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ABSTRACT 26 

Traffic safety is a top priority for most transportation agencies and many governments. In this 27 
study, the geometric details of Texas’ extensive highway network were mapped to a variety of 28 
traffic, demographic, and built environment variables, including land use, truck volumes, traffic 29 
intensity, local population and jobs density, rainfall, income, and education levels. A zero-30 
inflated negative binomial (ZINB) model was used to allow for excess zeros and over-dispersion, 31 
and was statistically preferred to the zero-inflated Poisson (ZIP) and negative binomial (NB) 32 
models, thanks to lower prediction errors and more robust parameter inference. Estimation 33 
results show how crash frequencies and fatality rates clearly rise with local jobs and population 34 
densities (as proxies for land use intensities), as well as rainfall. Interestingly, speed limits and 35 
distances to the nearest hospitals have negative associations with segment-based crash rates 36 
(everything else constant) but, as expected, (slightly) positive associations with fatality rates 37 
(presumably due to more severe collision impacts at higher speeds and time lost in transporting 38 
crash victims).  39 
  40 
Keywords: traffic safety; crash count modeling; land use; demographics, zero inflated negative 41 
binomial models; Poisson models 42 
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 1 

1. INTRODUCTION 2 

Despite increases in vehicle ownership and often vehicle-miles traveled (VMT), fatal and other 3 
crash counts have fallen significantly in the United States over the past decade. Likely reasons 4 
behind this trend are improvements in roadway and vehicle designs, along with elevated safety 5 
awareness by roadway users. Although the safety trend in Texas mirrors that at the national level 6 
over the past few years, fatality rates still hover at a relatively high share of crashes (0.70%), 7 
with 3,399 lives lost on Texas roadways in 2012 (TxDOT 2013). To better understand the 8 
genesis of such crashes and fatalities, this work uses econometric models and new covariates to 9 
examine a wide variety of possible factors and provide useful information to network designers 10 
and policy makers.  11 
 12 
Many statistical methods already exist to rigorously and reliably forecast crash counts and 13 
severities as a function of multiple covariates (see, e.g., Kulmala, 1995; Poch and Mannering 14 
1996; Abdel-Aty and Radwan, 2000; Ma and Kockelman, 2006, Ma et al., 2008; Quddus et al., 15 
2010; Wang et al., 2011).  Prior studies tend to rely on homogenous highway segments  (e.g., 16 
Aguero-Valverde and Jovanis 2008) or zone-level crash frequencies (using states, Census tracts, 17 
or other topologies -- e.g., Wang et al. 2011), while controlling for variables like vehicle-miles 18 
traveled (VMT), curve lengths, degree of curvature, speed limits, and truck shares. Typically 19 
neglected covariates include local land use and demographic conditions, climate, and hospital 20 
access; so these are controlled for here. 21 
 22 
This work investigates the linkage between segment-based crash counts and a variety of 23 
relatively unusual factors, using zero-inflated negative binomial regression model (ZINB), as 24 
compared to negative binomial (NB) and zero-inflated Poisson (ZIP) models, with crash counts 25 
along mainlanes and frontage roads in Texas. The following sections present details of related 26 
literature, data sets and methods used, results obtained, and several conclusions. 27 
 28 
2. LITERATURE REVIEW 29 
 30 
Various styles of observational units have been used in the crash-count modeling literature, 31 
including counties (Miaou et al., 2003; Aguero-Valverde and Jovanis 2006), regions 32 
(Washington et al., 1999), districts (Jones et al., 2008), English wards (Noland and Quddus, 33 
2004), census tracts (Wang and Kockelman, 2013), and roadway segments (Ma and Kockelman, 34 
2006, Ma et al., 2008). Each topology has advantages and disadvantages, and different 35 
aggregations of data can lead to somewhat different results. Here, Texas’ extensive highway 36 
system is divided into hundreds of thousands of homogenous segments, with attributes of 37 
curvature, surface width, speed limit, lane count, and so forth constant. 38 
 39 
Commonly used control variables are also reflected here. These include traffic characteristics 40 
(e.g., VMT, annual average daily traffic [AADT], and speed limit) and roadway design features 41 
(e.g., surface width and horizontal and vertical alignment details [as used in Poch and Mannering 42 
1996, Abdel-Aty and Radwan 2000, Ma and Kockelman 2006, Wang et al. 2011]). Other factors, 43 
including average rainfall and local land use attributes are also used, to test their predictive 44 
powers. Brijs et al. (2008) studied the effects of weather conditions on daily crashes for three 45 
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large cities in Netherlands in 2001, and the results show that rainfall, temperature and city-1 
specific estimates were highly significant with respect to the number of crashes. Kim and 2 
Yamashita (2002) modeled crashes as a function of several land use variables, and they found 3 
that the highest crash frequencies occurred near commercial or business properties. In addition, 4 
local demographic features for each segment’s Census tract were used to predict recent crash 5 
counts (as done, to some extent, in Graham and Glaister, 2003; Aguero-Valverde and Jovanis, 6 
2006; Kim et al., 2006; and Quddus, 2008).  7 
 8 
A basic specification for crash count prediction is the Poisson model (see, e.g., Jovanis and 9 
Chang, 1986; Miaou, 1994), which does not allow for latent heterogeneity across seemingly 10 
identical observational units (resulting in an equi-dispersion assumption, where the expected 11 
crash rate equals its variance for each unit), unlike the similarly tractable NB approach (Abdel-12 
Aty and Radwan, 2000; Lord, 2000). Other examples include Li et al.’s (2007) Bayesian 13 
approach to rank roadway segments by crash risk, Ma and Kockelman’s (2008) multivariate 14 
Poisson-lognormal model (MVPLN), allowing for simultaneity across counts (by crash severity), 15 
and Park and Lord’s (2009) finite mixture model (to capture heterogeneity and overdispersion). 16 
Wang et al. (2011) used Bayesian estimation for their spatially mixed logit model, combining 17 
both crash frequency and severity, and Qin and Reyes (2011) proposed a quantile regression (QR) 18 
method for depicting the relationship between a family of conditional quantiles and site 19 
covariates.  20 
 21 
Spatial econometric modeling techniques are relatively complex but gaining traction; they enable 22 
both spatial heterogeneity and spatial dependence. Standard spatial methods for continuous 23 
responses (such as the spatial autoregressive model [SAR] and the spatial error model [SEM]) 24 
have been employed to analyze zone-level crash counts (e.g., counties and cities, [Baller et al., 25 
2001]), and Bayesian estimation techniques for hierarchical methods have proven a valuable 26 
alternative for more discrete/integer counts, at smaller geographical levels (e.g., along short road 27 
segments and census tracts [e.g., Wang and Kockelman 2013, Li et al. 2007]). Miaou et al. (2003) 28 
used a conditional autoregressive (CAR) structure to illustrate the existence of spatial 29 
autocorrelation among adjacent roadway segments along Texas’ rural two-lane highways. And 30 
Wang et al. (2009) used a series of Poisson-based CAR models to examine the role of traffic 31 
congestion on British expressways’ crash counts. Due to matrix inversion challenges with larger 32 
data sets, the likelihood functions of spatial models are often intractable or their estimation 33 
sequence non-convergent (Wang and Kockelman 2013), so evaluation of very large count-data 34 
sets are not yet feasible with spatial models 35 
 36 
Many segments and zones demonstrate zero crash counts in any given year, especially for severe 37 
(less common) crash counts. Zero-inflated (ZI) models (as used by Miaou, 1994; Zamani and 38 
Ismail, 2010; Shankar et al. 2003; Qin et al. 2004; Lord and Geedipally, 2011; and Yan et al. 39 
2012) help reflect settings where some locations may never experience crashes. Lord et al. (2005) 40 
have provided guidance on how to appropriately model relationships between road safety and 41 
traffic exposure, emphasizing a comparison of ZIP and the ZINB models. More recently, Lord 42 
and Geedipally (2011) are recommending the negative binomial–Lindley model (NB-L), where 43 
“Lindley” refers to a type of two-parameter distribution whose long-term mean never equals zero, 44 
but can handle a preponderance of zeros (per site or observational unit), while still maintaining 45 
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valuable attributes of the traditional NB model.  In this study, a ZINB model is used, since the 1 
NB-L model requires special programming, and is not yet available in statistical software. 2 
 3 
3. DATA SETS USED 4 
 5 
The Texas Department of Transportation (TxDOT) manages and maintains approximately 6 
80,000 centerline-miles of highways, including roughly 7,000 edge-miles of one-way frontage 7 
roads alongside the state’s freeway corridors. In this study, year 2010 highway, land use, and 8 
reported crash data were used to examine the associations between crash counts and various 9 
contributing factors along Texas’ highways and frontage roads. 10 
 11 
The Texas DOT’s Crash Record Information System (CRIS), Road-Highway Inventory Network 12 
(RHiNo), and horizontal curve (GEO-HINI) databases were spatially matched/mapped to one 13 
another along with local rainfall, land use and demographic attributes. Highways and frontage 14 
roads were split into homogenous segments based on consistency/constancy in geometric 15 
characteristics (e.g., curvature, surface width, speed limit, lanes number, and AADT) following 16 
the merge of the RHiNo and GEO-HINI data sets. No curvature information for frontage roads is 17 
provided, because the GEO-HINI data set only pertains to Texas’ mainlanes. CRIS crash details 18 
were matched to segments using control section-milepoint information. Other variables were 19 
mapped to the segments using the ArcGIS toolbox. As a result, 277,510 (highway) mainlane 20 
segments (for a total of 72,994 centerline miles) and 15,781 frontage road segments (totaling 21 
7,041 edge miles) were identified for analysis, as shown in Figure 1.  22 

 23 
Figure 1. Locations of Homogenous Highway and Frontage Road Segments for Analysis of 24 

Texas Crashes 25 
 26 



5 
 

More than ninety percent of these 350,054 segments have lengths of less than 1 mile, as depicted 1 
in Figure 2’s histograms. Average segment lengths are 0.263 mi on mainlanes and 0.446 mi on 2 
frontage roads. 3 

      4 
Figure 2. Histograms for Lengths of Mainlane (left) and Frontage Road (right) Segments 5 

 6 
The 2010 CRIS data sets contain 243,388 crashes on the state-/TxDOT-maintained network (plus 7 
another 227,794 crashes that occurred on other public roadways across Texas). Among these 8 
243,338 crashes, 209,053 contained control-section and milepoint details that place them along 9 
mainlanes and frontage roads, allowing them to be geocoded onto the set of 350,504 10 
homogenous highway segments. The remaining 34,335 crashes (14.10 percent of the on-system 11 
set) contain no location information or occurred at on- and off-ramps or connectors and detours 12 
and so were removed. For example, 6,224 of the mainlane crashes and 4,291 of the frontage road 13 
crashes were missing appropriate control section-milepost address information. Of course, if 14 
there is any bias in the locations of removed crashes and/or missing crash records (e.g., police 15 
may have a harder time defining crash locations in rural areas than in urban areas, and property-16 
damage-only (PDO) and less injurious crashes often go unreported (Aguero-Valverde and 17 
Jovanis 2008), there will be some bias in results. These are regular issues in crash-plus-network 18 
databases, however, so such biased are likely to exist in many, perhaps most, analyses already 19 
published. 20 
 21 
In this study, the response or dependent variables are the numbers of crashes by type/severity 22 
level, on each homogenous highway segment. The five severity types are No Injury/PDO, 23 
Possible Injury, Non-Incapacitating, Incapacitating Injury, and Fatal crash counts. As noted 24 
earlier, covariates define highway design, traffic attributes, land use information, climate and 25 
access factor, local demographics, with summary statistics provided in Table 1.  26 
 27 
Highway Design Variables: Highway design decisions have important impacts on a link’s use 28 
(flow volumes and truck shares), its speeds, crash counts, and crash severities. Such relationships 29 
have been widely investigated in the past (see, e.g., Poch and Mannering 1996; Lord, 2000; Ma 30 
and Kockelman, 2006, Ma et al., 2008; Wang et al., 2011). Here, a number of design variables 31 
were used (as control variables directly or to construct other covariates, like VMT); these include 32 
Average Shoulder Width (using both inside and outside shoulders), Number of Lanes, Median 33 
Width (not including shoulders or other drivable area), Curve Length, Degree of Curve (i.e., 34 
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angle subtended by 100 feet of curve arc), and an Indicator for (the presence of) Curvature. Table 1 
1 lists these attributes and their summary statistics.  2 
 3 
Traffic Attributes: Traffic characteristics also play a critical role in crash outcomes and 4 
prediction. Average Daily Traffic (ADT) estimates (from nearby vehicle-count samples) describe 5 
traffic intensity and congestion (using an ADT- or volume-to-capacity variable). VMT is a key 6 
crash exposure term (since crash counts closely scale with VMT, everything else constant), and 7 
is simply the product of ADT, segment length, and 365 (days per year). In addition, Speed Limit 8 
and Percentage of Single and Combo Truck ADT were also included in this study because large 9 
trucks are involved in a disproportionately small fraction of the total crashes but a large fraction 10 
of fatalities (Vadlamani et al. 2011).  11 
 12 
Land Use Information: Information on actual land use designations (e.g., parcels in residential 13 
vs. industrial vs. commercial and other uses) could not be obtained across the entire state, but 14 
Census data on population demographics and jobs counts per census tract (population density 15 
and jobs density) are readily available, along with other variables, like indicators for Rural, 16 
Small Urban, Large Urban and Urbanized settings. The data of year 2010 population 17 
demographics and jobs counts were obtained from US Census Bureau. Centroids of highway 18 
segments were matched to their closest Census tract (measured using Euclidean distances to tract 19 
centroids) using ArcGIS’s spatial join routine. All count data were normalized by census tract 20 
areas (in square miles). The spatial distribution of census tracts in Texas is illustrated in Figure 3. 21 
 22 

 23 
Figure 3. Census Tracts across Texas 24 

 25 
Climate and Access Factors: Average annual rainfall values (over the 1961-1990 periods, as 26 
shown in Figure 4) were obtained from Texas Natural Resources Information System (TNRIS). 27 
It would be best to match year-2010 crash totals to rainfall data for the year 2010, but such 28 
information was unavailable. Nevertheless, this too-commonly ignored variable proved valuable 29 
in crash prediction.  Euclidean distances from each segment’s centroid to three interesting sites 30 
were also developed, using ArcGIS’ spatial join function; these sites are hospitals (hypothesized 31 
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here to be important in reducing crash fatalities), schools (an indicator of activity and possibly 1 
lowered speeds or more driver caution), and metropolitan and micropolitan statistical areas 2 
(MMSAs, which describe access to a developed region or city). Hospital locations were obtained 3 
from the Texas Hospital Association, and school locations (for elementary school) were retrieved 4 
from Texas State Data Center. Information on MMSA centroid locations comes from the U.S. 5 
Census Bureau.  6 
 7 

 8 

Figure 4. Average Annual Rainfall Values across Texas, in inches (Years 1961-1990) 9 
 10 
Demographic Variables: Relatively recently, demographic characteristics have come into use 11 
for analysis of crash counts (e.g., Graham and Glaister [2003]; Kim et al. [2006]; Quddus et al. 12 
[2008]). This work relies on U.S. 2010 Census tract data (as measured using Euclidean distances 13 
from segment midpoint to the nearest tract centroid, for density variables of persons of low and 14 
high education (that is, less than a high school diploma versus beyond a bachelor’s degree), and 15 
commuting workers. The average age of people and average income per capita in census tract 16 
were also obtained from US Census Bureau. Such variables provide more information on the 17 
types of users in the vicinity of the highway, who may be using it regularly, in vehicles or 18 
possibly on foot. They also give one a greater sense of the land use setting, versus simply 19 
population and jobs density variables. 20 
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Table 1. Summary Statistics of Variables for Mainlane and Frontage Road Segments across Texas 1 

Variable Name 
Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

Mainlanes Frontage Roads 
Dependent Variables  
Crash Count in 2010 0.6454 3.544 0 387 1.074 4.307 0 80 
No Injury Crashes (PDO) 0.4126 2.364 0 242 0.7165 3.012 0 59 
Possible Injury 0.125 0.8766 0 116 0.2145 1.002 0 21 
Non-Incapacitating 0.0798 0.4670 0 30 0.1122 0.5677 0 22 
Incapacitating Injury 0.0212 0.1692 0 10 0.0251 0.1827 0 4 
Fatal Crashes 0.0067 0.0844 0 3 0.0051 0.0736 0 3 
Totals (across State highway system)1 181,305 17,233 
Covariates  
Exposure Variable  
VMT (vehicle-miles) 1604.1 7292.9 0 559789 1674.6 4720.6 0.01 103484 
Highway Design  
Average Shoulder Width (feet) 3.964 3.448 0 30 1.184 2.401 0 30 
Number of Lanes 2.536 1.130 1 13 2.126 0.390 1 6 
Median Width (feet) 6.482 22.15 0 722 / / / / 
Indicator for Curvature (1 = yes, 0 = otherwise) 0.320 0.466 0 1 / / / / 
Curve Length (miles) 0.0396 0.083 0 3.3 / / / / 
Degree of Curve (degrees per 100-ft of arc) 1.357 3.903 0 90.67 / / / / 
Traffic Attributes  
ADT per Lane (vehs/day) 1858.7 3353.9 0 48,833 2049.9 2975.7 5 23,530 
% Single Truck ADT (%) 8.095 5.672 0 6.52 1.7664 0.2438 0 1.8 
% Combo Truck ADT (%) 7.802 8.160 0 9.37 1.3606 0.2315 0 1.4 
Speed Limit (mph) 57.44 9.752 5 80 46.476 6.4296 15 75 
Land Use Information  
Population Density (persons/sq.mi.) 342.3 1044 4.324 15,035 389.4 1182 9.421 15,035 
Jobs Density (employees/sq.mi.) 107.9 743.9 0.821 8163 210.3 854.6 5.482 8163 
Rural (1 = yes, 0 = otherwise)2 0.793 0.4051 0 1 0.3054 0.4606 0 1 
Small Urban (1 = yes, 0 = otherwise)3 0.0741 0.2619 0 1 0.0719 0.2584 0 1 
Large Urban  (1 = yes, 0 = otherwise)4 0.0450 0.2073 0 1 0.1394 0.3464 0 1 
Urbanized  (1 = yes, 0 = otherwise)5 0.0878 0.2831 0 1 0.4833 0.4997 0 1 
Climate & Access Factors  
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Rainfall (average inches per year) 34.43 10.52 9 59 36.24 12.49 9 59 
Distance to the Nearest Hospital (miles) 12.30 10.38 0.0067 91.72 6.420 8.747 0.0201 90.89 
Distance to the Nearest Elementary School (miles)  6.286 7.462 0.2472 98.42 4.198 8.325 0.4261 56.42 
Distances to the Nearest MMSA (miles)6 24.84 15.48 0.0175 142.7 17.92 12.00 0.1139 84.38 
Demographic Variables  
Average Income per Capita (dollar) 24870 54831 2107 168156 25043 43913 2735 168156 
Average Age (year) 33.3 45.6 16.9 55.4 33.6 39.8 17.1 55.2 
Pop. Den. of below High School (persons/sq.mi.) 13.81 62.57 0 3601 63.78 131.5 0 2723 
Pop. Den. of above College (persons/sq.mi.) 33.38 107.4 0 3672 154.7 234.4 0.0335 3410 
Observations 277,510 15,781 
 1 
Notes: 1Total refers to the number of crashes that were matched to segments. 2,3,4,5Rural, Small Urban, Large Urban, and Urbanized denote places with less than 2 
5000 people, 5000 to 49,9993 people,  50,000 to 199,999 people, and 200,000+ people, respectively. 6The distances refer to each segment’s centroid to the 3 
nearest centroid of MMSA. 4 
 5 
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4. MODEL SPECIFICATION 1 
 2 
The negative binomial (NB) regression specification, depicted in Equation 1 (from Miaou [1994]) 3 
is valuable for characterizing count-data situations, like traffic crashes (Lord, 2000; Noland and 4 
Quddus, 2004; Wang et al, 2009). The crash rate is modeled as a function of the covariates: 5 
         6 

        ( )0expi i k ik k iVMT xαλ β β ε= + +                                                                                     (1) 7 

 8 
where VMT denotes vehicle-miles traveled along the ith segment (as a measure of crash 9 
exposure); the parameterα  allows for a potentially non-linear/non-proportional association of 10 
crash counts with  VMT; 0β  is the intercept term (or constant); kβ  denotes coefficient for the kth 11 

covariate; ikx  indicates the kth covariate for the ith segment; and iε  is a random error that has a 12 

gamma distribution, such that ( )~ ,i gammaε γ γ . The probability density function for the NB 13 

distribution can be expressed as 14 
   15 
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 17 
where iY  represents crash counts along homogenous highway segment i  during a given period 18 

(e.g., the year 2010), and 1,2, ,i n=  ,  with n  denoting the total number of highway segments 19 

analyzed. iy  denotes the realization of the random variable iY , with mean 20 

( )0( ) expi i i k ik k iE Y VMT xαμ β β ε= = + + and variance 2( )i i iVar Y μ ρμ= + . ρ  denotes the 21 

overdispersion parameter (and the NB collapses to a Poisson specification when 0ρ = ). 22 
 23 
Since highway crashes are generally rare events, analysts frequently have many highway 24 
sections with zero reported crashes during the period of interest. Here, 82.0% of the mainlane 25 
segments and 79.7% of the frontage road segments had zero (reported/logged and spatially 26 
matched) crashes in 2010. But these zeros may simply come from low annual crash rates on all 27 
or most segments. It does not mean that overdispersion or zero inflation is present. Model results 28 
for the ZINB will illuminate the statistical significance of the parameters defining those features 29 
of this relatively flexible model specification.  (A Vuong [1989] test also can be used to examine 30 
zero-inflation, and was checked here, using STATA software. All results support the notion of 31 
zero inflation across many sites.)   32 
 33 
This work combines ZI and NB features by turning to the ZINB model specification, as shown in 34 
Equation 3 (Jansakul and Hinde, 2008): 35 
 36 
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 2 
where iY  is the response variable, under a dichotomous data-generating processes. The zero 3 

counts are captured by the first process with probability iθ  and the second (negative binomial) 4 

process with probability 1 iθ− , and all non-zero counts are captured by the second process (with 5 

probability 1 iθ− ). In general, the zeros from the first and second processes are called structural 6 

zeros and sampling zeros, respectively (Jansakul and Hinde, 2008). The mean and the variance 7 
of the ZINB model are ( ) (1 )i i i iE Y θ λ μ= − =  and ( ) (1 )(1 )i i i i i iVar Y λ θ θ λ ρλ= − + +  . The Poisson, 8 

the NB, the ZIP, and the ZINB models are related to each other. For example, if 0ρ = , the ZINB 9 

model will be reduced to the ZIP model; if 0, 0iρ θ= = , the ZINB model will collapse to the 10 

standard Poisson model.  11 
 12 
To involve covariates in both portions of the ZINB model (i.e., the crash rate equation and the 13 
logistic equation), the following functions are used here: 14 
 15 
        0ln( ) ln( )NB NB NB NB

i i k ik k iVMT xλ α β β ε= + + +     
                                                              (4)

 
16 

 17 
and 18 

        og og og og
0ln( ) ln( )

1
l it l it l it l iti

i k ik k i
i

VMT x
θ α β β ε

θ
= + + +

−                                                         (5) 19 

 20 

here NBα , 0
NBβ , NB

kβ , and NB
iε  are same as before, corresponding to the NB component of the 21 

ZINB model, while logitα , log
0

itβ , log it
kβ , and log it

iε  are for the logistic component of the ZINB 22 

specification. 23 
    24 
5. MODEL RESULTS 25 
 26 
This section discusses results of model estimation for total crash count (and fatal crash count) on 27 
mainlanes and frontage roads, with parameter estimates shown in Table 2. There are fewer (very) 28 
statistically significant variables1 for count prediction along frontage roads than for mainlanes, in 29 
large part due, no doubt, to the smaller sample size (of homogeneous frontage road segments). 30 
All test statistics suggest that the ZINB model is statically preferred (with p values of 0.000) to 31 
the ZIP and NB model specifications, for both roadway types (and both crash count model types).  32 
 33 
In order to appreciate the practical significance of various covariates, on both total and fatal 34 
crash rates, the expected percentage changes in both types of crash rates, for both types of 35 

                                                 
1 All available, starting covariates were maintained in the final models and thus these tabled results, though a few are 
not statistically significant (and so could be removed, via a process of stepwise deletion or something similar). 
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facilities (mainlanes and frontage roads) were computed for a one standard-deviation (SD) 1 
change in each covariate, as shown in Table 3.  2 
 3 
The association between crash exposure (VMT) and crash rates is estimated to be non-linear 4 
(with estimated exponents of 0.6759α =  for mainlanes and 0.3273α =  for frontage roads), with 5 
crash rates effectively falling as VMT rises. It may be that higher VMT levels often correspond 6 
to more congested traffic conditions, with reduced operating speeds and lower speed differentials, 7 
somewhat dampening the likelihood of collision. Interpretations of other parameter estimates are 8 
provided below.  9 
 10 
Highway Design: As shown in Table 2 and 3, the Number of Lanes and Curve Length are 11 
estimated to increase the average crash rate of mainlanes, while the other highway design 12 
variables exhibit negative associations with average crash rates. This is expected since the 13 
likelihood of collision is in general higher along curves than that along straight segments, 14 
whereas the crash rates may be lower along curves (as drivers tend to be more cautious), a result 15 
consistent with the findings of Wang et al (2009).  16 
 17 
It is interesting to find that Average Shoulder Width is negatively associated with crash rates 18 
along mainlanes, but positively associated with frontage road rates. Such differences may be due 19 
to the different effects of access control used on such facilities. 20 
 21 
Traffic Attributes: Not surprisingly, ADT per Lane, % Single and Combo Truck ADT, and 22 
Speed Limit were found to be statistically significant. ADT per Lane is estimated to have 23 
positive effects on crash rates along mainlanes and frontage roads, consistent with prior studies 24 
(e.g., Quddus et al., 2010) and presumably due to greater congestion, which puts vehicles at 25 
tighter headways and higher probability of crashing. Interestingly, higher Speed Limits in both 26 
models is associated with lower total crash rates, presumably due to better roadway designs and 27 
less crash-prone locations being assigned higher speed limits; however, this can come with more 28 
severe crashes, as found in Ma et al. (2008). As shown in Table 3, the Speed Limit variable is 29 
estimated to have a very slight positive effect on fatality rates here; while higher Speed Limit 30 
roadways enjoy better design and safer conditions overall, crashes that do occur tend to be more 31 
injurious and deadly (see, e.g., Kockelman et al. [2006]). Finally, Single and Combo Truck 32 
percentages are associated with lower crash rates, presumably due to greater regulation of and 33 
use of professional drivers in those vehicles.  34 
 35 
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Table 2. Estimation Results of ZINB for Total Crash Count on Mainlanes and Frontage Roads  1 

Variable  
Coef. P>|z| Coef. P>|z| Coef. P>|z| Coef. P>|z| 

Mainlanes Frontage Roads 
NB Component Logistic Comp. NB Component Logistic Comp. 

Exposure Variable  
Ln(VMT) 0.6759 0.000 -0.6964 0.000 0.3273 0.000 -0.6729 0.000 
Highway Design  
Average Shoulder Width -0.0141 0.000 0.0261 0.000 0.0029 0.849 0.0591 0.008 
Number of Lanes 0.0148 0.005 0.0729 0.000 0.2104 0.002 0.2404 0.017 
Median Width -0.0023 0.000 0.0039 0.000 / / / / 
Indicator for Curvature -0.0939 0.000 0.8158 0.000 / / / / 
Curve Length 0.0443 0.009 -0.9454 0.031 / / / / 
Degree of Curve -0.0045 0.065 -0.1903 0.000 / / / / 
Traffic Attributes  
ADT per Lane 1e-05 0.000 7e-06 0.812 2e-06 0.832 0.0001 0.000 
% Single Truck ADT -0.0139 0.000 -0.0325 0.000 / / / / 
% Combo Truck ADT -0.0028 0.001 -0.0109 0.003 / / / / 
Speed Limit -0.0231 0.000 0.0023 0.379 -0.0225 0.000 0.0044 0.615 
Land Use Information  
Population Density 0.0842 0.000 0.3214 0.000 0.2251 0.000 0.0934 0.034 
Jobs Density 0.1079 0.034 0.4086 0.092 0.1972 0.000 0.1932 0.655 
Rural -0.4625 0.000 -0.7265 0.000 -0.4502 0.000 -0.1207 0.502 
Small Urban -0.0032 0.890 -0.2541 0.000 -0.1493 0.221 -0.2099 0.304 
Large Urban 0.1127 0.000 -0.3006 0.001 -0.1522 0.068 -0.1351 0.334 
Urbanized Base/reference case. 
Climate & Access Factors  
Rainfall 0.0012 0.037 -0.0205 0.000 0.0056 0.000 0.0047 0.000 
Distance to the Nearest Hospital -0.0079 0.000 -0.0022 0.551 -0.0691 0.000 -0.4394 0.010 
Distance to the Nearest Elem. School -0.0255 0.000 -0.0388 0.000 0.0004 0.986 -0.0081 0.817 
Distance to the Nearest MMSA -0.0047 0.000 0.0039 0.043 -0.0029 0.432 -0.0078 0.180 
Demographics  
Average Income per Capita -0.0013 0.000 -0.0009 0.000 -0.0078 0.014 -0.0193 0.057 
Average Age -0.0045 0.000 -0.0234 0.046 -0.0032 0.000 -0.0091 0.013 
Pop. Den. of below High School  0.0002 0.000 -0.0045 0.000 0.0005 0.006 -0.0003 0.284 
Pop. Den. of above College  0.0009 0.000 0.0004 0.001 0.0003 0.026 -7e-05 0.707 
Constant -3.077 0.000 4.1071 0.000 -1.630 0.000 3.192 0.000 
ρ  0.3623 P>|z|: 0.000 0.4844 P>|z|: 0.000 
Vuong test P>z 0.000 0.000 
ZIP LR test P>=chibar2 0.000 0.000 
LR chi2 45906.5 1034.4 
Prob > chi2 0.000 0.000 
Log likelihood -168087.3 -13591.8 

 Note: Slashes (/) indicate covariates that are not available in RHiNo and GEO-HINI for the frontage road segments.2 
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Table 3. Expected Percentage Changes in Total and Fatal Crash Rates Corresponding to One 1 
Standard Deviation Changes in Variables   2 

Variables 
Mainlanes Frontage Roads 

Total (%) Fatal (%) Total (%) Fatal (%) 
Highway Design  
Average Shoulder Width  -0.5588 -0.1831 0.0617 -0.0081 
Number of Lanes 0.192 0.0003 0.1468 0.0032 
Median Width -0.5856 -0.0938 / / 
Indicator for Curvature -1.079 -0.0003 / / 
Curve Length 0.042 0.0028 / / 
Degree of Curve -0.2019 0.0712 / / 
Traffic Attributes  
ADT per Lane 0.3855 0.0017 0.0414 0.0004 
% Single Truck ADT -0.9062 -0.0513 / / 
% Combo Truck ADT -0.2626 -0.0078 / / 
Speed Limit -2.589 0.0145 -0.1355 0.0047 
Land Use Information  
Population Density 12.48 1.285 23.29 3.761 
Jobs Density 39.23 2.866 48.77 0.4157 
Rural -5.316 -0.4153 -0.2780 -0.2946 
Small Urban -0.0368 -0.0049 -0.0922 -0.0007 
Large Urban 1.295 0.3883 -0.0939 -0.0835 
Climate & Access Factors  
Rainfall 0.1452 0.0284 0.3155 0.0194 
Distances to the Nearest Hospital -0.9426 0.4156 -0.4429 2.678 
Distances to the Nearest Elem. School -0.7721 0.0013 0.3218 0.0355 
Distances to the Nearest MMSA -0.8363 -0.0004 -0.0277 -0.0001 
Demographics  
Average Income per Capita -3.482 -0.1354 -5.318 -0.0042 
Average Age -2.641 -8.487 -0.903 -3.831 
Pop. Density of below High School 0.144 0.0067 0.0193 0.0012 
Pop. Density of above College 1.111 0.0039 0.0199 0.0007 
Note: Bolded percentages are to indicate the more practically significant variables’ impacts on corresponding crash 3 
counts. 4 
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Land Use Information: Here, demographic variables are employed as proxies for land use 1 
intensity. As shown in Tables 2 and 3, Population Density and Jobs Density are very statistically 2 
and practically significant in both models, unlike in Noland and Quddus’ (2004) work, which 3 
could establish no linkage between land use intensity and crash rates. Higher densities come with 4 
higher crash rates, and the Jobs Density variable offers the most practically significant results, 5 
with the largest crash-rate percentage change (of +39.23%) in Table 3; this is in part due to the 6 
very large standard deviation-to-mean ratio for this covariate (as shown in Table 1), so a one-SD 7 
change is a substantial shift. More dense locations are generally more complex to navigate, with 8 
more activities and land uses alongside the traveled corridor, with more frequent driveways, 9 
interchanges, ramps and intersections, for example. 10 
 11 
Indicator variables also entered the model to measure the effects of urbanization, with Rural and 12 
Small Urban settings offering negative effects (on crash rates) and the Large Urban setting 13 
indicator having a positive impact; such results imply that higher levels of urbanization come 14 
with greater crash rates (in large part due, no doubt, to a more complex operating environment, 15 
with more interchanges, driveways or intersections per mile, for example – along with 16 
congestion impacts [already controlled for here via the AADT-per-lane variable, for example]). 17 
As shown in Table 3, mean crash rates tend to fall by 5.32% when land use converts to a rural 18 
setting and rise by 1.30% when the reference case (an urbanized setting) becomes a large urban 19 
setting.  20 
 21 
Climate and Access Factors: As revealed in Tables 2 and 3, rainfall is estimated to be positively 22 
associated with crash rates, but only slightly (in a practical sense).  As discussed previously, 23 
distances to hospitals, schools, and MMSAs are rarely considered as covariates in the crash 24 
modeling literature, and here they yield negative impacts in the first (ZI or logistic) process, as 25 
shown in Table 2. Results also suggest that shorter distances (greater proximity) come with 26 
higher crash rates (probably due to these distances proxying for [the inverse of] land use 27 
intensity), but, as expected, positive associations exist for fatal-crash rates (presumably due to 28 
more severe collision impacts at higher speeds and time lost in transporting crash victims to an 29 
emergency room), similar to the impacts of the Speed Limit variable. 30 
 31 
Demographics: As shown in Table 2, all of demographic variables are statistically significant, 32 
and some are practically significant, according to Table 3’s results.  Higher-income locations 33 
having lower crash rates is consistent with the World Health Organization’s (Global status report 34 
on road safety 2013) report (where low- and middle-income countries have higher road traffic 35 
fatality rates, per VMT, compared to higher-income countries). Higher Average Age is also 36 
estimated to come with lower total and fatal crash rates, thanks presumably to more driving 37 
experience and more caution by older drivers. Interestingly, both education extremes (below high 38 
school and beyond a bachelor’s degree) are estimated to have positive effects on crash rates. 39 
 40 
CONCLUSIONS 41 
 42 
This paper developed a series of ZINB and ZIP crash prediction models, based on the crash 43 
inventory for 277,510 mainlane, homogenous-roadway segments and 15,781 frontage-road 44 
homogenous segments in Texas, while controlling for highway design, traffic attributes, land use, 45 
climate and access factor, and local demographics. Expected percentage changes in total and 46 
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fatal crash rates (for both mainlane facilities and frontage road facilities) corresponding to one-1 
standard-deviation changes in all variables were also computed, to examine the practical 2 
significance of covariates.  While most covariates are estimated to be statistically significant, few 3 
are practically significant. The estimation results show that jobs and population density, as 4 
proxies for land use intensity, exert positive effects on crash rates. Moreover, higher levels of 5 
urbanization are associated with higher crash rates, while age and income have negative effects. 6 
Annual rainfall has slightly positive effects on both crash types of crash rate, while distances to 7 
the nearest hospitals and schools have negative associations with total-crash rates and positive 8 
correlations with fatality rates. 9 
 10 
The ZINB model specification adopted here allows for excess zeros and overdispersion in the 11 
crash count data sets (with marked improvement in goodness-of-fit, as compared to ZIP and NB 12 
models) but does not capture the spatial autocorrelation and/or spatial dependencies that are 13 
likely to exist across neighboring segments. While sample size would have to be dramatically 14 
reduced from what was used here (due to computing limitations for rigorous spatial regression 15 
techniques), such tools should be tested on these data, along with covariates on pavement 16 
roughness, topography, sight distances, and other potentially valuable variables for crash 17 
prediction and design decisions. 18 
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