (evaluating all parameter values at their means).  
 
Based on the model’s standardized coefficients, parking demand’s intensity (per square mile) is most 
associated with employment (jobs) density. Parking prices and transit access are also relevant, but 
secondary. Increased student density and network connectivity (via more four-way intersections) also 
appear to play meaningful roles in increasing a zone’s total parking demand for the zone.  
 
Forecasting Trip-Level Parking Durations 
 
In addition to examining total parking demand per zone, parking durations for individual drivers/parked 
vehicles, in minutes per destination, can be modeled as a function of trip and destination characteristics. 
Table 5 presents summary statistics of these individual trip attributes (parked away from home, for at 
least 15 minutes), along with average parking durations for various activity types/trip purposes. As can be 
seen, work trips are the most common trip type (27 percent of the total) and command the longest parking 
durations (among away-from-home parking experiences), averaging 380 minutes or 6.33 hours each. 
 
Table 6 presents OLS regression estimates for these trips. All relevant zone characteristics (including 
regressors tested in the zone-level parking demand model, such as parking prices, transit, and network 



characteristics) and trip-level variables were tested as covariates in initial models, but only statistically 
significant regressors (at the .05 level) were retained in the final model.  
 
Table 6’s results offer a wide range of interesting results, with many very practically significant predictor 
variables. Since individual trips provide a very large data set, t-statistics are high; fortunately, model fit is 
also strong (R2

adj = 0.590).  Apparently, activity type at one’s destination is what most heavily influences 
parking duration, with work trips and K-12 school trips having roughly equal and very long parking 
durations, on average (for those who drive for such activities [very rare for K-12 trips, since most of these 
students are not driving themselves to school]).  
 
Longer parking durations are also evident for college, religious/community, recreational, and social 
activities. Predictably, trips made for the purposes of picking up/dropping off passengers entail the 
shortest parking durations, on average. Interestingly, job density is not statistically significant in this 
model despite the fact that the correlation between work-trip purpose indicator and job density is low (ρ = 
+0.11).  
 
Trips involving passengers are predicted to require slightly shorter parking durations than single-
occupant-vehicle (SOV) trips, while longer-distance trips increase durations, as expected (by about 3.4 
minutes per mile, everything else constant).  Such information is useful for charging station owners and 
operators, who will want to anticipate how many people can and will charge at a station or set of stations, 
and for how long. Station availability, upon arrival of an EV, can be paramount for station success (by 
encouraging further EV adoption and future EV trips to that station). 
 
Anticipating Best Sites for Public Charging Stations 
 
The modeling results discussed above illuminate a variety of factors that contribute to (or at least are 
associated with) zone-level and trip-level parking demand, in statistically and practically significant ways. 
In order to select highly accessible, high-demand spots for installation of public charging stations, an 
optimization problem was specified, with an objective function that seeks to minimize the total access 
costs (walk distances) from the charging stations to drivers’ ultimate destination zones (TAZs).  Here, EV 
charging demands are assumed proportional to (i.e., well proxied by) light-duty-vehicle parking demands, 
as reported directly in the sample data. The optimization ensures a minimum distance between charging 
stations, to avoid clustering of the not-inexpensive charging infrastructure in adjacent high-parking-
demand zones. Such problems are solved using mixed-integer programs (MIPs), which are common in 
transportation applications, such as airline crew scheduling, vehicle routing, and pipeline design (e.g., 17, 
18, 19). MIPs are generally solved using branch and bound techniques (20). 
 
The following set of equations defines the problem solved here using the General Algebraic Modeling 
System (GAMS), a software designed for mathematical programming and optimization tailored for large-
scale modeling applications. Outside of proprietary programs, noncommercial freeware is also available 
for solving MIPs, such as ABACUS and bonsaiG (20).   
 
The Mixed-Integer Optimization Problem 
 
The objective function in this MIP (shown below) aims to reduce total access cost as a function of walk 
distance between zones ݅ and ݆ (ܿ) weighted by parking duration. The walk penalty ܿ is limited to a 
maximum distance or cost, ܹ (set to 2 miles in this application), since drivers are unlikely to walk long 
distances for parking (similar to transit-access experiences [21]). Here i and j index the set of zones for all 
potential destination TAZs and assignment of individual charging stations, respectively. In this set up, the 
number of charging stations (ܮ) is less than the number of zones (݅) due to budget constraints. Then, for 



EVs whose destination is some zone ݅ not equipped with a charging station, the parking demand will have 
to be satisfied by a (hopefully close by) charging station in zone ݆. In other words, ݕ	represents the 
parking demand for zone ݅ met by a charging station in zone ݆. Assuming that overall parking demand is 
likely proportional to EV parking demand, the objective function penalizes longer parking access 
distances proportional to parking demand.  
 
In addition to ݕ, another key decision variable is ݔ, which takes on a value of 1 for zones with charging 
stations and zero for zones without, representing the set of optimal charging location zones. Other 
parameters include ݀, the parking demand at zone ݅, and L, which is the limit on the total number of 
charging stations one can allocate to zones. To ensure that charging stations are sufficiently spaced out, 
the indicator ߜ takes on a value of 1 if the distance between ݅ and ݆ is less than a specified minimum 
spacing ݎ and zero otherwise. A large number ܯ allows all parking demand to be assigned to charging 
stations, hopefully ensuring that locally parked EVs can be accommodated by their nearest charging 
station. 
 
Objective function: min∑ ∑ ܿ   ݕ
 
Constraints: 1. ∑ ݕ = ݀, ∀	݆ ∈ 	(parking demand constraint)  ܬ

2. ∑ ݕ ≤ ,ݔܯ ∀	݅ ∈ ܫ   (charging supply constraint) 
ݔ∑ .3 ≤ ݆	∀ ,ܮ ∈  (charging-station availability constraint)  ܬ
4. ∑ ݔߜ ≤ 1, ∀	݅ ∈  (charging station spacing constraint) 	ܫ
ݕ .5 ≥ 0	∀	݅ ∈ ,ܫ ݆ ∈  (non-negativity constraint on parking demand)  ܬ
ݔ .6 ∈ ሼ0,1ሽ	∀	݆ ∈  (binary variable constraint for charging station selection)  	ܬ

ߜ .7 = ൜1	݂݅	ܥ 	<  otherwise  (minimum inter-station spacing)	0ݎ

8. ܿ ≤ ܹ  (maximum access cost) 
 
The formulation of this optimization problem also introduces some challenges. Capacity for each 
charging station is undefined here, since parking demand is currently without a time-of-day dimension 
and the objective function may overly favor work and school trips, with their long parking durations. 
Here, the optimization simply aims to locate optimal zones with a reasonable spread under the assumption 
that EV parking patterns will imitate overall parking demand. Nonetheless, the MIP specified here is a 
step towards efficiency of locating charging stations, as illustrated in the Seattle application below. 
 
Charging Station Allocation: A Seattle Area Application 
 
To demonstrate the mixed-integer optimization problem, total daily parking demand in minutes (݀) 
across 900 TAZs (i = 900, j = 900) within approximately 10 miles (network distance) of the Seattle CBD 
were considered. (Inclusion of all 3,700 zones resulted in a large matrix that caused the GAMS software 
to time out in the search for a solution.) With relatively small size (just 5 percent area of the average 
PSRC TAZ) and high population density (three time that of the average PSRC zone), these relatively 
central TAZs are good candidates for inter-zonal parking access of EV charging stations. (Large, low-
density peripheral zones cause problems for the GAMS algorithm because they have no or few 
neighboring zones within the 2-mile maximum parking-access distance. For such applications, the zones 
with larger areas can be split, with all zones of approximate equal size being the optimal condition for 
seeking a set of solutions.) 
 



The total number of charging stations was limited to L = 80, and the minimum distance between charging 
stations was set to 1 = ݎ mile, since ½-mile access/walk distances (the worst-case scenario for an EV 
owner parked between such stations) are often reasonable, especially for workers intending to be parked 
for many hours. Network walking distances (as given by the PSRC, which exclude freeway links and 
certain bridges considered unsafe for pedestrian use) were used to represent the travel costs, ܥ. As noted 
earlier, the maximum walk penalty, ܹ, was limited to 2 miles, to reflect a cap on reasonable access costs. 
Using the Coin- or Branch-and-Cut (CBC) solver, a straightforward GAMS code inputted the travel cost 
matrix. To reduce the GAMS-required memory, the large travel cost matrix was filtered to restrict parking 
assignment to charging stations within a 2 mile access distance. The algorithm arrived at a solution in 
approximately 8 minutes and 45 seconds on a standard desktop computer. The mixed-integer problem 
selected optimal parking station locations in the 80 zones listed in Table 7 (and shown in Figure 2), with 
PSRC travel survey parking demands and associated zone ranks (based simply on that demand) shown 
alongside.   

 
As shown in Table 7, many of these zones rank high in parking demand, so a charging station scores well 
by serving them directly. But many others were also selected, despite very low in-zone parking demand, 
thanks to their strategic locations – nestled among other zones with high parking demands. Figure 2 
provides maps of this solution set for charging station locations (left side) versus a simple assignment 
approach, where chargers are placed in the 80 zones with highest parking demands (right). As illustrated 
in Figure 2, optimal station locations are much more scattered throughout the 900-zone region, versus the 
simple demand-based assignment method, which concentrates stations in the region’s central business 
district. When clustered together, high parking demand zones, under the optimal solution, are sometimes 
served by a low- to medium-demand zone, nestled among them. 
 
The optimized solution yielded a total (minimized) cost (z) of 842,413 mile-minutes, with a weighted-
average parking access cost of 0.69 miles (weighted by total parking duration of station-assigned zones). 
79.9 percent of parking demand was able to access a charging station within 1 mile of the destination 
TAZ, with a maximum walk-access distance of 1.90 miles. In contrast, if charging stations were placed 
purely based on parking demand (in the top 80 TAZs, where parking demand is highest), the total cost (z) 
would be 890,135 mile-minutes (5.7 percent higher than the optimal solution found here), the average 
parking access cost would be 0.73 miles, and the maximum access distance would more than double, to 
3.96 miles. Under this simplified approach, 78.0 percent of parking demand appears able to access a 
charging station within 1 mile of the destination TAZ.  
 
Such results suggests there is some merit to simple, demand-based assignment (with no more than one 
station per zone, though that station may have multiple chargers available). However, for implementations 
where zones are even smaller in size (with greater opportunity for interzonal parking access), the benefits 
of this paper’s optimization approach are more striking. For example, when 20 charging stations are 
strategically located across the City of Seattle’s 218 zones, the routine returns an optimal solution in 
under 1 second, placing 94.5 percent of parking demand within 1 mile a station – rather than meeting just 
79.6 percent of parking demand (within 1 mile) under the simple assignment rule (allocating public 
chargers to zones with highest parking demands). 
 
CONCLUSIONS 
 
A key factor for long-term EV success involves simplifying the logistics of charging one’s vehicle away 
from home. Thoughtful siting of public charging stations can ease consumer range anxiety while offering 
a lower cost approach to integrating EVs into the transportation market (versus investing in longer-range 
batteries). This study relied on household travel survey data from the Seattle region to investigate parking 
demands (by zone and by trip) and then identify optimal station locations using a rigorous MIP. 
 



Parking demand was examined in two ways, based on land-use characteristics for a zone and trip (and 
traveler) characteristics for individual trips. Land use and access attributes were used in an OLS 
regression model to predict total parking times per zone. Parking demand (per square mile) at the TAZ 
level rose significantly with jobs and student densities. More connected and transit-served zones, 
characterized by more nearby four-way intersections and bus stops, were also found to experience higher 
parking demand. At the trip level, trip purposes were by far the most significant predictor of parking 
durations. Models revealed that work and school trips require the longest parking periods while regular 
errands (personal business, shopping, eating out, and picking up and dropping off passengers) 
necessitated the shortest parking durations, with social and recreational activities falling somewhere in 
between. Trip distance and use of a car (rather another vehicle type) also lengthened average parking 
durations.  
 
The first regression model’s outputs provide key inputs for determining efficient charging station 
locations, as specified here via a mixed integer optimization program. Taking into consideration budget 
constraints (which limit total number of charging stations to be deployed), and avoiding resource 
clustering (by specifying minimum station spacings), the optimization problem assigned 80 public 
charging stations thoughtfully across 900 TAZs within 10 miles of Seattle’s downtown center. As 
designed, these were spaced at least one mile apart, with wide ranging access and parking demand 
characteristics, illustrating both the importance of parking intensity and access. This optimal charging 
location scheme was compared to one based focused on top-ranked zones, in terms of parking demand, 
and yielded clearly better results in multiple ways, like average access distances (in addition to 
minimizing total access costs). 
 
The work presented here has certain limitations. It assumes that LDV parking demand is a strong proxy 
for EV charging demands, which may not reflect actual charging demands, particularly while EV market 
shares are still small. As compared to the general U.S. population, early EV adopters are 
disproportionately younger, male, more educated, and more environmentally sensitive (22). Over time, as 
EV market shares grow, parking demands may more closely reflect EV charging demands. Introducing a 
time-of-day dimension to the optimization problem, to reflect the dynamic nature of charging demand 
levels, would also serve as a useful extension. While this work’s MIP identifies optimal zones for 
charging station placement, specific station locations within identified zones are not defined. Such 
location choices are likely to be highly influenced by visibility, accessibility, and installation costs, which 
vary from $2000 to $5000 for wall-mounted stations in parking garages to $15,000 or more for stations 
which require utility service and infrastructure upgrades, according to Austin Energy staff (23).  
 
Nonetheless, the models developed here provide a basic framework for readers to anticipate parking 
demands and more efficiently locate EV charging infrastructure in new settings and/or subject to different 
constraints (on access costs and station availability).  This framework can be quickly adapted to other 
cities and regions, with similar data sets, for making more optimal decisions on station locations around 
the world. 
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Table 1:  Summary Statistics of PSRC Person- and Household-level Attributes 

  Mean St Dev. Min Max 
Person Records (N=10,510)      

Age (years) 41.9 21.8 0 99 

Male Indicator 0.47 0.50 0 1 

Driver’s License Indicator 0.78 0.42 0 1 

Student Indicator  0.21 0.4 0 1 

Household Records (N=4,741)

Household Size 2.22 1.21 1 8 

Household Number of Workers 1.13 0.85 0 5 

Household Number of Vehicles 1.89 1.07 0 10 

Number of Licensed Drivers 1.69 0.73 0 5 

Household Income ($/year) 71,400 42,300 5,000 175,000 
 
 
  



Table 2: Snapshot of Trip Data 

Household 
# 

Person
# 

Trip  
# 

Begin 
Time

End 
Time Origin parcel Destin. parcel 

Home 
parcel

2045 1 1 1040 1100 8009 12543 12543

2045 1 2 1420 1450 12543 4532 12543

2045 1 3 2000 2055 4532 12543 12543

2045 2 1 810 900 12543 10093 12543

2045 2 2 1500 1540 10093 12543 12543
 
 
  



Table 3: Summary Statistics of PSRC Zone Attributes 

Variable   (n = 3962) Mean Std. Dev. Min Max

Parking duration (mins/mile2) 2.41E+04 1.18E+05 0 2.43E+06
Population density (persons/mile2) 7.99E+03 1.88E+04 0 2.91E+05
Employment density (jobs/mile2) 1.26E+04 8.27E+04 0 2.07E+06
Student density (students/mile2) 1.64E+03 2.48E+04 0 1.02E+06
Housing density (units/mile2) 3.43E+03 8.20E+04 0 1.27E+05
Average price of daily paid parking within 
zone ($) 0.145 1.027 0 21.3
Average price of hourly paid parking 
within zone ($) 0.066 0.465 0 11.0
3-way intersections (1/2 mile radius) 45.8 22.52 0 119.3
4-way intersections (1/2 mile radius) 36.8 45.91 0 251.8
Express bus stops (1/4 mile radius) 2.25 6.369 0 55.6

Bus stops (1/4 mile radius) 6.21 9.016 0 69.6
Note: The parking duration is of surveyed vehicles only, which represent approximately 0.29 percent of 
Seattle’s household-owned and operated light-duty fleet over a two-weekday period.  

 
 
 
  



Table 4: Parking Demand (min/mile2) Regression Results (OLS) 

Variable Parameter 
Estimate

Standardized 
Coef. t-stat 

Constant  3268 1.06

Density 
Population density (residents/mile2) -0.294 -0.047 -3.50

Employment density (jobs/mile2) 0.583 0.408 27.0

Student density (students/mile2) 0.226 0.047 4.11

Parking Prices  (within ¼ mile) 

Average price of daily paid parking ($) 2.22 0.193 11.0

Transit Access & Network Connectivity

#3-way intersections (within ½ mile) -158.0 -0.030 -2.41

#4-way intersections (within ½ mile) 160.8 0.062 2.94

#Express bus stops (within ¼ mile) 1537 0.083 3.29

#Bus stops (within ¼ mile) 1624 0.124 4.17

Number of Observations 3,692 TAZs 
Adjusted R-squared 0.521

Note: All coefficients shown are statistically significant at the 5-percent level (p-value < 0.05). Y is the 
zone’s total parking duration of surveyed drivers (away from home, and longer than 15 min duration). 
Other covariates tested in Table 4’s model are all land use, network, pricing, and transit attributes shown in 
Table 3. 

 
 
  



Table 5: Summary Statistics of PSRC Trip Attributes  

Variable Mean Std. Dev. Min Max

Avg Parking 
Duration  

(min. per trip)

Parking duration (min/trip)  142.0 199.5 15.0 2120 - 

Trip distance (miles) 6.71 7.14 0.230 67.6 - 
Passengers (excluding driver) 0.421 0.811 0 6 - 
Activity: Work 0.271 0.445 0 1 379.7 
Activity: School (K-12) 6.87E-03 0.083 0 1 338.8 
Activity: College 7.63E-03 0.087 0 1 222.5 

Activity: Eating out 0.071 0.257 0 1 46.1 

Activity: Personal business 0.179 0.384 0 1 46.8 

Activity: Everyday shopping 0.168 0.374 0 1 27.7 

Activity: Major shopping 0.016 0.127 0 1 47.6 

Activity: Religious/community 0.019 0.138 0 1 116.8 

Activity: Social 0.040 0.197 0 1 127.6 

Activity: Recreation-participate 0.057 0.232 0 1 103.5 

Activity: Recreation-watch 0.016 0.126 0 1 107.4 

Activity: Accompany someone else 8.88E-03 0.094 0 1 58.8 

Activity: Pick up/drop off 0.133 0.340 0 1 15.5 

Activity: Turn around 4.52E-03 0.094 0 1 53.0 
Vehicle: Car 0.560 0.496 0 1 147.2 
Vehicle: SUV 0.194 0.395 0 1 133.2 
Vehicle: Van 0.119 0.324 0 1 103.3 
Vehicle: Truck 0.089 0.285 0 1 173.7 
Vehicle: Other 0.034 0.181 0 1 145.1 

Note: n=30,085. Only trips ending away from home, with origin and destination zones in the region and 
parked durations exceeding 15 minutes, are included here. 
 
  



Table 6: Individual Parking Durations (min/trip) Regression Results (OLS) 

Variable 
Parameter 
Estimate

Standard. 
Coef. t-stat 

Constant  372.2 125.5 
Destination TAZ Characteristics 
Land-use entropy (balance or mix index) -42.63 -0.047 -11.9 
Distance to CBD (miles) -0.204 -0.013 -3.34 
Population density (per mile2) -9.075E-05 -0.008 -1.99 
Employment density (per mile2) 8.173E-05 -0.048 12.1 
Student density (per mile2) -3.189E-05 -0.010 -2.48 
Trip Characteristics 
Trip distance (miles) 3.461 0.124 31.8 
Passengers (excluding driver) -2.715 -0.011 -2.68 
Activity: Work (base case) - - - 
Activity: School (K-12) -21.28 -0.009 -2.37 
Activity: College -157.6 -0.069 -18.4 
Activity: Eating out -306.6 -0.396 -95.0 
Activity: Personal business -313.2 -0.603 -135.6 
Activity: Everyday shopping -324.5 -0.609 -133.9 
Activity: Major shopping -308.0 -0.196 -51.5 
Activity: Religious/community  -246.3 -0.170 -44.6 
Activity: Social -241.9 -0.238 -60.7 
Activity: Recreation-participate -259.7 -0.302 -75.6 
Activity: Recreation-watch -254.2 -0.161 -41.8 
Activity: Accompany someone else -298.9 -0.141 -37.2 
Activity: Pick up/drop off -344.1 -0.587 -127.3 
Activity: Turn around -303.8 -0.102 -27.5 
Vehicle: Car (base case) - - - 
Vehicle: Van -13.87 -0.023 -5.82 
Vehicle: SUV -4.101 -0.008 -2.12 
Vehicle: Truck* -1.367 -0.002 -0.51 
Vehicle: Other -17.88 -0.016 -4.22 

Number of Observations 30,085

Adjusted R-squared 0.590 
Note: All coefficients shown are statistically significant at the 5 percent level (p-value < 0.05) except those shown 
with an asterisk (*).  Bolded standardized coefficients indicate the most practically significant of covariates. 
 
  



Table 7: Charging Station Assignments and their In-Zone Parking Demands   
 

TAZs Assigned a 
Station (ID #) 

Survey Parking 
Demand (minutes) 

Parking Demand 
Rank 

(out of 900 zones) 
305 29266 1 

873 26473 2 

709 13972 7 

808 11489 8 

674 10184 13 

70 8959 18 

30 6449 33 

878 5909 41 

804 5311 47 

351 5154 50 

384 4305 70 

735 4040 72 

844 3587 83 

859 3317 92 

721 3314 93 

815 3237 96 

701 3097 105 

387 2669 125 

557 2517 137 

101 2445 144 

31 2311 153 

728 2284 155 

332 2120 170 

670 2035 175 

803 1985 179 

632 1854 198 

679 1798 204 

702 1655 223 

17 1513 244 

53 1481 247 

141 1481 247 

117 1264 271 

2 1249 274 

864 1248 275 

416 1209 283 

872 1191 286 



757 1099 301 

331 1089 303 

428 1084 306 

42 1077 309 

745 1076 310 

828 1005 335 

882 1005 335 

783 996 337 

675 983 341 

834 839 373 

246 823 379 

719 796 387 

270 773 392 

56 749 398 

339 722 403 

93 678 410 

884 677 411 

446 631 425 

781 605 432 

199 603 433 

348 593 435 

769 537 448 

591 496 457 

665 417 486 

371 401 488 

753 385 494 

676 361 497 

381 325 516 

84 310 521 

888 310 521 

298 200 581 

809 198 585 

692 145 621 

811 135 631 

717 126 644 

65 118 653 

12 115 654 

169 61 702 

176 18 750 

623 18 750 



329 15 754 

290 0 761 

754 0 761 

893 0 761 

 
  



 

 
Figure 1: Map of the Seattle Region’s 3,700 Traffic Analysis Zones 

  



 

Figure 2. Map of Optimal Charging Station Locations in Seattle vs. Top Parking Demand Zone 
Charging Station Locations (I & J = 900, L=80) 

 


