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ABSTRACT 

Policymakers, transport planners, automobile manufacturers, and others are interested in the 

factors that affect adoption rates of electric vehicles and more fuel efficient vehicles. Using 

Census-tract-level data and registered vehicle counts across Texas counties in 2010, this study 

investigated the impact of various built environment and demographic attributes, including land 

use balance, employment density, population densities, median age, gender, race, education, 

household size, and income. To allow for spatial autocorrelation (across census tracts) in 

unobserved components of vehicle counts by tract, as well as cross-response correlation (both 

spatial and local/aspatial in nature), models of ownership levels (vehicle counts, by vehicle type 

and fuel economy level) were estimated using bivariate and trivariate Poisson-lognormal 

conditional autoregressive models. The presence of high spatial autocorrelations and local cross-

response correlations is consistent in all models, across all counties studied. Fuel-efficient-

vehicle ownership rates were found to rise with household incomes, resident education levels, 

and the share of male residents, and fall in the presence of larger household sizes and higher jobs 

densities. 

The average fuel economy of each tract’s light-duty vehicles were also analyzed, using a spatial 

error model, across all Texas tracts; and this variable was found to depend most on educational 

attainment levels, median age, income, and household size variables, though all covariates used 

were statistically significant. If households registering more fuel-efficient vehicles, including 
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hybrid EVs, are also more inclined to purchase plug-in EVs, these findings can assist in spatial 

planning of charging infrastructure as well as other calculations (such as gas-tax revenue 

implications). 
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INTRODUCTION 

Many worry about the world’s continuing reliance on petroleum as a transportation fuel, with 

various air quality impacts and energy security issues.  Fuel economy is a salient feature of 

automobiles, and fuel-efficient hybrid electric vehicles (HEVs) are achieving some marketplace 

success (Keith 2012, Chen et al. 2014, Paul et al. 2011, Dijk et al. 2013). For example, 495,000 

HEVs were sold in the United States in 2013, with over 1.5 million sold worldwide (EVs Roll 

2014). Only 96,000 plug-in EVs (PEVs) were sold in the US in 2013, which includes 47,700 

battery-only EVs (EVs Roll 2014), so the PEV future is less certain. Since market success 

depends on consumer response, understanding the factors that affect purchase and use of more 

fuel efficient and electric vehicles becomes crucial for sales and use forecasts, as well as energy 

and environmental policies (Koo et al. 2012).  

 While EV sales (including both HEVs and PEVs) have risen considerably in the United 

States over the past decade, high adoption rates tend to concentrate in a relatively few cities and 

neighborhoods. In the case of Texas, Figure 1 shows how HEV ownership rates (per 1,000 

registered light-duty vehicles [LDVs]) concentrate in the state’s biggest cities/regions: San 

Antonio, Austin, Dallas-Ft. Worth, and Houston. (Since almost no PEVs were registered in 

Texas in year 2010 [according to the vehicle decoder used on the DMV database], only HEV 

counts were non-negligible in the 2010 Texas data sets, and thus analyzed separately from 

conventional vehicles here.) Within these regions, spatial variation is striking (Figure 1). 

Understanding of the factors behind such variations provides direction for policymaking, 

planning, production, and marketing.   

 One reason for the clustering in HEV ownership rates is presumably spatial correlation in 

local government incentives and marketing, demographics, and land use patterns (Kodjak 2012, 

Chen et al. 2014). Another reason for the clustering relates to the theory of social contagion, with 

consumers more likely to buy EVs if they see them regularly, on nearby roads, in neighbor’s 

driveways, and being driven by their friends and colleagues (Axsen and Kurani 2011). Positive 

contagion feedbacks can intensify to create adoption inhomogeneity at different scales. 

 This study’s first two models employ a multivariate conditional autoregressive (MCAR) 

specification (as developed by Wang and Kockelman [2013] and applied in Chen et al. [2014]) to 

understand many of the factors responsible for adoption rates of HEVs and other classes (based 

on fuel economy) of LDVs across Texas’ major cities, while recognizing correlations that 

emerge over space across vehicle ownership types. The paper’s bivariate model (Model 1) 

estimates counts of HEVs vs. non-HEV passenger vehicles in each of the four largest counties of 

Texas’ top 4 regions. The trivariate model (Model 2) examines tract-level registration numbers in 

each of 3 fuel-economy-based vehicle classes (fuel efficient [>25 mi/gal], regular [15 to 25 

mi/gal], and fuel inefficient [ 15 mi/gal]). A third model (Model 3) is of average fuel economy, 

across all census tracts of Texas, and so relies on a continuous-response spatial error model for 

spatial autocorrelation (Wall 2004, Kissling et al. 2008, and Anselin 1988).  



 
FIGURE 1. HEV Adoption Rates in Year 2010 HEV counts per 10,000 light-duty vehicles 

across Texas Census Tracts (using Texas Department of Motor Vehicles registration data, 2010) 

 

BACKGROUND AND LITERATURE REVIEW 

Several researchers have developed choice models to identify key factors encouraging EV and 

other vehicle purchases. For example, Li et al. (2013) used a bivariate probit model to find that 

consumers with environmentally-relevant information (from the Internet or friends) were more 

likely to purchase HEVsthan flex-fuel vehicles, whereas males, those driving more miles, and 

those registered as Republicans were less inclined. He et al.’s (2012) hierarchical choice model 

analysis of the U.S. National Household Travel Survey (NHTS) 2009 and Vehicle Quality 

Survey data found that those primarily making local trips (versus highway-based trips) and those 

with higher education have a more positive attitude toward buying an HEV. Caulfield’s (2010) 

survey of an Irish car company’s new customers suggest that preferences depend significantly on 

vehicle price, reliability, safety, and fuel costs. Liu (2014) estimated that U.S. consumers are 

willing to pay, on average, from $960 to $1720 more (depending on their income category) for 

HEVs, which is lower than an HEV’s typical price premium. Jenn et al. (2013) estimated that the 

Energy Policy Act of 2005 caused a 4.6% increase in U.S. HEV sales for every $1000 incentive 

provided (per HEV). Liu (2014) concluded that offering $1000 and $3000 tax savings would 

increase U.S. HEV sales by 4% and over 13% respectively. Using a 5% discount rate, Tuttle and 

Kockelman (2012) estimated that gas prices above approximately $5.90, $5.00, and $3.75 per 



gallon are estimated to make the Leaf, Volt, and Prius-PHEV (as offered in year 2011) more 

financially attractive, respectively, than their conventional counterparts - without any credits. In 

Musti and Kockelman’s (2011) survey, 76% of Austinites (with sample weighted to reflect true 

local population) stated that fuel economy lies in their top three criteria for vehicle purchase, and 

56% claimed they would consider purchasing a plug-in HEV if it were to cost $6,000 more than 

its internal combustion counterpart (vs. just 36% of all U.S. respondents in Paul et al.’s [2011] 

follow-up survey). 

 Very few studies have explored spatial variations and neighborhood effects in HEV 

adoption rates. Keith et al. (2012) developed a spatial diffusion model to understand the reasons 

behind high-adoption clusters of the Toyota Prius HEV across the United States. For greatest 

impact or sales increases, they concluded that HEV adoption should be incentivized in regions 

already exhibiting strong adoption. Chen et al. (2014) employed an MCAR model to anticipate 

LDV registration counts of the Prius HEV, other EVs, and conventional (internal combustion) 

vehicles across 1000 census block groups in the city of Philadelphia. They found that more 

central/core zones and those with more higher-income households have higher EV ownership 

rates, and that spatial correlations exist in unobserved terms (not controlled for by their set of 

eleven covariates).  

 Auto purchases by individuals are arguably not as rational as those by fleet managers, 

who have the time and expertise to do rigorous net present valuations. To understand Americans’ 

willingness to pay for fuel savings, Greene et al. (2013) surveyed 1000 US households four 

times: in 2004, 2011, 2012 and 2013. Each time, they estimated that US car buyers expect fuel 

economy savings to payback up-front vehicle costs in just 3 years, suggesting consumer myopia, 

significant risk aversion (to car loss, rather than gas price increases), and/or a very high personal 

discount rate (on a vehicle’s future benefits). They argue that accuracy of fuel economy 

information is extremely important, because its uncertainty leads loss-averse consumers to 

significantly undervalue fuel savings. In some contrast, Koo et al. (2012) calibrated mixed logit 

and mixed multiple discrete continuous extreme value (MDCEV) models for Koreans’ recent 

vehicle purchases, and concluded that Koreans tend to care most about fuel economy. Axsen and 

Kurani (2013) found that new-vehicle buyers in California prefer HEVs and PEVs, not only 

because of their functional benefits (e.g., lowered gasoline use and emissions), but also due to 

their image association (with intelligence, responsibility, and support for the environment and 

national energy security). 

As noted above, most studies on vehicle choice are disaggregated in nature. Few studies 

have explored spatial variations in adoption rates or have worked with complete samples. This 

study employs rigorous and behaviorally plausible spatial models to better illuminate overall 

factors that affect fuel economy choices and adoption rates of HEVs and other LDVs across 

much of the U.S.’s second largest state.  

       

DATA DESCRIPTION 

This study uses the Texas Department of Motor Vehicles’ (DMV’s) vehicle registration counts 

for year 2010. This database includes all registered vehicles in Texas, from cement trucks and 

combines harvesters to passenger cars and motorized scooters. The fuel type and fuel economy 

of vehicles were added to the DMV data using a vehicle identification number (VIN) decoder, as 

purchased by Texas A&M University’s Dr. Steve Puller, and able to decode all vehicles with 

model years newer than 1980. To provide anonymity to households, the final data set shows only 



total vehicle counts by fuel type (hybrid, diesel, flex fuel, and gasoline) and fuel economy (miles 

per gallon, MI/GAL) across Texas census tracts.  

 Out of the state’s 22.81 million registered-vehicle records, the LDV decoder was able to 

match 17.35M vehicles to fuel information, leaving 5.19 million unmatched due to an early 

model year (before 1981) or commercial-vehicle status (heavy- and medium-duty trucks and 

agricultural equipment that sometimes runs on roadways. The VIN decoder also placed all plug-

in HEVs and battery EVs in the “unknown” category. For another 205,630 vehicle records 

(0.90% of the database), fuel type was identified but not census tract, and for another 63,296 

vehicle records (0.28% of registered vehicles), neither tract nor fuel information was matched.  

 Puller’s team coded the 2010 vehicles to the U.S. census tract system of year 2000 (in 

order to map to census income data). For consistency in covariate timing, the count data were 

transferred to the year 2010’s system using a census tract relationship file (US Census Bureau 

2010). Texas’ tract counts in years 2000 and 2010 were 4388 and 5265, respectively; so 2010 

tracts are somewhat smaller, reflecting a higher year 2010 state population (25.1M in 2010 

versus 20.8M in 2000). 2200 of the year-2000 census tracts remained intact, while the rest split 

or merged. Vehicle counts in modified tracts come from a population-weighted average of year-

2000 person counts.      

 This study relies on three models of vehicle type and fuel economy.  The first two are 

multivariate models for vehicle counts by type: Model 1 is a bivariate model with HEV and non-

HEV counts (in each census tract) as the response variables. Model 2 is a trivariate model with 

vehicle counts in three fuel economy bins as the response variables. Model 2’s three fuel 

economy levels are determined by thresholds one standard deviation (4.81 mi/gal) away from the 

mean fuel economy (19.30 mi/gal) for the state’s entire LDV fleet. After rounding those 

thresholds, the bins’ cut points are 15 mi/gal and 25 mi/gal. The vehicles falling into these low, 

medium and high fuel economy categories are referred to here as “fuel inefficient”, “regular” 

(fuel economy), and “fuel efficient” vehicles, respectively. Finally, Model 3 relies on a single, 

continuous response variable, average fuel economy per tract, along with a spatial error model 

(Cressie 1993 and Anselin 1988). Figure 2 shows a histogram of fuel economy across Texas’s 

LDV fleet, as registered in the year 2010.  

The model’s covariates mainly capture census-tract-level demographic attributes, like 

average age, gender, race, household size, education, population density, number of commuting 

workers, and income. These tract-level covariates come from the U.S. Census of Population 

2010 database (which offers a complete sample of many variables) and the 2010 American 

Community Survey (ACS) estimates (which samples a share of households every year, for a host 

of additional variables). 5,188 Census tracts (out of Texas’s 5,265 tracts) offered complete data 

for the aforementioned covariates and response variables. Jobs density and land use balance
1
 

variables were also obtained for Travis County from the Capital Area Metropolitan Planning 

Organization. Table 1 provides summary statistics of all census tract level variables. Since 

vehicle counts should (in theory) scale with population counts (e.g., one may expect a doubling 

in vehicle registrations when tract population is doubled), tract population variable is used an 

exposure variable for the count models. Due to this scaling, many covariates are controlled for as 

fractions, rather than as counts.  

                                                           
1
 Land use balance was computed using the following entropy term (from Cervero and Kockelman [1997]): 

 (∑        
 
   )    ( )⁄ , where    is the proportion of land use type k (including residential, commercial, office, 

and industry uses) in the tract. An equal or uniform balance (with 25% of land falling into each of the four 

categories) yields the maximum entropy value of 1. 



 
FIGURE 2. Histogram of Fuel Economy across All Registered Light-duty Vehicles in Texas 

(2010)  

 

TABLE 1. Summary Statistics of Model Variables at Census Tract Level across Texas (2010)  
Variable Name Mean Median Std. Dev. Min Max 

Dependent Variables      

Vehicle Count (# LDVs per tract) 3,336 2,968 2,134 74 51,399 

Model 1      

   # Hybrid EVs in tract 16.56 9.50 21.88 0 500 

   # Non-Hybrid LDVs in tract 3,320 2,956 2,122 74 50,993 

Model 2      

   # Fuel efficient LDVs ( 25 mi/gal) 470.3 403 523.2 0 22,715 

   # Regular LDVs ( 15 mi/gal & <25 mi/gal) 2,358 2,103 1,454 43 26,003 

  # Fuel inefficient vehicles (<15 mi/gal) 507.4 450 292.0 15 3,429 

Model 3      

Average fuel economy of tract’s LDVs (mi/gal) 19.23 19.19 0.825 16.70 23.07 

Covariates (all Texas Census tracts)      

Total population of tract (exposure variable) 4,841 4,457 2,450 85 34,354 

Fraction of population 16 years old or younger 0.236 0.238 0.059 0 0.515 

Median age (years) 35.18 34.40 6.562 14.90 71.30 

Male fraction 0.495 0.492 0.033 0.313 0.987 

African American fraction 0.119 0.058 0.164 0 0.963 

Average household size (# persons) 2.77 2.73 0.50 1.31 4.84 

Fraction of pop. with Bachelor's degree or higher 0.248 0.188 0.191 0 0.893 

Population density (per square mile) 3,103 2,451 3,288 0.1271 68,892 

Fraction of workers commuting by driving 0.783 0.800 0.091 0.118 1 

Mean household income (dollars per year, in 2010) 66,416 57,637 36,273 12,821 445,620 

Fraction of households with income  over $100,000 0.186 0.135 0.166 0 1 

Fraction of families below poverty level 0.144 0.111 0.124 0 1 

Additional Covariates (for Travis County tracts)       

Land use balance 0.645 0.712 0.229 0.036 0.988 

Employment density (jobs per square mile) 1200.1 704.2 1379.2 1.5 7655.2 

 



MODEL SPECIFICATION 

Since Models 1 and 2 have bivariate and trivariate count values as response vectors, and the data 

are highly spatial in nature, Wang and Kockelman’s (2013) Poisson-lognormal MCAR model 

specification was applied here. This model quantifies the contributions of tract-level 

heterogeneity, spatial dependence in error terms (unobserved attributes) for the same count type, 

and aspatial and spatially-lagged correlations across response types.  The Model 1 specification 

is presented here, and Model 2’s analogous specification can be found in Wang and Kockelman 

(2013). The first stage of these specifications can be expressed as a Poisson process: 

 

            (   )                 (1) 

where     is the observed vehicle count by vehicle type (k = 1 for HEVs and k = 2 for 

conventional passenger vehicles) for the i
th

 census tract of Texas, and the expected vehicle 

counts(   ) for each vehicle type and tract  are defined in the second step, as follows:  

 

  (   )    (   )                                         (2) 

where     is an exposure term (population of each census tract in this case),    is a column 

vector of covariates for the i
th

 census tract,    is a column vector of parameters specific to 

vehicle type k,     indicates the MCAR model’s spatial random effects (shown in Equation 3), 

and    captures tract-specific heterogeneity or latent variations (not explained by spatial effects). 

The random error term,     captures spatial dependence, as measured by    and    in Equations 

4 and 5, which are specific to each vehicle type. The model’s overall covariance structure allows 

for aspatial and spatially-lagged correlations between error terms (unobserved effects) for the 

two vehicle types, as shown in Equations 3 to 5.   
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where    is a n by 1 vector containing the spatial random effects across n census tracts for 

vehicle type k, and     is the matrix of covariance terms across vehicle types k and l.  

The spatial MCAR structure was constructed using a series of conditional distributions, 

expressed as follows:    

     (  [(     )  ]
  )                                                                                                       (4) 

        (    [(     )  ]
  )                                                                                            (5) 

where       (  ), with    denoting the number of neighbors for the i
th

 census tract, W is a 

second-order contiguity matrix (where all      , while       if i and j share a common 

border and     1 if j and k share a common border, else      ),    is a scaling parameter for 

the covariance matrix of the  i
th

 vehicle type, and    is a measure of spatial autocorrelation in 

error terms for counts of the i
th

 vehicle type (across tracts), Finally,   is a transformation matrix, 

which can be written as follows:  

                                                                                                                                      (6) 



Using Equations 5 and 6,   ’s conditional mean can be written as follows: 

  (     )  (       )                                                                                                       (7) 

where     and    are called the bridging parameters, since they associate     and     (for 

aspatial cross-response correlations within the same tract) and     (for spatially-lagged cross-

response correlations). In other words, the conditional mean of     is a weighted average of 

neighboring     values, along with a scaled     value at its own location.   

Vehicle-count models 1 and 2 were implemented using a combination of R programming 

language and WinBUGS software. The model parameters were estimated using Bayesian 

Markov-chain Monte Carlo (MCMC) sampling techniques. Due to the complex nature of this 

multivariate sampling with spatial autocorrelation, it was not possible to estimate model 

parameters for all 5188 census tracts across Texas simultaneously. Moreover, spatial effects in 

vehicle ownership patterns are also expected to die out over miles of separation (after controlling 

for demographics and other local attributes).  Therefore, the most populous counties in the state’s 

4 most populous regions were used to deliver a suite of separate models. These comprise the 

counties of Harris (with 780 tracts covering the central Houston region), Dallas (526 tracts), 

Bexar (361 tracts in central San Antonio), and Travis
2
 (215 tracts in central Austin).  

 As noted earlier, a relatively standard spatial-error specification (Cressie 1993, Anselin 

1988) was employed for Model 3, in order to predict the average fuel economy of LDVs in each 

tract. Thanks to the continuous nature of the response variable (average fuel economy), sample 

size is not an issue, and this model was estimable using all census tracts across Texas (n = 

5,188). Model 3’s parameters were estimated using classical maximum likelihood estimation 

techniques, via the R programming language.  

 

MODEL 1 RESULTS, FOR HEV AND NON-HEV COUNTS 

To evaluate the performance between spatial and aspatial models, goodness-of-fit statistics of 

three model specifications were compared using each of the four counties’ data sets. The first 

model shown is the original Poisson lognormal MCAR specification, the most behaviorally 

flexible (and complicated) of the three. The second is a Poisson lognormal CAR (   and     =0), 

which allows for spatial dependence but removes cross-correlation among vehicle types. The last 

model tested uses a Poisson-lognormal multivariate specification (               ), which 

ignores spatial dependence but still permits cross-correlation. Table 2’s comparison of average 

log-likelihood values (after convergence of the Bayesian MCMC sample chains) and deviance 

information criterion (DIC) values of these models suggest that the original model, with an 

MCAR specification, outperformed the simpler models (Table 2), as expected.  

 Table 2 also shows Model 1’s parameter estimates for all four counties. The direction and 

magnitude of all covariates’ effects, on vehicle ownership rates (per person), are consistent 

across counties, with a few exceptions (in cases of non-statistically and non-practically 

significant variables). Most variables are statistically significant (with pseudo t-statistic more 

than 1.64 or less than -1.64), and those that are most practically significant (as judged by highly 

elastic behaviors) have their estimates shown in bold.  All elasticity estimates were generated by 

increasing each covariate’s value by 1% in each census tract and obtaining the average of 

                                                           
2
 Models 1 and 2 were calibrated for Travis County using the additional covariates of employment density and land 

use balance.  



proportional changes in the county’s total/overall vehicle ownership rate predictions (for each of 

the two vehicle classes).   

            The presence of children (persons under 17 years of age) exhibits a positive
3
 (and 

statistically significant) association with non-HEV ownership rates in Bexar and Travis counties. 

A plausible interpretation is that greater shares of children indicates the presence of more 

families, which tend to favor cars of larger size, and most larger vehicles are not available in 

hybrid design. Similarly, median age of tract residents positively affects both vehicle ownership 

rates (HEV and non-HEV) across all counties, with the exception of HEV ownership rates in San 

Antonio’s Bexar County. This effect is very practically significant in Dallas County, where  one-

percent increase in the median age of population (in each tract) is predicted to come with an 

average 1.07 percent increase in HEV ownership rates (per person). 

 A high share of males leads to higher ownership rates (and counts), regardless of vehicle 

type and location. Evidently, males prefer to own more cars (and trucks), and have a preference 

for hybridization (perhaps because males drive more than females, on average [according to the 

2009 NHTS], and so can harness more HEV fuel savings). Their effects are substantial: the 

average increase in HEV ownership rates following a one-percent increase in each tract’s 

fraction of males are 3.62, 3.98, 2.43, and 1.99 percentage points - across Bexar, Dallas, Harris, 

and Travis counties, respectively. (The elasticities for non-HEV ownership rates are 1.25, 1.68, 

0.78, and 3.37, respectively.).  

 Race and ethnicity were controlled for in these regressions, with the share of African 

Americans having a statistically significant effect. This race variable predicted lower vehicle 

ownership rates in all four counties, for both vehicle types (except in the case of Harris County’s 

non-HEV ownership, where it was not statistically significant). In Dallas and Harris Counties, 

African Americans 21.5 and 19.5 percent of the population, respectively, and offer significant 

HEV ownership impacts in these counties.   

 Average household size is found to have significant (both statistically and practically
4
) 

negative effect on HEV ownership levels. As alluded to above, larger households may have seek 

to buy larger vehicles than is available in hybrid versions, to accommodate children, friends, 

pets, vacation baggage for recreational trips, and large shopping items (Turrentine and Kurani 

2007). When hybrid versions are available, they are often much more expensive: e.g., the 

Chevrolet Tahoe hybrid is the most cost-effective SUV of its size, but $13,000 costlier than the 

conventional Tahoe (Wiesendelder 2013).  

 The share of population with higher education (i.e., at least a Bachelor's degree) has a 

consistently positive and statistically significant (but not very practically significant) impact on 

HEV ownership rates. Well-educated individuals know more about environmental issues, and 

new technologies; and owning a less environmentally damaging vehicle may allay some of their 

concerns (Egbue and Long 2012, Axsen and Kurani 2013). Moreover, HEV ownership can 

symbolize and communicate to others their personal values, as related to environmental 

awareness (Heffner et al. 2007).  

 While a host of other variables, like parking prices, transit provision, jobs access, and 

local land use balance would be valuable to have in these models, they are not available at the 

Census tract level across Texas. However, population density may proxy for several of these 

                                                           
3
 The presence of children is negatively associated with non-HEV ownership rates is Dallas and Harris counties, but 

it is not statistically significant.  
4
 The effect of average household size on HEV ownership rates of Travis County is also negative, but neither 

statistically nor practically significant.  



built environment and access attributes (Potoglou and Kanaroglou 2008), and is available at the 

tract level. As expected, population density has a negative and statistically significant impact on 

HEV and non-HEV ownership levels (Chu 2002). Elasticity magnitudes are relatively high for 

the population density variable, in several cases (e.g., -0.72 for Austin HEVs and -0.61 for Dallas 

HEVs), suggesting that this is a key variable (as confirmed by Chen et al.’s [2014]). 

 As expected, the share of workers commuting to work by driving has a positive (and 

statistically significant)
 
impact on both vehicle ownership rates in Bexar and Harris counties

5
, 

but was estimated to be practically significant only for HEV ownership rates in San Antonio’s 

Bexar County. It is surprising that average household income shows no significant impacts 

(except for non-HEV ownership rates in Bexar County), perhaps due to the confounding effects 

of other income-related variables in the model. For example, the fraction of high-income 

households (those with annual income over $100,000) is positively associated with greater HEV 

ownership and lower non-HEV ownership rates. These results may reflect the tendency of high-

income households to choose pricier vehicles over more (short-term) economical ones, rather 

than purchasing more vehicles (Prevedouros and Schofer 1992). Related to this, the tract-wide 

share of families living below the U.S. poverty level negatively
6
 affects vehicle ownership rates 

of both types, but mostly significant for HEV ownership rates. Perhaps, financially 

disadvantaged people cannot afford HEVs’ relatively higher prices (Gallagher and Muehlegger 

2011), though fuel savings may offset such expenses over time (Tuttle and Kockelman 2012).   

 The positive and statistically significant coefficient on the land use balance (entropy) 

variables suggests higher vehicle ownership rates (per person) in Travis County’s (Austin’s) 

more mixed-use locations, per capita, perhaps due to smaller households sizes with fewer 

children and relatively high income per capita in such locations. Moreover, employment density 

is negatively associated with vehicle ownership rates in Travis County, as expected (due to a 

tendency for higher land values and relative scarcity of low-cost parking in more jobs-rich 

locations). However, Travis County’s jobs-density variable is only statistically significant for 

HEV ownership rates. 

 The second-order autocorrelation coefficients,    and   , seek to account for missing 

variables that affect vehicle ownership rates and vary over space, such as parking availability and 

congestion. The autocorrelation coefficients for both types are highly significant, but coefficients 

for HEV ownership rates (   = {0.79, 0.81, 0.76, 0.74}, with t-stats. = {8.1, 9.2, 8.5, 7.1} for 

Bexar, Dallas, Harris, and Travis counties, respectively) are remarkably and consistently high 

across all counties, suggesting social contagion effects (Keith 2012, Lane and Potter 2007) and a 

high spatial clustering of HEVs (Chen et al. 2014).          

 The extremely high (and very statistically significant) aspatial correlations (within a 

census tract) between HEV and non-HEV adoption rates in each county are also of interest, and 

not unexpected (with    = {0.58, 0.77, 0.66, 0.60}, and pseudo t-statistics = {4.1, 7.2, 3.8, 5.1}).  

In other words, high HEV and non-HEV adoption rates tend to co-exist in individual census 

tracts due to missing factors, which vary in the space. Interestingly, spatially-lagged cross-

response correlation coefficient (  ) estimates are quite low across all counties, suggesting that 

HEV adoption rates are not much affected by the non-HEV adoption rates in neighboring census 

tracts, which appears very reasonable. 

                                                           
5
 The share of workers commuting by car and has an unexpected negative impact on the HEV ownership rates of 

Dallas County, but it is not practically or statistically significant.   
6
 The share of families below poverty level is exceptionally positively affecting the non-HEV ownership rates of 

Dallas, but it is not statistically significant.    



TABLE 2. Comparison of Spatial and Aspatial Specification Results for Model 1 (HEV and Non-HEV Ownership Rates) 

  

Model Specification 

San Antonio (Bexar County, 

n=361 tracts) 

Dallas (Dallas County, n=526 

tracts) 

Houston (Harris County, 

n=780 tracts) 

Austin (Travis County, n=215 

tracts) 

DIC 
Average log 

likelihood 
DIC 

Average log 

likelihood 
DIC 

Average log 

likelihood 
DIC 

Average log 

likelihood 

Poisson Log-Normal 

MCAR 
6331 -5720 9139 -8247 13549 -12284 4033 -3632 

Poisson Log-Normal  

CAR (         ) 
6952 -6199 9828 -8641 14790 -13183 4725 -4101 

Poisson Log-Normal  

Multivariate (  ,   & 

    ) 

7199 -6308 9967 -8835 14986 -13567 4802 -4285 

Model 1’s Parameter Estimates (using the Poisson-Lognormal MCAR specification) 

Variables Type 

Mean 

estimate 

(t-stat.) 

San 

Antonio 

elasticity 

Mean 

estimate   

(t-stat.) 

Dallas 

elasticity 

Mean 

estimate   

(t-stat.) 

Houston 

elasticity 

Mean 

estimate   

(t-stat.) 

Austin 

elasticity 

Constant 

HEV 

(1) 

-9.16 

(-12.4) 
- 

-7.92 

(-8.4) 
- 

-7.52 

(-24.5) 
- 

-7.54 

(-9.3) 
 

Non-

HEV 

(2) 

-3.14 

(-29.4) 
- 

-1.92 

(-7.2) 
- 

-1.70 

(-16.8) 
- 

-3.01 

(-7.7) 
 

Fraction of 

population 16 

years old or 

younger 

1 
2.77 

(0.8) 
0.652 

1.75 

(1.2) 
0.216 

2.34 

(1.3) 
0.564 

1.05 

(0.9) 
0.126 

2 
1.06 

(2.5) 
0.261 

-1.34 

(-1.4) 
-0.124 

-1.06 

(-0.8) 
-0.112 

2.94 

(3.04) 
0.595 

Median age of 

population 

(years) 

1 
-3.17E-03 

(-0.6) 
-0.121 

2.88E-02 

(3.8) 
1.075 

1.46E-02 

(2.1) 
0.374 

2.48E-02 

(2.2) 
0.838 

2 
1.41E-02 

(4.2) 
0.512 

1.06E-02 

(2.8) 
0.363 

8.14E-03 

(2.4) 
0.245 

-7.95E-03 

(-1.2) 
-0.266 

Male fraction 

1 
6.87 

(7.2) 
3.621 

7.12 

(6.5) 
3.982 

6.43 

(7.3) 
2.435 

3.91 

(2.6) 
1.994 

2 
2.45 

(8.4) 
1.253 

3.21 

(5.8) 
1.683 

1.56 

(5.4) 
0.789 

6.56 

(8.7) 
3.371 

African 

American 

fraction 

1 
-0.72 

(-0.9) 
-0.048 

-1.28 

(-5.2) 
-0.224 

-0.65 

(-4.8) 
-0.001 

-2.64 

(-3.5) 
-0.219 

2 -0.62  -0.046 -4.23E-02 -0.008 4.12E-02 0.008 -1.39 -0.115 



(-2.0) (-0.4) (0.5) (-1.8) 

Average 

household size 

1 
-0.85 

(-4.4) 
-2.331 

-0.99 

(-10.5) 
-2.456 

-0.75 

(-10.6) 
-2.208 

-0.42 

(-2.6) 
-0.956 

2 
-1.62E-02 

(-0.4) 
-0.045 

7.36E-02 

(1.5) 
0.213 

0.12 

(6.1) 
0.389 

-0.47 

(-3.1) 
-1.151 

Fraction of 

population with 

Bachelor’s 

degree or higher 

1 
3.11 

(2.3) 
0.910 

2.23 

(3.2) 
0.814 

1.15 

(4.1) 
0.278 

1.36 

(3.1) 
0.582 

2 
0.12 

(0.8) 
0.036 

0.22 

(1.1) 
0.062 

2.22E-02 

(0.5) 
0.005 

-1.06 

(-3.6) 
-0.451 

Population 

density (per 

square mile) 

1 
-3.15E-05 

(-3.1) 
-0.455 

-5.31E-05 

(-5.2) 
-0.612 

-1.23E-05 

(-2.3) 
-0.027 

-7.94E-05 

(-4.5) 
-0.724 

2 
-2.11E-05 

(-3.7) 
-.091 

-3.12E-05 

(-4.5) 
-0.112 

-1.06E-05 

(-2.7) 
-0.079 

-5.69E-05 

(-5.1) 
-0.232 

Fraction of 

workers 

commuting by 

driving 

1 
1.88 

(2.5) 
2.214 

-0.73 

(-.7) 
-0.626 

0.81 

(2.1) 
0.105 

0.36 

(0.6) 
0.466 

2 
1.12 

(6.1) 
0.867 

0.28 

(1.2) 
0.112 

0.55 

(3.3) 
0.521 

0.98 

(2.5) 
0.715 

Mean household 

income (dollars) 

1 
2.11E-06 

(0.6) 
0.115 

-1.02E-06 

(-0.8) 
-.0718 

7.82E-07 

(0.5) 
0.062 

-1.44E-06 

(-0.5) 
-0.111 

2 
4.11E-06 

(2.1) 
0.256 

-8.11E-07 

(-0.5) 
-0.044 

-7.18E-07 

(-0.3) 
-0.037 

-2.41E-06 

(-1.2) 
-0.186 

Fraction of 

households with 

income  over 

$100,000 

1 
0.45 

(0.7) 
0.091 

1.11 

(2.1) 
0.132 

1.38 

(3.8) 
0.292 

0.97 

(1.1) 
0.226 

2 
-1.12 

(-2.2) 
-0.121 

-0.56 

(-1.8) 
-0.097 

-9.23E-02 

(-0.2) 
-0.045 

-9.15E-02 

(-0.7) 
-0.025 

Fraction of 

families below 

poverty level 

1 
-1.01 

(-3.1) 
-0.126 

-1.25 

(-2.8) 
-0.278 

-1.68 

(-3.8) 
-0.319 

-0.26 

(-0.5) 
-0.032 

2 
-8.15E-02 

(-0.3) 
-0.011 

4.12E-02 

(0.1) 
0.007 

-0.22 

(-1.3) 
-0.061 

-0.68 

(-1.9) 
-0.086 

Land use balance 

1 - - - - - - 
0.30  

(1.8) 
0.231 

2 - - - - - - 
0.44 

(2.5) 
0.303 

Employment 

density 
1 - - - - - - 

-6.88E-05 

(-1.7) 
-0.081 



 Notes: DIC is the deviance information criterion
7
. Highly elastic elasticities (|| > 1.0) are shown in bold. 

                                                           
7
The model with the smallest DIC is estimated to be the model that will best predict another sample data set with the same structure as that currently observed. 

     ̅    , where   is effective number of parameters and  ̅ is posterior mean of deviance  ( )   ( )                    , where   is a constant 

that cancels across calculations and   is a vector of unknown parameters.  

2 - - - - - - 
-3.92E-05 

(-0.8) 
-0.043 

   
0.58 

(4.1) 
- 

0.77 

(7.2) 
- 

0.66 

(3.8) 
- 

0.60 

(5.1) 
- 

   
0.21 

(1.8) 
- 

.09 

(1.6) 
- 

0.19 

(1.2) 
- 

0.18 

(2.2) 
- 

   
0.79 

(8.1) 
- 

0.81 

(9.2) 
- 

0.76 

(8.5) 
- 

0.74 

(7.1) 
- 

   
0.55 

(6.2) 
- 

0.59 

(4.2) 
- 

0.62 

(5.1) 
- 

0.62 

(5.9) 
- 



MODEL 2 RESULTS, FOR VEHICLE COUNTS BY FUEL ECONOMY CATEGORY 

Table 3 shows Model 2’s parameter estimates. Since most HEVs fall into the third (“fuel 

efficient”) vehicle category, some Model 2 coefficients are quite consistent with those estimated 

for Model 1. The presence of children yields no significant effect on the adoption rates of fuel 

efficient and inefficient vehicles, but has a positive and statistically significant effect on adoption 

rates or counts of regular vehicles in two counties (for San Antonio and Austin locations). As in 

Model 1, higher (median) ages (of tract residents) and shares of males have significantly positive 

associations with all rates of vehicle ownership. Elasticity values of 1.10 to 2.17 (across the 4 

counties) suggest that a higher share of males will have the greatest practical effect on the 

purchase of fuel-efficient vehicles. A higher tract share of African Americans and higher 

population density offer a negative association with vehicle ownership rates, regardless of fuel 

efficiency level, presumably for the same reasons discussed above, in the context of Model 1 

results. Population density remains rather a key here, with elasticity magnitudes ranging from 

0.099 to 0.332 (for the categories of fuel-inefficient vehicles in Houston and regular vehicles in 

Austin). Unlike many of the other covariates, density is a variable that almost has no bounds, and 

can vary by orders of magnitude in U.S. data sets; thus, its cumulative effects on ownership, 

vehicle choices, travel distances, and fuel use can be quite sizable. 

 Rising average household size is associated with lower ownership rates of fuel efficient 

vehicles and higher fuel-inefficient vehicle adoption rates across all counties. As suggested 

earlier, this may be attributed to larger households seeking more full-size vehicles (e.g., SUVs 

and minivans), which typically have fuel economy ratings below 25 mi/gal (U.S. Department of 

Energy 2014)
8
. As discussed earlier, for Model 1, higher education levels are positively 

associated with higher ownership of fuel efficient vehicles and lower rates of fuel-inefficient 

vehicles
9
.  

 The share of workers that commute by driving has positive and significant effects on all 

three vehicle ownership rates in Bexar and Harris counties, as expected. (Dallas County has 

negative coefficient estimates, but it is statistically and practically insignificant.) While average 

household income is not a significant predictor, the share of high-income households has positive 

(and significant except in Travis County) effects on ownership of more efficient vehicles in all 

counties, with strongest responses for San Antonio’s and Dallas’ central counties (thanks to 

elasticity estimates of 0.37 and 0.14, respectively). As noted earlier, this underscores the fact that 

fuel-efficient vehicles tend to cost more than other vehicles and are more affordable for higher-

income households (Collins 2013, Prevedouros and Schofer 1992). Moreover, using the Travis 

County model results, greater land use balance is associated with higher vehicle ownership rates 

(in a statistically significant way), while greater employment density is correlated with lower 

vehicle ownership rates (but this latter relationship is statistically significant only for rates of 

fuel-efficient vehicles).   

 As before, spatial autocorrelation values (ρ’s) suggest that sizable spatial clustering 

patterns exist in ownership rates, across all vehicle types (Keith 2012, Lane and Potter 2007). 

Within the same census tract, correlation between fuel-efficient and regular-vehicle ownership 

rates (    ) is not significant, but correlations between rates of fuel-efficient and inefficient 

ownership (    ), and between rates of-fuel inefficient and regular vehicle ownership (    ) are 

                                                           
8
 Austin’s Travis County yields the opposite sign on household size and education levels, but these estimates are not 

significant (and may come from the presence of many college-age students in Travis County, who reside in Travis 

County to attend U.T. Austin and other schools).    
 



significant. Across census tracts, the spatially-lagged cross-correlations for all response pairs are 

statistically insignificant and very low in magnitude, suggesting that levels of fuel efficient 

vehicles in one census tract are not appreciably affected by adoption rates of other types of 

vehicles in neighboring (first- and second-order contiguity) tracts. 



TABLE 3. Model 2’s Parameter Estimates for Vehicle Ownership Counts at Different Fuel Economy Levels, using an MCAR 

Specification 

Variables Type 

San Antonio (Bexar 

County, n=361 tracts) 

Dallas (Dallas County, 

n=526 tracts) 

Houston (Harris County, 

n=780 tracts) 

Austin (Travis County, 

n=215 tracts) 

Mean 

(t-stat.) 
Elasticity 

Mean 

(t-stat.) 
Elasticity 

Mean 

(t-stat.) 
Elasticity 

Mean 

(t-stat.) 
Elasticity 

Constant 

Fuel Efficient 

(1) 

-3.82 

(-5.7) 
- 

-2.37 

(-3.6) 
- 

-2.84 

(-5.3) 
- 

-3.11 

(-3.2) 
- 

Regular 

(2) 

-2.41 

(-4.5) 
- 

-1.77 

(-3.4) 
- 

-2.08 

(-6.3) 
- 

-4.42 

(-3.1) 
- 

Fuel Inefficient 

(3) 

-4.60 

(-8.6) 
- 

-4.31 

(-7.7) 
- 

-4.24 

(-11.4) 
- 

-5.76 

(-8.1) 
- 

Fraction of 

population 16 

years old or 

younger 

1 
2.46 

(0.3) 
0.593 

1.20 

(0.6) 
0.287 

0.52 

(0.9) 
0.126 

0.29 

(0.3) 
0.062 

2 
1.72 

(3.9) 
0.415 

-0.34 

(-0.6) 
-0.0816 

-0.77 

(-0.4) 
-0.188 

0.81 

(2.1) 
0.163 

3 
0.97 

(0.6) 
0.233 

-2.64 

(-0.9) 
-0.625 

-0.79 

(-0.9) 
-0.192 

0.29 

(0.4) 
0.056 

Median age of 

population 

(years) 

1 
-7.11E-03 

(-0.3) 
-0.242 

2.61E-03 

(2.5) 
0.088 

1.11E-02 

(2.7) 
0.707 

1.14E-02 

(3.2) 
0.678 

2 
6.98E-03 

(1.6) 
0.238 

1.69E-02 

(3.8) 
0.574 

1.26E-02 

(4.4) 
0.424 

3.11E-02 

(3.1) 
0.715 

3 
1.79E-02 

(4.1) 
0.613 

1.43E-02 

(5.0) 
0.425 

1.69E-02 

(5.3) 
0.569 

1.53E-02 

(3.9) 
0.502 

Male fraction 

1 
2.24 

(2.7) 
1.101 

3.78 

(4.4) 
1.893 

2.62 

(3.6) 
1.551 

3.11 

(2.3) 
2.178 

2 
1.56 

(2.4) 
0.872 

2.56 

(3.7) 
1.085 

1.51 

(3.6) 
0.858 

3.67 

(2.8) 
1.871 

3 
2.07 

(3.1) 
0.821 

2.60 

(3.5) 
0.933 

2.44 

(5.2) 
0.852 

6.31 

(4.2) 
1.562 

African 

American 
1 

-1.06 

(-4.4) 
-0.098 

-0.40 

(-3.2) 
-0.086 

-8.44E-02 

(-4.9) 
-0.046 

-1.62 

(-3.3) 
-0.134 



fraction 
2 

-0.72 

(-3.8) 
-0.053 

-0.84 

(-1.4) 
-0.062 

8.89E-02 

(0.7) 
0.017 

-1.12 

(-2.4) 
-0.091 

3 
-1.05 

(-5.5) 
-0.078 

-0.71 

(-1.5) 
-0.065 

-0.28 

(-1.8) 
-0.056 

-0.68 

(-2.6) 
-0.061 

Average 

household size 

1 
-0.21 

(-2.5) 
-0.592 

-0.25 

(-3.3) 
-0.702 

-0.29 

(-2.7) 
-0.813 

-4.56E-02 

(-0.6) 
-0.121  

2 
-4.08E-02 

(-0.6) 
-0.115 

3.43E-03 

(0.05) 
0.009 

5.57E-02 

(0.7) 
0.160 

0.14 

(1.5) 
0.398 

3 
0.15 

(2.2) 
0.425 

0.26 

(3.9) 
0.740 

0.15 

(4.2) 
0.450 

0.52 

(3.8) 
1.267 

Fraction of 

population with 

Bachelor’s 

degree or higher 

1 
0.41 

(2.4) 
0.101 

0.25 

(3.9) 
0.076 

0.63 

(3.4) 
0.171 

-7.89E-02 

(-0.6) 
-0.034 

2 
0.33 

(1.4) 
0.079 

0.27 

(1.2) 
0.075 

-5.97E-02 

(-0.5) 
-0.016 

-0.23 

(-0.2) 
-0.098 

3 
-0.26 

(-1.2) 
-0.065 

-0.69 

(-2.8) 
-0.198 

-1.16 

(-9.0) 
-0.313 

-0.89 

(-2.1) 
-0.212 

Population 

density (per 

square mile) 

1 
-3.92E-05 

(-4.4) 
-0.157 

-4.91E-05 

(-8.5) 
-0.261 

-5.56E-05 

(-2.1) 
-0.283 

-6.19E-05 

(-9.2) 
-0.291 

2 
-4.53E-05 

(-6.4) 
-0.181 

-4.38E-05 

(-9.4) 
-0.151 

-7.12E-06 

(-3.1) 
-0.036 

-8.31E-05 

(-6.1) 
-0.332 

3 
-6.11E-05 

(-8.4) 
-0.241 

-3.95E-05 

(-7.9) 
-0.178 

-1.94E-05 

(-7.4) 
-0.099 

-7.19E-05 

(-7.8) 
-0.306 

Fraction of 

workers 

commuting by 

driving 

1 
1.50 

(5.8) 
0.812 

-0.19 

(-0.3) 
-0.151 

0.64 

(3.5) 
0.494 

1.11 

(1.3) 
0.747 

2 
0.98 

(4.8) 
0.775 

-0.18 

(-0.3) 
-0.141 

0.49 

(4.4) 
0.382 

0.48 

(0.9) 
0.435 

3 
0.53 

(2.6) 
0.422 

3.11E-02 

(0.1) 
0.024 

0.33 

(2.6) 
0.253 

0.51 

(1.5) 
0.342 

Mean 

household 

income 

(dollars) 

1 
7.71E-06 

(1.4) 
0.485 

-2.72E-06 

(-0.6) 
-0.192 

3.12E-06 

(0.2) 
0.226 

- 5.78E-06 

(-1.4) 
-0.413 

2 
3.71E-06 

(1.6) 
0.233 

-2.85E-07 

(-0.3) 
-0.020 

-2.19E-07 

(-0.5) 
-0.016 

-3.67E-06 

(-1.1) 
-0.247 



3 
3.09E-06 

(2.2) 
0.194 

-4.03E-06 

(-0.4) 
-0.284 

-3.37E-06 

(-0.3) 
-0.245 

-1.98E-06 

(-1.3) 
-0.156 

Fraction of 

households with 

income  over 

$100,000 

1 
2.22 

(4.9) 
0.370 

0.74 

(2.9) 
0.142 

0.25 

(4.7) 
0.053 

3.13E-02 

(0.8) 
0.008 

2 
-1.21 

(-3.4) 
-0.202 

-0.72 

(-2.3) 
-0.137 

2.19E-02 

(0.2) 
0.004 

-8.12E-02 

(-0.1) 
-0.023 

3 
-0.82 

(-2.3) 
-0.137 

-0.71 

(-2.1) 
-0.126 

-1.43E-02 

(-0.08) 
-0.003 

-0.91 

(-1.5) 
-0.167 

Fraction of 

families below 

poverty level 

1 
-0.54 

(-2.1) 
-0.078 

-0.84 

(-3.2) 
-0.129 

-0.81 

(-4.4) 
-0.123 

-0.33 

(-0.4) 
-0.042 

2 
-0.44 

(-3.1) 
-0.064 

3.81E-02 

(0.2) 
0.006 

-0.30 

(-2.6) 
-0.046 

-0.25 

(-2.9) 
-0.034 

3 
-0.10 

(-0.5) 
-0.015 

0.91 

(4.1) 
0.139 

-0.10 

(-0.8) 
-0.016 

0.16 

(0.2) 
0.025 

Land use 

balance 

 

1 - - - - - - 
0.21 

(2.1) 
0.322 

2 - - - - - - 
0.11 

(2.9) 
0.412 

3 - - - - - - 
0.34 

(1.9) 
0.335 

Employment 

density  

1 - - - - - - 
-3.32E-04 

(-2.1) 
-0.112 

2 - - - - - - 
-8.27E-05 

(-0.9) 
-0.063 

3 - - - - - -  
-6.11E-05 

(-0.3) 
-0.045 

     
0.32 

(1.4) 
- 

0.39 

(1.4) 
- 

0.36 

(1.3) 
- 

0.45 

(1.6) 
- 

     
0.40 

(2.0) 
- 

0.49 

(4.1) 
- 

0.52 

(3.9) 
- 

0.56 

(4.1) 
- 

     
0.59 

(2.9) 
- 

0.58 

(5.0) 
- 

0.67 

(3.6) 
- 

0.61 

(3.6) 
- 



 Note: Highly elastic cases (|| > 1.0) are shown in bold.

     
2.37E-02 

(1.7) 
- 

8.94E-02 

(1.9) 
- 

5.35E-02 

(1.9) 
- 

5.25E-02 

(2.8) 
- 

     
6.36E-02 

(1.8) 
- 

0.15 

(1.3) 
- 

0.10 

(1.4) 
- 

0.31 

(1.4) 
- 

     
0.13 

(1.6) 
- 

0.16 

(1.3) 
- 

0.11 

(1.3) 
- 

0.18 

(1.2) 
- 

   
0.75 

(7.2) 
- 

0.89 

(6.5) 
- 

0.88 

(9.2) 
- 

0.71 

(6.9) 
- 

   
0.55 

(4.9) 
- 

0.73 

(6.1) 
- 

0.61 

(2.8) 
- 

0.61 

(5.7) 
- 

   
0.67 

(5.5) 
- 

0.82 

(6.6) 
- 

0.63 

(5.6) 
- 

0.59 

(6.8) 
- 

Deviance information criterion 

(DIC) 
11,238 - 16,322 - 24,453 - 6,655 - 



MODEL 3 RESULTS FOR AVERAGE FUEL ECONOMY  

Table 4 shows Model 3’s parameter estimates across Texas tracts. It is important to note that a 

tract having more fuel efficient vehicles (per resident) can also have a lower overall/average fuel 

economy value, due to an even higher count of inefficient vehicles. Thus, the results of Models 2 

and 3 are not directly comparable here. 

 Table 4’s robust LM test results suggest that one can use either a spatial error or spatial 

lag model specification here. A spatial error model is generally more behaviorally defensible, 

however, since it implies that unobserved factors are creating the spatial autocorrelation in model 

residuals, while a spatial lag model implies that response values in one location are 

simultaneously affecting responses values in nearby locations. Moreover, Kissling and Carl 

(2008) found that the spatial error model outperformed the spatial lag model across 1080 

simulated data sets. For these reasons, a spatial error dependence specification was employed 

here, for Model 3.   

 All factors in Model 3 are found to be statistically significant predictors of average fuel 

economy. Census tracts with higher shares of children, males, and lower-income households are 

predicted to have lower average fuel economy, whereas a higher fraction of African Americans, 

Bachelor’s degree holders, workers commuting by driving, and high-income households come 

with higher tract-level fuel economy. Higher median age, household size, and income variables, 

along with lower population density, are associated with lower fuel economy. A very high 

pratical magnitude (+0.943) and statistical significance (likelihood ratio test p-value of 0.000) for 

the autoregressive error coefficient implies the existence of high spatial correlation among 

missing variables that affect average fuel economy and vary over space (like jobs densities, land 

values, and distance to each region’s CBD).  

 The small variation ( = 0.825 mi/gal) in tract-level average fuel economy may be the 

primary reason behind very low elasticity values, so standardized coefficients were estimated, by 

multiplying each slope coefficient estimate by the standard deviation (SD) in the associated 

covariate (as shown in Table 1) and dividing by the SD on the response variable (tract-average 

fuel economy: SD = 0.825 mi/gal). This renders each “Std. Coef.” dimensionless, as a metric of 

how many SDs in the response variable once can expect following a 1 SD change in the 

associated covariate. These standardized coefficient values are much more telling than the 

elasticities: they suggest that educational attainment, age, income, and then household size (in 

that order) are the most practically significant among the covariates. Only educational attainment 

is associated with a practically significant and positive improvement in fuel economy; tract-level 

increases in median age, average income, and average household size work against this desirable 

feature, of a more environmentally sustainable fleet. 

 

TABLE 4. Lagrange Multiplier Test Results and Model 3’s Parameter Estimates, for Average 

Fuel Economy, using a Spatial Error Specification (n = 5,188 tracts across Texas) 
Robust LM Test   LM Test Statistic P-value 

Error lag test  4480.6 0.000 

Dependent variable lag test 1050.1 0.000 

Model 3’s Parameter Estimates 

Explanatory Variable  Coef. Std. Coef. Z-value Elasticity 

Intercept 21.74 - 137.8 - 

Fraction of population 16 years old or younger -1.232 -0.089 -6.7 -0.014 

Median age (years) -0.028 -0.227 -22.4 -0.052 

Male fraction -0.853 -0.035 -5.10 -0.022 



African American fraction 0.681 0.136 14.0 0.004 

Average household size (# persons) -0.298 -0.180 -12.6 -0.042 

Fraction of population with Bachelor's degree or higher 1.120 0.259 16.1 0.014 

Population density (per square mile) 2.55E-05 0.102 12.6 0.004 

Fraction of workers commuting by driving 0.199 0.022 3.2 0.008 

Mean household income (dollars per year, in 2010) -5.1E-06 -0.225 -13.8 -0.018 

Fraction of households with income  over $100,000 0.327 0.065 3.5 0.003 

Fraction of families below poverty level -0.443 -0.066 -7.3 -0.003 

Simultaneous autoregressive error coefficient (λ) 0.943 - 140.2 - 

Likelihood ratio test on λ 4673.2 (p-value = 0.000) 

Akaike information criterion (AIC) 3368.5 (vs. 8037.9 for OLS model) 

Note: Practically significant covariates have their standardized coefficients shown in bold.  

 

CONCLUSIONS 

This study employed a Poisson-lognormal CAR model to anticipate tract-level counts of HEVs 

and non-HEVs, fuel efficient and inefficient vehicles across Texas’ most populous cities, along 

with a spatial error model for average fuel economy across all Texas tracts. Model results 

identify demographic (including population density) factors that most affect HEV ownership 

rates, vehicle ownership by fuel economy categories, and the average fuel economy of registered 

LDVs in each tract.  

 Results of the count models suggest that household size, resident gender, household 

income, jobs density, and education levels are key predictors for HEV adoption rates and fuel 

economy choices, though average fuel economy does not vary much across tracts (with  = 19.2, 

and  = 0.82 mi/gal). It appears that larger households tend to not purchase HEVs or other fuel 

efficient vehicles, presumably due to a preference for larger vehicles (e.g., SUVs and minivans 

[Kockelman and Zhao 2000]), and possibly due to higher up-front pricing of fuel-saving 

technologies. Higher population densities are associated with statistically significantly lower 

vehicle ownership rates (regardless of vehicle type), presumably due to better access options to 

destinations without a private vehicle and due to more parking challenges or costs. All three 

model specifications exhibit high (and statistically significant) spatial autocorrelations and local 

(within a tract) cross-response correlations in unobserved attributes (like concern for the 

environment, parking challenges, manufacturers’ marketing campaigns, locations of vehicle 

dealerships, and access to neighbors and friends who already own HEVs and/or vehicles that 

enjoy higher fuel economy). While the Bayesian sampling methods and the MCAR model 

specification are not familiar techniques for many data analysts, neglect of such correlations can 

result in biased parameter estimates. The spatial error model is more accessible to a variety of 

potential users (and exists in various software programs); it also can handle much larger data sets 

(though it effectively requires a continuous response variable). 

 Although modeling vehicle-choice behavior at the level of individuals or households, 

with disaggregate data, can also prove quite informative for understanding HEV ownership, such 

data are obtained for small samples of the population, and only sporadically. (For example, 

typically 1 percent or fewer households in a region provide data for a regional household travel 

survey, which is undertaken every 5 to 10 years. In contrast, DMV records contain all registered 

vehicles, continuously in time.) This study demonstrates how one can use rigorous spatial 

modeling methods at the census tract or other levels to understand vehicle ownership choices and 

fuel economy relationships across counties and a large state. 

 



 Opportunities for future research in this area are many. For example, while it is often 

challenging to obtain tract level data of various land use, transit provision, and other relevant 

variables across a state like Texas, inclusion of such covariates will provide even more insight 

for planners, policy-makers, automobile manufacturers, and other interested readers. Access to 

count data on PEVs (as these become non-negligible), average vehicle age information, and 

other features of DMV databases will also inform these analyses, while helping chart a course for 

charging infrastructure investments and other decisions. Vehicle age is relevant, for example, 

because lower-income households are less likely to buy new vehicles, and so may be holding less 

fuel efficient vehicles as rising Corporate Average Fuel Economy standards ensure the nation’s 

new-sales fleet becomes more efficient. This study also was able to estimate rather complex 

MCAR count models for only subsets of Texas tracts, due to computing limitations; advances in 

Bayesian estimation and software programming may eventually permit estimation of such 

models for much larger data sets. 

 While ownership of an HEV does not require special charging stations, larger power 

transformers, or very large batteries on board, their rising presence does affect future sales, of 

vehicles and gasoline, as well as state and federal gas tax receipts, air quality, and energy 

security. Since early adopters of HEVs are likely to be more sustainability-minded and 

technology savvy than others, on average; so their heavy presence in various neighborhoods may 

well be a strong signal for the early adoption and longer-term registration numbers of plug-in 

EVs in those same locations. Greater understanding of the factors causing spatial clustering in all 

EVs’ adoption rates can help shape environmental policy, infrastructure planning, and vehicle 

marketing. 
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