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ABSTRACT 

This paper develops an estimation strategy for and then applies a spatial autoregressive 
multinomial probit (SAR MNP) model to account for both spatial clustering and cross-alternative 
correlation. Estimation is achieved using Bayesian techniques with Gibbs and the generalized 
direct sampling (GDS). The model is applied to analyze land development decisions for 
undeveloped parcels over a 6-year period in Austin, Texas. Results suggest that GDS is a useful 
method for uncovering parameters whose draws may otherwise fail to converge using standard 
Metropolis-Hastings algorithms. 

Estimation results suggest that residential and commercial/civic development tends to favor more 
regularly shaped and smaller parcels, which may be related to parcel conversion costs and 
aesthetics. Longer distances to Austin’s central business district increase the likelihood of 
residential development, while reducing that of commercial/civic and office/industrial uses. 
Everything else constant, distances to a parcel’s nearest minor and major arterial roads are 
estimated to increase development likelihood of commercial/civic and office/industry uses, 
perhaps because such development is more common in less densely developed locations (as 
proxied by fewer arterials). As expected, added soil slope is estimated to be negatively associated 
with residential development, but positively associated with commercial/civic and office/industry 
uses, though its effect on commercial/civic uses is not significant (perhaps due to some steeper 
terrains offering view benefits). Estimates of the cross-alternative correlations suggest that a 
parcel’s residential use “utility” or attractiveness tends to be negatively correlated with that of 
commercial/civic but positively associated with that of office/industrial uses, while the latter two 
land uses exhibit some negative correlation. Using an inverse-distance weight matrix for each 
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parcel’s closest 50 neighbors, the spatial autocorrelation coefficient is estimated to be 0.706, 
indicating a marked spatial clustering pattern for land development in the selected region.  

Key words: spatial autoregressive models, multinomial probit, Bayesian estimation, generalized 
direct sampling, land use change. 

INTRODUCTION 

The development of land impacts travel choices and traffic patterns, and transportation system 
investments and travel decisions affect land use change. For example, more compact and mixed 
land development may propel people to choose non-motorized modes. Lower density 
development decisions contribute to longer travel distances and more vehicle-miles traveled per 
capita(Litman 2012, Cervero and Kockelman 1997).  

More accurate forecasts of land development improve long-run travel forecasts. One difficulty 
associated with such forecasts relates to the categorical nature of land use change, for example, 
industrial, office, residential, and other uses. Random utility theory supports models for these 
discrete unordered responses (McFadden 1986). The theory assumes that decision makers are 
rational and select alternatives that yield the maximum (latent) benefits for them. A multinomial 
logit (MNL) specification with independent (Gumbel-type) error terms is imperfect in many 
settings. For example, if construction costs for commercial development are high in one location, 
the costs for residential development are probably high too.  

The multinomial probit model (MNP) allows for cross-alternative correlations. These 
correlations can be ascribed to missing variables characterizing choice alternatives. However, the 
independence across observation units remains problematic for many contexts. It is quite likely 
that one unit (e.g., a parcel) is influenced by its neighbors due to missing variables and/or spatial 
and other interactions (e.g., lighting conditions that affect decisions to use transit).  

The spatial MNP model developed here accounts for both cross-individual interactions 
(emerging from physical proximity) and cross-alternative correlations. This paper is organized as 
follows: the SAR MNP’s mathematical formulation is presented first, followed by a section on 
Bayesian MCMC estimation. Austin, Texas’s land use data are used, with parameter estimates 
and inference summarized in the results section followed by some final remarks.  

LITERATURE REVIEW 

Discrete choice models are common in land use modeling. Examples include series of binomial 
logit models (Verburg et al. 2004) for residential, industrial/commercial, and recreational land 
uses on a 500m by 500m grid-cell map, Zhou and Kockelman’s (2008) logit models for parcel 
subdivision, and UrbanSim’s simulation code (Waddell et al. 2003). Even after controlling for a 
host of local, neighborhood attributes around grid cells and parcels, much spatial autocorrelation 
can remain in unobserved factors (Miaou et al. 2003). Few existing studies attempt to account for 
such effects, since these imply two-dimensional dependence across, potentially, thousands of 
observations, requiring manipulation of large matrices and high dimensional multivariate 
distributions. 

As with various other socio-economic factors (including home prices, poverty levels, travel 
distances, and election outcomes), land use patterns tend to be correlated across space. Work on 
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discrete states of land use change with such specifications can be found in Munroe et al.’s (2002) 
series of binary probit and random-effect probit models using panel techniques, and Wang and 
Kockelman’s (2009a, 2009b) spatially ordered probit model with a temporal component.  

Spatial extensions of the multinomial probit model can be found in Chakir and Parent’s (2009) 
analysis of France’s land use change (including a fairly balanced choice set with urban, 
agricultural, forest, and vacant types). Their model assumed that spatial autocorrelation occurred 
across the error terms in a standard multinomial probit model for a total of 3,116 parcels across 
164 counties. Only parcels within the same county were treated as correlated. Using maximum 
approximate composite marginal likelihood (MACML) techniques, Sidharthan and Bhat (2012) 
estimated a temporal spatial MNP model with spatial autocorrelation occurring across latent 
utilities, with application to land use changes for a 395 by 395 gridded neighborhood in the 
suburbs of Austin. 

Anselin et al. (2006) noted how a spatial lag model (i.e., spatially autocorrelated response) is 
characteristic of a spatial or social interaction process, in which the value of the response 
variable at one location is jointly determined by its neighboring agents. In the empirical 
literature, it is often used to analyze interaction among local governments (e.g., taxation and 
nearby jurisdictions’ expenditures). By contrast, a spatial error specification (such as the one 
used in Chakir and Parent [2009]) does not assume an underlying spatial or social interaction 
process, but rather a sort of nonspherical error covariance matrix due to omitted variables 
(Anselin et al. 2006). In empirics, the spatial error model is suitable for cases where spatial 
autocorrelation occurs in a subtle manner, such as when missing variables (like soil quality and 
rainfall) exhibit spatial clustering. 

This paper builds upon the spatial MNP specification proposed by LeSage and Pace (2009) with 
spatially autocorrelated response and successfully estimates such models by incorporating 
advanced Bayesian techniques. An example is provided using Austin’s parcel-level land use 
change data, which offers more behavioral realism than gridded data.   

METHODOLOGY 

This section details the mathematics of the spatial autoregressive multinomial probit (SAR MNP) 
model. Throughout the paper, i is used to indicate observations (or land parcels), j denotes 
alternatives, and k indicates the kth covariate for observation i. The SAR MNP model assumes 
that the latent utilities in location i associated with  land use types j can be expressed as a 
weighted sum of i’s neighbors’ latent utilities associated with the same land use type1. In other 
words, the NJ×1 vector of utilities ࢟∗ = ,′∗ଵ࢟) ,ଶ∗ᇱ࢟ … , ∗࢟ ே∗ᇱ) and each of the J×1 vectors࢟ ∗ଵݕ)= , … , ∗ݕ )′ can be framed as a continuous SAR specification (LeSage and Pace 2009), as 
follows: ࢟∗ = ߩ ෩ܹ ∗࢟ + ෨ܺࢼ +            ࢿ

                                                            
1 A total of (J+1) alternatives is considered with indices {݆ = 0, 1, … ,  where {j=0} is the base alternative for ,{ܬ
identification purposes. Thus, ݕ∗  is the difference between the jth alternative’s utility and that of the base alternative. 
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where ߩ  is the spatial autocorrelation coefficient. For dimension conformity, the NJ×KJ 

covariate matrix ෨ܺ = ൮ ଵܺܺଶ⋮ܺே൲, where ܺ = ൮ࢄ,ଵ ⋯ ⋯ ⋮ ,ଶࢄ ⋯ ⋮⋮ ⋱ ⋮⋯ ࢿ ,൲, andࢄ = ൮ࢿଵࢿଶ⋮ࢿே൲, with 

ࢿ = ,ଵߝ) … ,  – )′. Note that in the absence of generic variables (which vary by alternativeߝ
unlike, say, parcel size and distance to the nearest highway), the K×1 vector ࢄ, will be identical 
across alternatives, for each observation i. One may consider using different numbers of 
covariates for each alternative by supplying an ࢄ, vector of variable length, leading to a nearly 
identical model, still estimable using the Bayesian procedure laid out in this section (but with 
non-conjugate posterior, making parameter draws more challenging). For identification purposes, 
the KJ ×1 vector	ࢼ contains the stacked, alternative-specific parameter vectors: ࢼ ଵᇱࢼ)= , ଶᇱࢼ , … , ᇱࢼ )′. The NJ×NJ  weight matrix is denoted as ෩ܹ =  , where W is a typical N×Nܫ⨂ܹ
row-standardized weight matrix (with zero-valued diagonal elements, by construction2), ܫ is a 
J×J identity matrix, and the symbol “⨂” indicates a Kronecker product (where each element in 
the first matrix is multiplied by the entire second matrix, one at a time). The covariance matrix 

for ࢿ is ܫே ⨂Σ = Σ 0 00 ⋱ 00 0 Σ൩ , where the J×J matrix Σ indicates the cross-alternative covariance 

matrix for error terms across alternatives. Since spatial autocorrelation already exists across the ݕ∗  terms, this SAR MNP specification assumes independent and identical error terms (ࢿ)	over 
space, but not alternatives. The closest applications in published work are Wang et al.’s (2011) 
dynamic spatial MNP and Chakir and Parent’s (2009) paper, which also assume that the cross-
alternative covariance structure is identical over space/across observational units. This paper 
differs from the other spatial MNP models by allowing for spatially autocorrelated latent 
responses.  This paper’s Appendix provides an alternative representation of this model, which 
may yield computational advantages by employing the matrix-variate distribution (Kadiyala and 
Karlsson 1997). 

For a case with 4 alternatives (with one alternative serving as the base, so J = 3),	Σ is a 3 by 3 

covariance matrix: ߪଵଶ ଵଶߪ ଵଶߪଵଷߪ ଶଶߪ ଵଷߪଶଷߪ ଶଷߪ ଷଶߪ .  The observed response values (ݕ) are as follows: 

∗ݕ = j, ifݕ = max	[ݕ,ଵ∗ , ∗,ଶݕ , … , ∗,ݕ ] > 0, and ݕ =	0 if ݕ∗ < 0 for all j =1,…, J. 

 

The latent utility ࢟∗ follows a truncated NJ-dimension multivariate normal distribution:  ࢟∗~	ܸܰܯ ቂ൫ܫே − ߩ ෩ܹ ൯ିଵ ෨ܺࢼ, ൫ܫே − ߩ ෩ܹ ൯ିଵ(ܫே ⊗ Σ)൫ܫே − ߩ ෩ܹ ൯ି்ቃ. Its probability density 

                                                            
ܦ 2 = ଵௗೕ if ݀ < ݀୫ୟ୶, and	ܦ = 0	if	݀ ≥ ݀୫ୟ୶,where	݀୫ୟ୶ is the threshold distance associated with the qth-

nearest neighbor to geographic unit i). For the J=2 case, the ith and (i+1)th row of ෩ܹ  is expressed as: 	 ෩ܹ =൬ ܹଵ 0 ܹଶ 0 … ܹ 00 ܹଵ 0 ܹଶ … 0 ܹ൰. 
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function ࢟)∗	|ߩ, ,ࢼ Σ)	is	proportional	to	|ିܣଵ(ܫே ⊗ Σ)்ିܣ|ିభమ ∙ exp	ቄ− ଵଶ ∗࢟) − ଵିܣ ෨ܺࢼ)′ ேܫ)ଵିܣ]∙ ⨂Σ)்ିܣ]ିଵ(࢟∗ − ଵିܣ ෨ܺࢼ)ቅ	, where ܣ = ൫ܫே − ߩ ෩ܹ ൯ = ேܫ) − – , andܫ⨂(ܹߩ ܶ 
denotes the transpose of the inverse (or the inverse of the transpose, thanks to their operational 
interchangeability). This density expression can be simplified, thanks to associated with matrix 
determinants and Kronecker products: ࢟)∗	|ߩ, ,ࢼ Σ) ∝ ேܫ| − |ܹߩ ∙ |Σ|ିே/ଶ ∙ exp	ቄ− ଵଶ (A࢟∗ − ෨ܺࢼ)′ ∙ ேܫ) ⊗ Σିଵ) ∙ (A࢟∗ − ෨ܺࢼ)ቅ. 
Truncation occurs because outcomes (ݕ) dictate the ranges of values that ݕ∗ ’s can take. For 
example, ݕ = 0 leads to the restriction ݕ∗ < 0 for j = 1,…, J, which can be expressed as a series 

of linear constraints: ቈ−∞−∞−∞ < ܦ ∙ ∗࢟ = 1 0 00 1 00 0 1൩ ∙ ∗࢟ < 000൩. Likewise, the linear constraints 

when ݕ = 1, 2, or 3 are expressed as: 

000൩ < ܦ ∙ ∗࢟ = 1 −1 01 0 −11 0 0 ൩ ∙ ∗࢟ < +∞+∞+∞൩ if ݕ = 1 

000൩ < ܦ ∙ ∗࢟ = −1 1 00 1 −10 1 0 ൩ ∙ ∗࢟ < +∞+∞+∞൩ if ݕ = 2 

000൩ < ܦ ∙ ∗࢟ = −1 0 10 −1 10 0 1൩ ∙ ∗࢟ < +∞+∞+∞൩ if ݕ = 3     (1) 

These 3 by 3 matrices, ܦ, will be used to draw truncated multivariate normal values in the 
Markov Chain Monte Carlo (MCMC) series. Such ideas are also discussed in LeSage and Pace’s 
(2009) book (which proposed the SAR MNP specification used here), but with modifications. 

Since it is unobservable, the latent response ࢟∗ is treated as an unknown parameter using data 
augmentation techniques, during the estimation process (as commonly done in Bayesian model 
settings: Carlin and Louis [2009] and McCulloch et al. [2000]). 

BAYESIAN MCMC ESTIMATION  

Using Bayes’ classic theorem, the posterior distribution of unknown parameters is proportional 
to the response values’ likelihood (or the data function) times any prior assumptions or 
understanding an analyst may have for all unknowns. Notationally, (ݕ|ࣂ) = (௬|ࣂ)∙గ(ࣂ)(௬) (ࣂ|ݕ)∝ ∙  indicating prior (ࣂ)ߨ encompassing all unknown model parameters and ࣂ with ,(ࣂ)ߨ
distributions or prior knowledge for the unknown parameters (Carlin and Louis 2009). In spatial 
settings for discrete response, ࣂ tends to be of high dimension with a posterior distribution 
whose form is unknown.  

MCMC sampling is commonly used to estimate such models, by recasting the high-order 
integration into a series of simpler – and sometimes known – conditional distributions. This 
section discusses the techniques used to draw the unknown parameters	ߩ ,ࢼ, Σ, and ࢟∗.  
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If the latent responses were observable. the model’s likelihood function could be written as ࢟)∗	|ߩ, ,ࢼ Σ) ∝ ேܫ| − |ܹߩ ∙ |Σ|ିே/ଶ ∙ exp	ቄ− ଵଶ (A࢟∗ − ෨ܺࢼ)′ ∙ ேܫ) ⊗ Σିଵ) ∙ (A࢟∗ − ෨ܺࢼ)ቅ.  And 
the posterior distribution would then be: ߩ), ,ࢼ Σ|࢟∗	) ∝ ,ߩ|	∗࢟) ,ࢼ Σ) ∙ (ߩ)ߨ ∙ π(ࢼ) ∙ π(Σ).  
Estimation can be conducted using Gibbs sampling, which utilizes conditional posterior 
distributions (e.g., ࢟|ߩ)∗, ,ࢼ Σ) and ࢟|ࢼ)∗, ,ߩ Σ)), rather than trying to compute the posteriors 
(e.g., (࢟|ߩ∗	), (࢟|ࢼ∗	), (Σ|࢟∗	)), which involve non-closed-form integrals.  The following 
sub-sections present all conditional distributions used here. 

Conditional Distribution of β  

Assuming a normal prior for β (i.e., ࢼ)ܸܰܯ~ࢼ, ܶ)),  ߩ|ࢼ), ,∗࢟ Σ) ∝ ,ࢼ|∗࢟) ,ߩ Σ) ∙  (ࢼ)ߨ
                      ∝ ଵିܣ]ܸܰܯ ෨ܺࢼ, ܫ)ଵିܣ ⊗ Σ)்ିܣ	] ∙ ,ࢼ)ܸܰܯ ܶ) 
                      ∝ ,∗ܥ]ܸܰܯ ܶ∗]        (2) 

where ܥ∗ = ܶ∗[ ܶିଵࢼ + ෨ܺᇱ(ܫ ⊗ Σିଵ)࢟′ܣ∗] and ܶ∗ = [ ෨ܺ ᇱ(ܫ ⊗ Σିଵ) ෨ܺ + ܶିଵ]ିଵ. 

Using a mathematical trick called “completing the square”, the conditional distribution is shown 
to be conjugate (i.e., the conditional distribution and its prior come from the same distribution 
type, with updated parameters). Here diffuse or uninformative priors are used for all parameters 
to avoid biasing estimation and inference by placing too much prior “knowledge” on parameters: ࢼ =  and ܶ = ܽ ∙  ܫ  with ܽ represented by a very large real number (such as 10,000) andܫ
serving as a K by K identity matrix. 

Conditional Distribution of  ࢼ|ߩ) ࣋, ,∗࢟ Σ) ∝ ,ࢼ|∗࢟) ,ߩ Σ) ∙  (ߩ)ߨ
                      ∝ |ܣ| ∙ exp	ቄ− ଵଶ ൫࢟∗ − ଵିܣ ෨ܺࢼ൯ᇱ ∙ Aᇱ(ܫே ⊗ Σିଵ)ܣ ∙ ൫࢟∗ − ଵିܣ ෨ܺࢼ൯ቅ ∙ ܷ(0, 1) 
           ∝ |ܣ| ∙ exp	ቄ− ଵଶ ൫࢟∗ − ଵିܣ ෨ܺࢼ൯ᇱ ∙ Aᇱ(ܫே ⊗ Σିଵ)ܣ ∙ ൫࢟∗ − ଵିܣ ෨ܺࢼ൯ቅ  (3) 

Stationarity of the response-generating process (over space) requires that ଵఠౣ < ߩ < ଵఠౣ౮ 
(Elhorst 2003), where ߱୫୧୬ and ߱୫ୟ୶ denote W’s minimum and maximum eigenvalues. While 
the maximum eigenvalue of a row-standardized W is guaranteed to be one (Elhorst 2003), 
empirical work also tends to restrict ρ’s lower bound, via the range [-1, 1].  In reality, no general 
rule yet defines a lower bound, but negative spatial autocorrelation tends to be rare, and this is 
especially true in terms of land development (where like land uses tend to cluster across parcels).  
Thus, a standard uniform prior is used here for ρ, with range [0, 1]. 

Since ࢼ|ߩ), ,∗࢟ Σ) does not follow a known distribution for ready draws, Gibbs sampling cannot 
be used. Instead, the Metropolis-Hastings (M-H) algorithm was first used here, to draw ߩ, as 
suggested by LeSage and Pace (2009). Since the M-H algorithm with a uniform or beta prior for ߩ behaved poorly, with no sign of convergence, a relatively new technique, called generalized 
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direct sampling (GDS), was used (Braun and Damien 2011). The GDS method generates 
independent samples from a target posterior distribution in parallel, whereas Gibbs and M-H 
strategies rely on sequential sampling. The GDS procedure for drawing ߩvalues largely follows 
steps suggested by Braun and Damien (2011), with some minor adaptations. It can be described 
as follows: 

1. Find the mode,	ߩ∗, of log	[ࢼ|ߩ), ,∗࢟ Σ)] and compute the (unnormalized) logarithm of its 
posterior density value, ܿ = ln	[ࢼ|∗ߩ), ,∗࢟ Σ)]. Optimization of this constrained density (to 
find the mode) can be conducted using MATLAB’s nonlinear-optimization-with-bounds 
routine (fmincon). Supplying the first derivative (gradient) and second derivative (Hessian) of 
the Lagrangian (to reflect the bounds on ρ) facilitates MATLAB’s search. For problems 
involving only bounds or linear constraints, the Lagrangian’s and original objective 
function’s Hessian are the same: Gradient = ܬ ⋅ Trace[(ܫே − [ଵܹି(ܹߩ − ൫ ෩ܹ ேܫ)∗൯ᇱݕ ⊗ Σିଵ)ൣ൫ܫே − ߩ ෩ܹ ൯ݕ∗ − ෨ܺߚ൧ 

       Hessian = ܬ ⋅ Trace[(ܫே − ேܫ)ଵܹି(ܹߩ − [ଵܹି(ܹߩ − ൫ ෩ܹ ேܫ)∗൯ᇱݕ ⊗ Σିଵ)( ෩ܹ  (∗ݕ
2. Define a truncated normal distribution,	݃(ߩ) with the same mode. ߩ∗, and let ݇ = (∗ߩ)݃ =Normal	density	ܰ(ߩ∗|mean = ,∗ߩ var = ݏ ∙ Hessianିଵ). Here, “s” is a scaling factor to 

fine-tune the proposal distribution to ensure regular acceptance of the proposed ߩ valuess, in 
step 6 of this GDS process. 

3. Sample ߩଵ, ,ଶߩ … , [(ߩ)Φ]Compute log .(ߩ)݃ ெ independently fromߩ = log[ߩ))|ࢼ, ,∗࢟ Σ)] − log(ܿ) + log(݇) − log[݃(ߩ)] for each of the 
proposed draws. If log[Φ(ߩ)] > 0 for any of these draws, repeat step 2 and choose another 
proposal distribution for which  log[Φ(ߩ)] ≤ 0 holds. 

4. Let Z be the minimum log[Φ(ߩ)] from the proposal draws. Evaluate ݍெ( ே) = ଵெ∑ 1 ቂ୪୭	((ఘ))|| + 1 > ேቃ , i=1, …N, where ݍெ is a monotonic function of i (by 
construction) with values ranging between 0 (when i = 1) and 1 (when i = N).  

5. Sample v from beta(i+1, N-i+1), choosing i with probability proportional to ݍெ(݅/ܰ). 
Compute log	(ݑ) = ݒ)|ܼ| − 1). 

6. Draw ߩ from ݃(ߩ) until log[Φ(ߩ)] > log	(ݑ). Accept the proposed ߩ as a single draw from 
the target posterior distribution ࢼ|ߩ), ,∗࢟ Σ).  

Conditional Distribution of   

Sampling the cross-alternative covariance matrix, Σ,  is by no means a trivial task. From a strictly 
econometric viewpoint, this quantity is not identified. Thus, tone must impose some restrictions 
for identification to hold. Usually, the first element on the diagonal line of Σ is set to one so that 
the other parameters can be identified (McCulloch et al. 2000, Koop 2003). Using procedures 
proposed by McCulloch et al. (2000) and summarized in Koop (2003), here the covariance 
matrix is first partitioned, as follows: Σ = 1 ߟ′ߟ Φ +  ൨′ߟߟ
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For identification purposes, the first-row and first-column element is set to one, ߝଵ~	ܰ(0,1), and (ݒ = ,ଶߝ . . , ߟ)ܰ	~ଵߝ|(ߝ ∙ ,ଵߝ Φ). Usually a multivariate normal prior is assigned for ߟ and a 
Wishart prior3 for Φିଵ, which are mathematically expressed as:  (ߟ)ߨ	ߟ)ܰ~, ܸ) and ߨ(Φିଵ)	~ܹ(,Φିଵ). McCulloch et al. (2000) showed how the full conditionals for ߟ  and Φିଵ are conjugate:  ݕ|ߟ)∗, Φ, β)	~	ߤ)ܸܰܯఎ, Ωఎ) 
where Ωఎ = ൫ ܸିଵ + Φିଵ ∑ ଵଶேୀଵߝ ൯ିଵ and ߤఎ = Ωఎ൫ ܸିଵߟ + Φିଵ ∑ ଵேୀଵߝݒ ൯.  
And (Φିଵ|ݕ∗, ,	ߟ β)	~	ܹ൫ଵ,Φଵିଵ൯ 
where ଵ = ܰ +  and Φଵିଵ = [Φ + ∑ ݒ) − ேୀଵ(ߟଵߝ ݒ) −  .ଵି[′(ߟଵߝ

Koop (2003) reported some empirical studies where the Gibbs sampler worked quite slowly for 
MNP models. Imai and Dyk (2005) proposed a sampler using marginal data augmentation, 
providing better convergence and efficiency. Dyk and Meng (2001) also provide some more 
efficient algorithms. This portion of the SAR MNP code is provided by LeSage and Pace (2009).  

Conditional Distribution of  ࢟∗ 
The latent variable ݕ∗ follows a truncated multivariate normal distribution because ݕ∗  reflects 
the actual outcomes (ݕ), as shown in Equation 1. In this  SAR MNP case, once can draw 
samples from ݕ∗~	ߤ]ܸܰܯ, Ω], with ߤ = ൫ܫே − ߩ ෩ܹ ൯ିଵ ෨ܺߚ and Ω = ൫ܫே − ߩ ෩ܹ ൯ିଵ(ܫே ⊗Σ)൫ܫே − ߩ ෩ܹ ൯ି், subject to ܽ < ∗ݕܦ < ܾ, where ܦ =  is an NJ × NJ block diagonal (ܦ)݃ܽ݅݀
matrix to ensure that the linearly transformed ݕ∗ meets  required constraints and ܦ is a J × J 
matrix for each observation unit/site (as shown in Equation 1). 

Geweke (1991) proposed an m-step approach to draw sequentially from the transformed MVN 
distribution ܼ	~	ܰ(0, ܶ) subject to the constraint ߙ ≤ ܼ ≤ ܶ where ,ߚ = ߙ ,′ܦΩܦ = ܽ − ߚ  ,ߤܦ = ܾ − ∗ݕ and ,ߤܦ = ߤ +  ଵܼ. This approach is based on the fact that each element of Z isିܦ
univariate truncated normal conditional on Z’s other elements. In other words, each element ݖ 
can be expressed as a weighted average of the other elements ିݖ plus a noise term, as follows: ݖ = ∑ ܿݖேஷ + ℎ߳, where ܿ = −( ܶ)ିଵ ܶ ,	ℎଶ = ( ܶ)ିଵ, ߳~ܰ(0, 1) subject to the 

constraint 
ቀఈି∑ ௭ಿಯ ቁ < ߳ < ቀఉି∑ ௭ಿಯ ቁ , with ܶ and ܶ indicating the iith and iqth 

elements of T (where ݍ ≠ ݅). 
Thus, each pass (out of a total of m passes) draws one element of Z each time, conditional on the 
other ିݖ’s, until the series has sampled all NJ ݖ’s. The algorithm terminates after the mth step 
where m is predetermined (by the analyst) and the final pass of Z values are used to impute ݕ∗ 
                                                            
3 The Wishart distribution is any of a family of probability distributions defined over symmetric and nonnegative-
definite matrix-valued random variables (i.e., “random matrices”). It is particularly valued in Bayesian inferences, 
since it leads to a conjugate prior for the inverse of the covariance matrix of a multivariate normal distribution 
(Robert and Casella 2004). 
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based on the equality ݕ∗ = ߤ +  ଵܼ. Geweke (1991) found that relatively small m values canିܦ
result in fairly good estimates, so m = 10 was used here. 

DATA SETS 

The land use maps of Austin and its extraterritorial jurisdiction (ETJ) in 2000 and 2006 are used 
here for a demonstration of the SAR MNP model. There are 10,169 undeveloped parcels, out of 
a total of 242,631 parcels, in 2000. Among these undeveloped parcels, 7,219 experienced no 
physical changes over the 6-year period so can be traced to year 2006’s parcels by a common ID 
field (as used by the City of Austin). Land use types were determined based on the City’s land 
use map, for the entire city. To ease computational burdens, a 1,500-parcel sample was randomly 
selected for analysis, across the city (as illustrated in Figure 1). 

 

 
Figure 1. Austin and its ETJ Parcels in 2000 and Selected Sample 

 
Water covered parcels, parks and green belts are excluded from analysis while golf courses and 
camp grounds are tagged as commercial uses. Ninety agricultural land parcels sprung up during 
the six-year period, with the majority located in the northeast side of Austin. Since the purpose of 
this paper is to study urban land development and the sample size for agricultural land is severely 
limited, this land category was also removed from the sample.  

lu2000_sample1500

landuse_2000
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Seven land use types can be generalized from the City’s land use map codes: undeveloped, 
residential, commercial, civic, office, industrial, and transportation (including railroad facilities, 
utilities, and any parking lots labeled as the parcels’ predominant use). Given the scarcity of 
some use types, further grouping was conducted, resulting in four general land use types: 
undeveloped, residential, commercial/civic, office/industrial/transportation, with Table 1 
summarizing their 2006 status.  

Table 1 Development Status of 2000’s Vacant Parcels in 2006. 

 Original Sample 
Selected Region 

Sample 

Land Use (LU) 
LU 

Code 
Counts Shares Counts Shares 

Undeveloped 0 3,909 0.541 805 0.537 
Residential 1 2,961 0.410 614 0.409 

Commercial/Civic 2 169 0.023 41 0.027 
Office/Industry 3 180 0.025 40 0.027 

Totals   7,219 1 1,500 1 
 
Explanatory variables (covariates) include parcel area (measured in square feet), parcel 
perimeter-to-area ratio (in ft-1), network distances to Austin’s Central Business District (in 
miles), Euclidean distances to the nearest minor arterial, major arterial, and freeway, along with 
soil slope (represented by percent rise, or vertical rise per one unit increase in horizontal length), 
and Census block-group-level population density in year 2000 (measured in persons per acre). 
Table 2 provides summary statistics for these covariates. Network distances were computed 
using TransCAD’s shortest path function for each parcel’s centroid. Austin’s 2005 network file 
(from the Capital Area Metropolitan Planning Organization) was used. The rest of the variables 
were computed using ArcGIS and MATLAB, including Euclidean distances between all parcel 
centroids; these inter-parcel distances allowed for the construction of an inverse-distance weight 
matrix (W), reflecting the 50 nearest neighbors of each parcel (to provide some sparsity in the 
1500x1500 weight matrix). 
 

Table 2. Summary Statistics of Covariates of Parcels in Selected Neighborhood. 

 
Area PeriArea DistCBD DistMin DistMaj DistFwy Slope 

PopDens 
2000 

Min 935.8 0.001 7.000 0.016 0.012 0.030 0.000 0.107 
Max 9.817E+06 0.245 14.060 4.697 0.906 1.824 16.30 49.98 
Mean 9.729E+04 0.033 10.800 2.294 0.227 0.603 2.652 5.645 

Std Dev 4.754E+05 0.020 1.779 1.003 0.166 0.434 2.010 5.597 
Units Sq. Feet 1/Feet Miles Miles Miles Miles Percent Pop/Acre 

 
A distance-based weight matrix was used to describe proximity between parcels. For each parcel, 
the first 50 nearest neighbors were identified and their inverse Euclidean distances were 
computed as the cell values in the matrix. Parcels that lie outside the 50-nearest-neighbor range 
were assigned zero weights (but they still can have effects on those parcels, thanks to shared 
neighbors, or neighbors of neighbors, etc. The diagonal elements take zero values by 
construction, with the final weight matrix row-standardized to facilitate estimation. The 50-
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nearest-neighbor distances in this 1,500-parcel sample range from 1.51 miles to 6.43 miles, with 
an average “neighborhood” size of about 3.27 miles (and a standard deviation of 1.12 miles).  
 
RESULTS AND ANALYSIS  

Parameter estimates were obtained using the MCMC Bayesian estimation scheme, with the 
series of 3,000 draws shown in Figure 2 and posterior densities shown in Figure 3.  The first 
1,000 draws were treated as burn-in, a period when Bayesian learning is underway and MCMC 
chains evolve to a convergent series of distributions. Parameter point estimates are the average of 
the last 2,000 draws, and the draws provide the standard errors, with results shown in Table 3. 
Parcel size is estimated to be negatively correlated with the utilities of residential and 
commercial/civic development, while exerting a positive impact on a change to office/industry 
uses (from an undeveloped state) in a statistically significant way. The Perimeter-to-area ratio 
(PeriArea) characterizes parcel shape irregularity; the larger this value, the less regular (i.e., less 
square or circular) a parcel’s shape looks.4 The PeriArea variable exhibits a strong negative 
association with residential and commercial/civic development, and a positive association with 
office/industry uses. Thus, it appears that residential and commercial/civic development tends to 
favor more regularly shaped (and smaller, as noted above) parcels, which may be related to 
parcel conversion costs and aesthetics. In contrast, office/industry users may be more adaptable 
and place less emphasis on parcel configuration.   
 
A parcel’s (network) distance to Austin’s CBD is estimated to affect land development outcomes 
in a statistically significant way. Estimates of marginal effects suggest that longer distances 
increase the likelihood of residential development, while reducing those of commercial/civic and 
office/industry uses, as expected. Having controlled for DistCBD (and DistFwy), distances to a 
parcel’s minor and major arterial roads are estimated to increase commercial/civic and 
office/industry development likelihood, perhaps because such developments are more common 
in less densely developed locations (as proxied by fewer arterials).  Distance to the nearest 
freeway facility (DistFwy) is estimated to have a statistically significant – and positive – effect 
on the likelihood of residential development, suggesting that residential developers avoid 
proximity to freeways, ceteris paribus.  Freeway distance exerts a strong negative effect on non-
residential uses, after controlling for other distance effects (as described above), along with 
parcel size, shape, and slope. 
 
Soil slope may be regarded as a proxy measure for construction costs (e.g., the steeper the slope, 
the more costly is land development). Here, it is estimated to be negatively associated with 
residential use but positively associated with commercial/civic and office/industry uses, though 
its effect on commercial/civic use is not significant (perhaps due to some steeper terrains offering 
view benefits). Interestingly, population density is estimated to have no statistically significant 
effects on commercial/civic and office/industry development likelihoods, though its negative 
impact on residential development is quite noticeable. Perhaps a block-group-level density 
variable is too coarse (and spatially arbitrary) for a parcel-level model; as an improvement, 
buffer-area densities (with annuli of ¼-mile and ½-mile, for example) could be built around each 
parcel, for future models of this type. 

                                                            
4 For example, longer parcels (with a high aspect ratio) and those with an “L” shape will have larger PeriArea 
values. 
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The SAR MNP model also generates estimates of cross-alternative correlations. For example, a 
parcel’s residential use potential or (latent) “utility” is estimated to exhibit positive correlation 
with that  of commercial/civic, but negative correlation with that of office/industry uses, while 
the latter two land uses’ utilities (or latent attractiveness or profitability) exhibit some negative 
correlation. However, none of the cross-alternative covariance estimates is statistically 
significant, which may be due to a small and rather unbalanced sample, imperfect grouping of 
alternatives, and/or the latent nature of the model (and its underlying utility terms).  
 
The spatial autocorrelation coefficient is estimated to be +0.706, with strong statistical 
significance, demonstrating the likely clustering of urban land development in the selected 
region. One expects this, since isolated developments are not as meaningful to their buyers/users 
as are coordinated developments, with greater neighborhood interaction, due to lowered travel 
costs and higher agglomeration benefits 
 
Marginal effects are computed as the averaged changes in probabilities (by land use types) per 
one standard deviation (SD) increase in one of the covariates, holding everything else constant. 
The SAR MNP model allows one to analyze direct and indirect spatial effects separately, as 
opposed to the models developed by Chakir and Parent (2009) and Wang et al. (2011), which 
yield marginal effects indistinguishable from those of the standard MNP model (since they 
assume that spatial autocorrelation occurs only across the error terms, rather than across latent 
response terms). Unlike LeSage and Pace’s (2009) bivariate spatial example, the SAR MNP 
model’s marginal effects (for a particular land use type k and covariate p) are represented as a 
series of ܭ ∙ ܲ  n x n matrices (where n is the total number of observations/locations, or 1,500 in 
this paper), with the ijth cell value indicating changes in land use k’s probability at location i 
following a one-SD increase in the pth covariate’s value at location j (K is the total number of 
land use alternatives and P the total number of covariates minus the constant term). Unlike the 
bivariate (probit) spatial model, no closed-form expression exist for the first derivative of ݕ) = ݇) with respect to ݔ, so the difference in probabilities (by land use types) is calculated 
as the departure of the new probabilities (per one SD increase in the covariates) from the base-
line probabilities computed at the original covariates values. The averaged direct effects, shown 
in Table 4, are calculated as the average of the diagonal elements of this square matrix, while the 
averaged indirect effects result from averaging off-diagonal elements. 
 
Here, a one-SD increase in the Area (parcel size) covariate of all parcel-level values is estimated 
to decrease the residential outcome probability (averaged across all sample records’ predictions) 
by 0.014 and the average commercial/civic use outcome probability by 0.001, while raising the 
undeveloped and office/industry probabilities. Unlike most other covariates, parcel Area is 
estimated to exert more influence over a parcel’s land use outcomes than this covariate’s 
spillover (indirect) effects on its neighbors. In other words, home developers favor smaller 
parcels, and appear to avoid proximity to larger parcels, since larger parcels are more likely to 
become industrial and office uses, from which many home owners presumably desire spatial 
buffers. Both the Area and the PeriArea (ratio of parcel perimeter to area) variable show similar 
patterns when comparing their direct and indirect effects, suggesting that larger and more 
irregular-looking parcels are less attractive for residential and commercial/civic developments. 
Table 4 values show how a one-SD increase in the DistCBD variable lowers the model-predicted 
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probability of commercial/civic and office/industry uses for a parcel’s own development. 
Nevertheless, this variable’s spillover effect on office/industry use is estimated to be positive, 
suggesting that a one SD increase in DistCBD may be associated with office/industry 
development among neighbors (though dampening a parcel’s own probability of such 
development). Such competing effects may emerge from the fact that large industrial land 
parcels are unlikely to locate near one another (a repelling pattern), in contrast to a cooperative 
(and clustering) pattern more evident among residential and commercial/civic parcel 
developments. While direct and indirect effects present a local picture of certain land 
development mechanisms (e.g., cooperative versus competitive behaviors within a 
neighborhood), one should use the total average (computed as the sum of the two separate 
effects) to compare the overall marginal effect of covariates (across the n=1,500 sample). For 
example, a one-SD increase in the DistMin variable across all parcels in the sampled data set  is 
estimated to raise the sample-average predicted office/industry and residential outcome 
probabilities by 0.01 and 0.22, respectively, while decreasing commercial/civic likelihood by 
0.0408. A one SD increase in DistMaj is estimated to lower the sample average residential and 
commercial/civic outcome probabilities by 0.10 and 0.003, while increasing office/industry 
outcome by 0.03. In contrast, a one-SD increase in the DistFwy variable predicts 0.2 and 0.09 
increases in the samples’ (overall/average) residential and commercial/civic probabilities, and a -
0.12 decrease in office/industry likelihood. 
 
Two additional observations can be made of the marginal effects table values. The first is the 
oscillating pattern found for the direct and indirect effects of some covariates for a particular use 
type (e.g., a negative direct effect accompanied by a positive indirect effect of DistCBD on 
office/industry development, or a positive direct effect accompanied by a negative indirect effect 
of DistMaj on residential development). Such patterns suggest locally “competitive” or 
“restrictive” behaviors among some land use types. In contrast, a “cooperative” pattern exists in 
neighborhoods where the direct and indirect effects are estimated to have the same sign. These 
differ from the more commonly used terms of “dispersion” and “clustering” (see, e.g., Anselin 
2006, LeSage and Pace 2009), which reflect the sign of the model’s spatial autocorrelation 
coefficient, which provides a measure of overall spatial dependence for the region under study. 
The second observation is that indirect effects dominate direct effects (in terms of absolute 
values) for half of the covariates considered here. Covariates such as population density, area 
size, and slope tend to yield indirect effects that are less than the corresponding direct effects.   
 
Model Comparisons 
This section compares parameter inference and goodness-of-fit statistics across the SAR MNP 
model (estimated above), an independent SAR MNP model (in which the covariance matrix is 
represented as an identity matrix), and their corresponding aspatial models (an independent MNP 
model that assumes the latent errors associated with each choice are i.i.d standard normal, and a 
standard MNP model – both estimated using STATA software, and requiring 28 and 32 minutes 
for estimation, respectively). Using the same n=1,500 land development data set, Tables 5 and 7 
summarize results of these four models. Deviance information criteria (DIC) values are used to 
compare the two spatial models, as estimated using Bayesian methods, while the likelihood ratio 
index (LRI) statistic can be used to compare all four model fits.  
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The SAR MNP and independent SAR MNP models provide higher levels of significance for the 
covariates while yielding higher (as expected) mean and median log-likelihood values (as 
compared with the log-likelihood values at convergence for the two aspatial models). Likelihood 
ratio tests suggest that the SAR MNP model yields a (statistically) significantly better fit than the 
independent SAR MNP model (LRI = -2×(-2461.62+2451.88)=19.486 > χ2(6)=12.59), which is 
consistent with DIC value comparisons (since lower DIC values indicated better fit for Bayesian 
models). Prediction results for a hold-out sample of 3,000 parcels are summarized in Table 8, 
along with pseudo-R2 values. The SAR MNP model yields the highest correct prediction rates, 
followed by the independent SAR MNP, MNP, and independent MNP models. However, 
improved parameter inference and fit for the two spatial models come at the expense of markedly 
longer run times, as shown in Tables 3 and 5.  
 
CONCLUSION 

This paper builds upon the spatial autoregressive MNP specification proposed by LeSage and 
Pace (2009) and specifies a four-alternative (four-category) SAR MNP model, to account for 
both spatial clustering and cross-alternative correlations. Two issues have plagued successful 
estimation and application of such models. One relates to the difficulty of sampling the spatial 
autocorrelation coefficient, ߩ. Conventional M-H algorithms were initially tested here, using a 
random-walk proposal, followed by more sophisticated alternatives (such as the beta proposal, 
whose distribution parameters are determined using the mode and Hessian of the maximum log 
posterior of ࢼ|ߩ), ,∗࢟ Σ)). Test runs showed how these M-H algorithms failed to converge, as 
reflected in ߩ’s trace plot oscillations. Generalized direct sampling or GDS (Braun and Damien 
2011) was then used to sample ߩ, relying on independent draws from a judiciously selected 
proposal distribution that shares the same mode with the target posterior. GDS offers some 
computational advantages -- thanks to parallel programming, and it avoids convergence concerns 
that many associate with Bayesian MCMC methods (thanks to independent samples from the 
proposal distribution). Codes of the GDS sampling method are available upon request. 
 
A more fundamental question relates to whether the resulting posterior is proper. As Nobile 
(2000) noted, improper posteriors (or posteriors that are not bounded in the real domain) may 
result even when the conditional posterior distributions are well defined, a problem exacerbated 
by the fact that the trace plots of the Gibbs sampling output may not be able to hint at posterior 
impropriety (see Hobert and Casella [1996] for more details). Even though the estimation results 
seem successful, a theoretical proof of the propriety of the joint posterior would be helpful, to 
further validate the SAR MNP specification.  
 
This work’s SAR MNP model was applied to a sample of 1,500 parcels randomly selected across 
Austin, Texas. Bayesian MCMC sampling produced a series of 3,000 draws of slope parameters, 
covariance terms, and the spatial autocorrelation coefficient. The perimeter-over-area (PeriArea) 
variable was found to exhibit a strong negative association with Residential and 
Commercial/Civic development (suggesting that oddly shaped parcels are less likely for such 
developments), and a statistically significant positive association with Office/Industry and 
Undeveloped uses. Longer distances to CBD were estimated to increase the likelihood of all 
three types of land development. And, ceteris paribus, Euclidean distances to a parcel’s closest 
minor and major arterial roads were shown to increase commercial and industrial development 
probabilities, perhaps because such developments are more common in less densely developed 
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locations (as reflected by fewer arterials). The nearest-freeway’s distance was estimated to have 
a strong positive effect on the likelihood of residential development (suggesting that, ceteris 
paribus, residential developers avoid proximity to freeways), while exerting a strong negative 
effect on non-residential uses, after controlling for other distance–based covariates, along with 
parcel size, shape, and slope. Steeper soil slopes are estimated to reduce the attractiveness of 
Residential uses while increasing the likelihood of Commercial/Civic and Office/Industry uses, 
and block-group-level population density has no statistically significant effects with the 
exception of a fairly strong negative effect on Residential development, ceteris paribus. A 
comparison of direct and indirect effects of covariate changes suggests that indirect effects 
generlaly outweigh direct effects among the covariates, with the exception of a parcel’s Area 
variables, which exert more influence over a parcel’s own land use outcomes than their spillover 
(indirect) effects on its neighbors. 
Another interesting observation relates to the oscillating pattern found for the direct and indirect 
effects of some covariates for a particular use type. This pattern indicates “competitive” or 
“restrictive” behaviors of some land use type, as opposed to a “cooperative” pattern or behavior 
for neighborhoods, where the direct and indirect effects are estimated to have the same sign. This 
differs from “dispersion” and “clustering” behaviors already prevalent in the spatial analysis 
literature (to describe an overall/regional spatial relationship). 
 
An inverse-distance weight matrix (W) was used here, for the 50 nearest neighbors of each 
parcel. As expected, clustering effects were estimated to be significant (with an average spatial 
autocorrelation coefficient of +0.706), and aspatial error correlations were positive across the 
commercial use types (and negative across residential and non-residential development types). 
The time-consuming nature of draws for larger data sets is an issue, along with imbalance in 
outcomes, common among land use data sets.  A more judicious way to select data points, to 
achieve tractability and better balance, would be useful, along with higher-speed sampling 
procedures. Nevertheless, this work was able to successfully navigate the sampling necessary for 
Bayesian estimation of an MNP model, while permitting spatial autocorrelation through spatially 
lagged latent utility terms. This style of a SAR MNP model significantly improves model fit, as 
compared to the aspatial and independent SAR MNP models (based on likelihood ratio tests and 
hold-out sample’s prediction results). Such specifications and estimation techniques hold 
promise for a variety of travel behavior and other choice-related, discrete-response data sets.  
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APPENDIX 

An alternative way to represent the SAR MNP model uses matrix-variate priors. Kadiyala and 
Karlsson (1997) provided the technicalities of the matrix-variate t and normal distributions, and 
these are used to guide the derivation of ߩ’s posterior for the SAR MNP model.  

If one writes the stacked latent response as ࢟∗ = ∗࢟) ′, ,∗ᇱ࢟ … , ∗࢟ ᇱ), with∗ࡶ࢟ = ∗ଵݕ) , … , ∗ேݕ )′, then ෨ܺ should take the form: ෨ܺ = ܺ ⋯ 0⋮ ⋱ ⋮0 ⋯ ܺ൩ = ܫ ⨂X, with the N×K covariate matrix X repeating 

itself across different alternatives (due to a lack of generic and/or alternative-specific variables). 

Similarly,	 ෩ܹ = ࢿ  ⨂ܹ andܫ = ൮ࢿଵࢿଶ⋮ࢿ൲, with ࢿ = ,ଵߝ) … ,   is assumed to follow aࢿ ,ே)′ . Hereߝ

ܰ(, Σ⨂  ࢼ .ே) distribution, since the correlated error terms of each observation are separateܫ
assumes the same form as shown in the body of this paper. This alternative representation offers 
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the possibility of utilizing the matrix-variate distribution, which may facilitate estimation of ρ’s 
posterior distribution, by integrating out the other unknown parameters. 

Given the SAR assumption, where ࢟∗ = ߩ ෩ܹ ∗࢟ + ෨ܺࢼ +  , the likelihood function follows aࢿ
matrix-variate distribution, with density function ࢟)∗|ߩ, ,ࢼ Σ) = /ଶ|Σ|ି/ଶexpି(ߨ2) ቄ− ଵଶ tr[Σିଵ(A࢟∗ − ∗࢟ᇱ(A(ࢼܺ − ܣ ቅ, where[(ࢼܺ = ୬ܫ  .ܹߩ−

Assuming a diffuse prior for Σ and ࢼ, such that ࢼ)ߨ, Σ) ∝ |Σ|ିࡶశ , the joint posterior can be 
written as follows: ߩ), ,ࢼ Σ|࢟∗) ∝ |Σ|ିାଵଶ |Σ|ିିଶ 	exp ൜−12 tr ቂΣିଵ൫A࢟∗ − −∗࢟൯ᇱ൫Aࢼܺ ൯ቃൠࢼܺ |Σ|ିଶexp ൜−12 tr ቂΣିଵ൫ߚ − ߚ൯ᇱܺ′ܺ൫ࢼ −  ൯ቃൠࢼ
Thus, the conditional posterior for ࢼ follows the matrix-variate normal distribution: ࢼ|ߩ), Σ, ܯ	~(∗࢟ ܰ൫ࢼ, Σ, (ܺ′ܺ)ିଵ൯. 
One advantage of assuming matrix-variate priors lies in the ease in integrating out ࢼ and Σ, and 
then obtaining ߩ’s marginal posterior: 

,ߩ) (∗࢟	|ࢼ ∝ ,ߩ) ,ࢼ Σ|࢟∗)݀Σ = ቚܵ + ൫ߚ − ߚ൯ᇱܺ′ܺ൫ࢼ − ܵ ൯ቚିమ, withࢼ = ൫A࢟∗ − ∗࢟൯ᇱ൫Aࢼܺ (∗࢟	|ߩ) .൯ࢼܺ− = ,ߩ) ࢼ݀(∗࢟|ࢼ ∝ 	 |ܵ|	–/ଶ when assuming ࢼ follows  matrix-variate t distribution. 

One may also consider using the griddy Gibbs sampling technique (LeSage and Pace 2009) to 
draw directly from the marginal posterior of ߩ, as shown above. 
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Figure 2a. Trace Plots of Parameter Estimates for SAR MNP. 
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Figure 2b. Trace Plots of Parameter Estimates for SAR MNP. 
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Figure 2c. Trace Plots of Parameter Estimates for SAR MNP. 
  



22 
 

 
Figure 3a. Posterior Densities of Parameter Draws 
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Figure 3b. Posterior Densities of Parameter Draws 
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Figure 3c. Posterior Densities of Parameter Draws 

 
 



25 
 

Table 3. Parameter Estimates of SAR MNP Model (sample size=1,500). 

  Residential t-Stat Commercial/civic t-Stat Office/Industry t-Stat 
Constant -0.328 -2.11 -0.472 -2.66 -0.934 -5.35 

Area/1000 -0.005 -6.50 -0.001 -1.99 0.001 3.17 

PeriArea 3.932 2.02 6.336 2.78 11.17 4.69 

DistCBD 0.043 3.39 -0.075 -3.32 -0.085 -2.93 

DistMIN -0.118 -2.70 0.297 3.87 0.163 1.61 

DistMAJ 0.584 4.44 0.348 1.52 0.090 0.39 

DistFWY 0.100 2.08 -0.204 -2.29 -0.114 -1.24 

Slope -0.022 -1.86 0.001 0.04 0.074 4.03 

Popd2000 -0.012 -2.25 -0.005 -0.81 0.000 0.08 

  Estimate t-Stat 
σ11 1.000 - 
σ12 0.004 0.02 

σ13 -0.015 -0.14 

σ22 1.012 5.63 

σ23 -0.018 -0.11 

σ33 1.015 7.03 

ρ 0.706 8.03 

DIC 5204.46 
Median 
LogLik 

-2451.88 

Mean 
LogLik 

-2571.23 

Run times 47.3 hrs 

# of draws=3000, burnin=1000 
Notes: DIC is a goodness-of-fit measure for Bayesian models and is computed as the sum of the effective 
number of parameters () and the expectation of deviance (ܦഥ), with  = ഥܦ − (ߠ)ܦ and (ߠ̅)ܦ =−2 log൫(ߠ|ݕ)൯ +  denotes the unknown parameters, y represents data, and C is a constant ߠ where ,ܥ
which cancels when comparing different Bayesian models. 
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Table 4. Marginal Effects of Parameter Estimates. 

  Avg. 
Effect Undeveloped Residential Comm/Civic Office/Industry 

Area/1000 
Direct -0.495 -0.014 -0.001 0.510 
Indirect -0.343 -0.007 -8.11E-07 0.350 

PeriArea 
Direct -0.100 -0.015 -0.005 0.120 
Indirect -0.142 -0.083 -0.007 0.232 

DistCBD 
Direct 0.018 0.034 -0.046 -0.006 
Indirect 0.012 0.025 -0.039 0.002 

DistMIN 
Direct -0.025 -0.001 0.020 6.01E-03 
Indirect -0.205 0.222 -0.028 0.011 

DistMAJ 
Direct -0.054 0.040 0.009 0.005 
Indirect 0.127 -0.136 -0.012 0.021 

DistFWY 
Direct 0.236 0.048 -0.257 -0.027 
Indirect -0.408 0.156 0.347 -0.095 

Slope 
Direct 0.211 -0.267 2.20E-03 0.054 
Indirect 0.014 -0.097 2.96E-03 0.080 

Popd2000 
Direct 0.168 -0.149 -0.058 0.039 
Indirect -0.036 -0.014 -0.001 0.051 

 

Table 5. Parameter Estimates of SAR MNP Model with Homoskedastic, Uncorrelated Error 
Terms. 

  Residential t-Stat Comm/Civic t-Stat Office/Industry t-Stat 
Constant -0.490 -3.30 -0.506 -2.71 -0.770 -4.44
Area/1000 -0.004 -5.62 -0.001 -1.51 0.001 3.15
PeriArea 5.657 3.12 7.470 3.27 10.705 4.69
DistCBD 0.046 3.67 -0.079 -3.53 -0.110 -3.85
DistMIN -0.149 -3.66 0.311 4.07 0.252 2.49
DistMAJ 0.546 4.20 0.502 2.33 -0.262 -1.10
DistFWY 0.132 2.78 -0.260 -2.90 -0.115 -1.20
Slope -0.018 -1.59 -0.005 -0.23 0.091 4.70
Popd2000 -0.011 -2.06 -0.003 -0.47 0.000 0.07
ρ 0.751 6.21         
DIC 5241.76         
Median LogLik  -2461.62      
Mean LogLik -2581.88         
Run times 35.2 hrs
# of draws=3000, burnin=1000 
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Table 6. Parameter Estimates of Standard MNP Model. 

Multinomial probit regression                                                                      Number of obs   =       1500
                                                  Wald chi2(24)   =     229.32

Log likelihood = -3074.31                                                                              Prob > chi2     =     0.0000
  Residential t-Stat Comm/Civic t-Stat Office/Industry t-Stat 
Constant -1.751 -6.21 -1.504 -1.57 -0.793 -2.60
Area/1000 -0.007 -3.04 -0.004 -0.65 0.001 1.61
PeriArea 3.547 1.07 4.329 1.18 -7.920 -0.53
DistCBD 0.214 8.16 0.158 1.02 -0.091 -0.55
DistMIN -0.471 -5.22 -0.361 -1.17 -0.620 -1.61
DistMAJ 0.920 3.37 0.198 2.12 -2.710 -1.62
DistFWY 0.287 2.30 -0.047 -1.07 -0.021 -2.10
Slope -0.031 -1.51 -0.014 -2.4 -0.081 -1.76
Popd2000 -0.015 -0.71 0.021 1.13 0.171 1.21
  Estimate t-Stat 

σ11 1 - 

σ12 1.219 1.52 

σ13 -0.637 -0.56 

σ22 1.237 0.50 

σ23 -0.822 -0.43 

σ33 1.293 0.08 
 

Table 7. Parameter Estimates of an Independent MNP Model. 

Independent Multinomial probit regression                                                  Number of obs   =       1500
                                                  Wald chi2(24)   =     194.59

Log likelihood = -3079.41                                                                               Prob > chi2     =     0.0000
  Residential t-Stat Comm/Civic t-Stat Office/Industry t-Stat 
Constant -0.933 -4.95 -0.453 -1.31 -0.953 -2.91
Area/1000 -0.006 -5.56 0.000 0.03 0.001 2
PeriArea 1.449 0.65 -7.184 -1.69 -4.174 -0.95
DistCBD 0.130 7.23 0.010 0.26 0.003 0.08
DistMIN -0.294 -4.95 0.031 0.25 -0.238 -1.57
DistMAJ 0.508 3.11 -0.885 -1.83 -0.835 -1.76
DistFWY 0.209 3.15 -0.104 -0.72 0.078 0.58
Slope -0.016 -1.13 -0.268 -3.6 -0.050 -1.48
Popd2000 -0.008 -1.31 0.006 0.87 0.008 1.47
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Table 8. Correct Predication Rates among Candidate Models. 

Models 
Pseudo-

R2 Land Type Undev. Residen.
Comm/ 
Civic 

Office/ 
Indus. 

Observed 
Totals 

%  
Correctly 
Predicted

SAR 
MNP 0.354 

Undev. 739       1620 

43.5 

Residen.   517     1230 
Comm/Civic     24   69 
Office/Indus.       26 81 

Indept. 
SAR 
MNP 0.322 

Undev. 652       1620 

39.1 

Residen.   469     1230 
Comm/Civic     28   69 
Office/Indus.       23 81 

MNP 0.28 

Undev. 324       1620 

18.8 

Residen.   209     1230 
Comm/Civic     14   69 
Office/Indus.       17 81 

Indept. 
MNP 0.23 

Undev. 281       1620 

15.5 

Residen.   156     1230 
Comm/Civic     13   69 
Office/Indus.       14 81 

 




