
 WHAT MATTERS MOST IN DEMAND MODEL SPECIFICATIONS: 1 
2
3
4 
5 
6 
7 
8
9

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

A COMPARISON OF OUTPUTS 

T. Donna Chen
The University of Texas at Austin 

6.9E Cockrell Jr. Hall 
Austin, TX 78712-1076 
donna.chen@utexas.edu 

Kara M. Kockelman 
(Corresponding author) 

E.P. Schoch Professor of Engineering 
Department of Civil, Architectural and Environmental Engineering 

The University of Texas at Austin 
kkockelm@mail.utexas.edu 

Phone: 512-471-0210 
Yong Zhao 

Senior Transportation Planner 
Jacobs Engineering Group 

2705 Bee Cave Rd, Suite 300 
Austin, TX 78746 

yong.zhao@jacobs.com 

The following is a pre-print, the final publication can be found in the Journal of the 
Transportation Research Forum, 52 (1): 71-89, 2015. 

23 
24 
25 

ABSTRACT 26 

This paper examines the impact of specific travel demand modeling (TDM) disaggregation 27 
techniques in the context of small- to medium-sized communities. While larger metropolitan 28 
regions have incorporated behavioral disaggregation into the traditional four-step modeling 29 
framework, small- to medium-sized communities, now also facing plaguing congestion, typically 30 
rely on less sophisticated TDM frameworks. This paper focuses on evaluating specific TDM 31 
improvement strategies for predictive power and flexibility with case studies based on the Tyler, 32 
Texas network and zone system. Model results suggest that adding time-of-day disaggregation, 33 
particularly in conjunction with multi-class assignment, to a basic TDM framework has the most 34 
significant impacts on TDM outputs. Other model improvements shown to impact TDM outputs 35 
include adding a logit mode choice model (particularly in networks with higher shares of non-36 
auto trips) and incorporating a congestion feedback loop (from the assignment step back to the 37 
trip distribution step). For resource-constrained communities, this paper’s results illuminate 38 
which model improvements offer the best prediction and model flexibility for various settings 39 
and scenarios, allowing for more thoughtful (and cost-effective) specification decisions. 40 

Key Words: travel demand modeling, transportation planning for small- to medium- sized 41 
communities, time-of-day disaggregation, multi-class assignment, mode choice, congestion 42 
feedback. 43 
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BACKGROUND 45 

Transportation demand modeling (TDM) techniques have grown progressively more 46 
sophisticated since the introduction of the four-step model in the 1950s. In particular, the 47 
Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 linked air quality objectives 48 
to transportation plans and pushed transportation planners to improve their basic three-step and 49 
four-step transportation models to meet federal mandates. Driven by the need for air quality 50 
forecasts and evaluation of project alternatives, advanced TDMs in larger regions range from 51 
incorporating various levels of behavioral disaggregation within the traditional, trip-based, four-52 
step model framework to microsimulation of individuals’ itineraries and activity-based 53 
approaches to patterns of travel behavior. Transportation planning practices in smaller (and 54 
typically less polluted and congested) communities are generally much less sophisticated, due to 55 
the lack of data and other resources and/or lack of urgency and regulatory requirements. In some 56 
states, like Texas (TTI 2011) and Illinois (Ullah et al. 2011), smaller MPOs rely on their state’s 57 
department of transportation (DOT) for their local TDM framework, and those may lack 58 
behavioral disaggregation (e.g., no user class differentiation or time of day segmentation). In a 59 
2004 survey of MPOs, 49 percent of regions with population under 200,000 rely on the state to 60 
develop travel demand models (Wachs et al. 2007). 61 

Once considered a problem in major metropolitan areas, growing congestion is also plaguing 62 
small-sized communities (populations under 50,000) and medium-sized communities 63 
(populations under 250,000) across the U.S. and around the world. It is also a serious issue in 64 
developing countries, where there is substantial growth in private vehicle ownership. For 65 
example, between 1982 and 2005, total travel delay in 306 small- to medium-sized U.S. 66 
communities increased from 0.8 to 4.2 billion person-hours (Shrank and Lomax 2007). For these 67 
communities, with few (to no) modeling staff members on hand, there is a pressing need to 68 
identify which TDM modeling improvement strategies offer the most effective predictive 69 
capabilities in various scenarios. The data and specification sophistication requirements of any 70 
modeling improvements typically require added time and dollar expenditures, which are serious 71 
constraints on almost all communities. Furthermore, as transportation systems evolve to become 72 
more complex systems, possibly introducing various congestion pricing schemes (e.g., static and 73 
dynamic tolling scenarios) and alternative modes of transit and para-transit (e.g., bus rapid 74 
transit, car sharing, and bike sharing), these communities need to be aware of the most 75 
meaningful opportunities for behavioral disaggregation to reflect such transport system 76 
strategies. 77 

This paper focuses on evaluating specific TDM improvement strategies for predictive power and 78 
flexibility. Examining the predictive performance of these strategies relative to their results can 79 
illuminate model sensitivity, performance, feasibility, and flexibility. This paper presents a case 80 
study of the Tyler, Texas metropolitan statistical area (with 214,821 persons, according to the 81 
2012 Census) to demonstrate the following: 82 

• Impacts of incorporating a mode choice sub-model, via logit and fixed-share specifications.83 
• Impacts of a multi-period time-of-day analysis, versus a 24-hour (one-time-of-day) analysis.84 
• Impacts of using multi-class assignment across user income levels and trip purposes, versus a85 

single class, aggregate trip table. 86 



• Impacts of incorporating a full feedback loop (of travel time estimates back to trip 87 
distribution), for iteration of equilibrium flows and travel times. 88 

BASE CASE SPECIFICATION AND MODEL IMPROVEMENTS 89 
 90 
The base-case scenario that serves as the starting point in this analysis is a simple 24-hour 91 
vehicle-trip-based model with trip generation, trip distribution, and traffic assignment (just three 92 
steps), for three trip purposes. The analysis considers various additions to this straightforward 93 
base model, including a mode-choice step, disaggregation of time-of-day periods and user 94 
classes, and implementation of an outer feedback loop that updates travel times and costs for 95 
every origin-destination pair (back to the trip distribution step), as discussed in more detail 96 
below. 97 

Time-of-Day Considerations 98 

In congested networks, time-of-day (TOD) considerations are critical in TDMs because of driver 99 
responses to congestion (including alternative routes and alternative departure time choices). The 100 
relative utility of a tolled route depends largely on toll charges and perceived travel time savings, 101 
both of which can vary by TOD. While 75 percent of large MPOs assign at least two TOD 102 
periods in their models, many small MPO regions assign average daily (24-hour) travel (Wachs 103 
et al. 2007).  104 

Typically, TOD segmentation is incorporated into TDMs after the mode choice step to reflect 105 
generalized travel costs that vary across different TODs (Parsons Brinckerhoff et al. 2012). 106 
Time-of-day segmentation into four periods (morning peak, mid-day, afternoon peak, and off 107 
peak) is common, but a simple peak-versus-off-peak distinction can also be quite effective when 108 
congestion is not excessive (Hall et al. 2013). 109 

For this analysis, two types of time-of-day segmentation are considered. The first is a simple 110 
(two-period) peak (6 to 9 a.m. and 3 to 6 p.m.) versus off-peak (9 a.m. to 3 p.m. and 6 p.m. to 111 
6 a.m.) structure. This setup may be sufficient in network settings where congestion is not 112 
excessive or highly variable. The second time-of-day segmentation setup considered here 113 
consists of four periods: AM peak (6 to 9 a.m.), midday (9 a.m. to 3 p.m.), PM peak (3 to 114 
6 p.m.), and off-peak (6 p.m. to 6 a.m.). Hourly distributions for personal and commercial trip 115 
making in the modeling scenarios used here are based on TransCAD 6.0’s default rates for 116 
HBW, HBNW, home-based other (HBO), and NHB trip purposes, which are based on Sosslau et 117 
al.’s (1978) NCHRP Report 187. Average auto occupancy rate assumptions are based on the 118 
U.S.’s 2009 National Household Travel Survey (NHTS) values, with auto occupancy rates of 119 
1.1, 1.75, and 1.66 (persons per passenger vehicle) for HBW, HBO, and NHB trip purposes, 120 
respectively. 121 

Mode Choice 122 
 123 
While more than 90 percent of large MPOs include a mode choice step in their models, only 25 124 
percent of small to medium MPOs incorporate mode choice (Wachs et al. 2007). Perez et al. 125 
(2012a) recommends that mode choice be incorporated in all TDMs - preferably via a logit or 126 
nested logit specification. However, modelers seem to agree that, for small- and medium-sized 127 
communities, a simpler approach (such as a fixed-shares model based on travel distance) can 128 



also be effective (Hall et al. 2013).  For these reasons, two mode-choice models were tested in 129 
this evaluation. The first is the fixed-share model, where preference for non-motorized modes 130 
and transit fall with trip distance, as shown in Table 1.  131 
 132 

Table 1. Fixed-Share Mode Splits 133 

Trip Distance Auto Share Transit Share Non-motorized 
Share 

< 1 mile 75% 5% 20% 

1–5 miles 94% 5% 1% 

> 5 miles 98% 2% 0% 

According to the 2012 American Community Survey, the auto share estimates assumed here are 134 
close to Tyler’s work-trip mode splits, where respondents reported relying on personal motorized 135 
vehicles for approximately 92% of their commute trips. The transit share assumptions used here, 136 
however, are more reflective of area region with a more extensive and better-used transit system. 137 
In Tyler, there are only four bus-service routes, and the actual transit share for work trips is less 138 
than 1%.  Tyler simply provides the zone and network systems, and starting demographics, for 139 
this work’s comparisons of model specifications. The results of this work are not a future 140 
forecast of this particular region. 141 

The second mode-choice model used here is a multinomial logit (MNL) model to split trips 142 
across auto, transit, and non-motorized (bike/walk) travel modes. The systematic utility functions 143 
for each of the modes used in this simplified MNL model are based only on the three modes’ 144 
competing travel times. The parameters used are shown in the following equations, and they 145 
yield mode splits similar to those in the fixed-share (Table 1) setting. 146 
 147 

𝑉𝑎𝑎𝑎𝑎 = −0.2×𝐴𝐴𝐴𝐴𝐴𝐴               (1) 148 
𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −2.5 − 0.2×𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇              (2) 149 
𝑉𝑛𝑛 = −1.0 − 0.2×𝑁𝑁𝑁𝑁                                                                                                (3) 150 

 151 
Both mode-choice model specifications shown above reflect a network with fairly low shares of 152 
transit and non-motorized modes. To appreciate whether auto shares may significantly affect 153 
model performance another MNL mode choice model was tested (with higher alternative specific 154 
constants for the non-auto models), to deliver a “High Transit” scenario, with parameters shown 155 
in the following equations. In this scenario, approximately 25% of trips under 5 miles selected 156 
transit or non-motorized modes.   157 
 158 

𝑉𝑎𝑎𝑎𝑎 = −0.2×𝐴𝐴𝐴𝐴𝐴𝐴               (4) 159 
𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −1.0 − 0.2×𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇              (5) 160 
𝑉𝑛𝑛 = −0.5 − 0.2×𝑁𝑁𝑁𝑁                                                                                      (6)                              161 



Table 2 below directly contrasts the mode splits for all trips between the first MNL model with 162 
higher auto mode shares (Scenario Mode Choice 2) and the second MNL model with lower auto 163 
mode shares (Scenario High Transit). 164 
 165 

Table 2. MNL Mode Choice Splits 166 

Scenario Auto Share Transit Share Non-motorized 
Share 

Mode Choice 2 98.0% 1.4% 0.6% 

High Transit 86.4% 12.5% 1.1% 

 167 

User Class and Values of Time 168 
 169 
The utility of a tolled route varies by time of day (due to changing congestion levels and 170 
potentially changing toll rates), and its competitive appeal should reflect some heterogeneity in 171 
travelers and trips. Those who value time highly are more likely to pay tolls to save travel time 172 
than those who value time relatively less. The model’s response to tolls becomes more accurate 173 
with more stratification in VOTT (Perez et al. 2012b), as demand estimates smooth to reflect 174 
more realistic travel patterns. Current best practices in user class segmentation vary widely. The 175 
Ohio DOT segments traveler classes based on household income and trip purpose (commute 176 
versus other), while the Oregon DOT segments only work trips by (three) income levels (Hall et 177 
al. 2013). In their managed lanes guide (for the FHWA), Perez et al. (2012a) recommended class 178 
segmentation across a minimum of four travel purposes, three income groups, and three to four 179 
vehicle types (e.g. auto, truck, commercial vehicle). For toll revenue estimation, URS (2010) 180 
distinguishes three trip purposes (home-based work, home-based non-work, and non-home-based 181 
trips) for person trips and three vehicle classes (light-, medium-, and heavy-duty trucks) for 182 
commercial trips. Within the truck fleet, Slavin (2013) recommends that owner-operator and 183 
fleet-driven trucks be distinguished, due to notable differences in average VOTTs. On a per mile 184 
basis, heavy-duty vehicles add more to pavement deterioration and congestion than a light-duty 185 
vehicle, and are thus tolled at significantly higher rates (Balducci and Stowers 2008).  186 
 187 
This analysis compared the following four types of user class segmentation, using distinct values 188 
of travel time (VOTTs): 189 
 190 
• 2-Class Setup: Light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs). 191 
• 4-Class Setup: LDVs segmented by three income categories and HDVs. 192 
• 7-Class Setup: LDVs segmented by three income categories and two (personal) trip purposes 193 

and HDVs. 194 
• 8-Class Setup: LDVs segmented by three income categories and two (personal) trip purposes 195 

and HDVs segmented by for-hire versus privately-owned carrier status. 196 
 197 
The base scenario here with a 2-class setup is typical of less sophisticated modeling frameworks, 198 
such as that in Texas (TTI 2011) and Georgia (FHWA 2013). The single-class LDV VOTT is 199 
assumed to be $12 per hour, based on Austin, Texas’ (5-county metro population of 1.8 million) 200 
Capitol Area Metropolitan Planning Organization’s value (CAMPO 2010). In reality, Tyler’s 201 



median household income is 18 percent lower than that of Austin ($42,279, versus $51,596, 202 
according to the 2007-2011 American Community Survey’s 5-year estimates). So a $12/hour 203 
LDV VOTT value may be biased high for a (smaller-region) setting, but the purpose of this work 204 
is not to mimic Tyler’s traffic patterns; it is to evaluate different model specifications, for a range 205 
of settings (with more and less transit use, more and less congestion, and different user classes, 206 
for example).   207 
 208 
For the 4-class VOTT segmentation, the three LDV classes are segmented by household income, 209 
as shown in Table 3’s “VOTT for All Trip Purposes” column. For the 7-class and 8-class VOTT 210 
setups, VOTT assumptions vary by income class and trip purpose, as shown in Table 3. These 211 
values are roughly derived from USDOT-suggested values (USDOT 2011). 212 
 213 

Table 3. VOTTs per Vehicle by Traveler Income and Trip Purpose Segmentation 214 
Household Income 

(per year) 
VOTT for All Trip 

Purposes 
VOTT for Work 

Trips 
VOTT for Non-

work Trips 

< $30,000 $8/hour $10/hour $6/hour 

$30,000–$75,000 $12/hour $14/hour $10/hour 

> $75,000 $16/hour $18/hour $14/hour 

 215 
Using data from the 2010 American Community Survey for the Tyler region, 37% of households 216 
fall into the low-income group, 36% fall in the medium-income group, and 27% fall into the 217 
high-income group, as defined by the income thresholds shown in Tables 3.  218 
 219 
For heavy trucks, the single-class HDV VOTT is assumed to be $40 per (truck) hour, based on 220 
values from four larger Texas MPOS: Austin, Dallas-Fort Worth, Houston, and San Antonio 221 
(Hall et al. 2014). Past studies (see, e.g., Smalkoski and Levinson [2005] and Kawamura [2000]) 222 
have estimated significantly higher VOTTs for-hire carriers than for private carriers. FHWA 223 
(2000) found that private carriers handled 55% of the total tons carried by the trucking industry, 224 
with for-hire carriers handling the remaining 45%. In the 8-user-classes scenario examined here, 225 
for-hire carriers (assumed to be 45% of the HDVs) were assigned a $60/hr VOTT and private 226 
carriers (assumed to be 55% of the HDVs) were assigned a $20/hr VOTT. 227 

Congestion Feedback Loop for Behavioral Convergence  228 
 229 
While Perez et al. (2012a) emphasize the importance of incorporating full-model feedback in 230 
achieving a stable equilibrium solution in regions with congestion, actual modeling practices 231 
vary. Like in the case of time-of-day disaggregation, congestion feedback is a common practice 232 
among large MPOs (more than 80 percent include feedback) but less common in small MPOs 233 
(Wachs et al. 2007). Some of the Ohio DOT’s model applications do not use any feedback loops, 234 
while Oregon’s regional models typically run three to four outer loops, primarily due to lack of  235 
congestion in the regions (Hall et al. 2013). Such feedback helps ensure consistency between 236 
model inputs (in the form of travel time and cost assumptions) and model outputs (in terms of 237 
updated times and costs, and associated flows).  238 
 239 



This work evaluates the convergence improvement of introducing an outer feedback loop, for 240 
link-level travel times and based on average travel times between successive model iterations. 241 
Convergence of the iterative model system is determined by calculation of the percent root-mean 242 
squared-error (%RMSE) term for differences in upstream generalized travel costs (as used in the 243 
trip distribution phase: 𝐺𝐶 ′𝑗) and the assignment-based (outputted) generalized travel costs: 244 
𝐺𝐺°𝑗), as shown in the following equation:  245 
 246 

%RMSE =
�∑ �𝐺𝐶t𝑗−𝐺𝐺𝑗

𝑡−1�
2

/(#𝑂𝑂 𝑃𝑃𝑃𝑃𝑃)𝑗

∑ (𝐺𝐺𝑡−1)/(#𝑂𝑂 𝑃𝑃𝑃𝑃𝑃)𝑗
×100                (7) 247 

 248 
where j indexes the 204,304 OD pairs in the Tyler zone system, and generalized travel costs 249 
(GC) are typically for a single mode (the auto mode here) at a single time of day (such as AM 250 
peak period). 251 
 252 
Convergence is established here when the %RMSE summed over all OD pairs is 1 percent or 253 
less as recommended by Slavin et al. (2010). In this study, as in general practice, the %RMSE 254 
for convergence is calculated for a single time of day (when multiple periods exist) for a specific 255 
mode (e.g., the AM peak period for auto mode, as used here). 256 

MODELING SCENARIOS 257 

Tyler Network and Trip Generation 258 
 259 
Tyler, Texas was chosen as the demonstration setting and network for these modeling scenarios, 260 
due to the city’s medium size (approximately 215,000 persons). The region’s 2002 network 261 
includes 452 zones, 1475 nodes, and 2291 directed links. For non-commercial personal travel, 262 
vehicle-trip generation was performed using standard NCHRP Report 365 rates (Martin and 263 
McGuckin 1998) for each of three personal-trip purposes (HBW, HBO, and NHB trips), as is 264 
standard in TransCAD 6.0. The person-trip attraction rates are calculated as functions of the 265 
number of households (HH), whether a zone is in the central business district (CBD), and the 266 
numbers of retail, service, and basic jobs in the zone, as shown in the following equations: 267 
 268 
• HBW Attractions in all zones = 1.45 × Jobs (in zone)            (8) 269 
• HBO Attraction in CBD zones = (2.0 × CBD Retail Jobs) + (1.7 × Service Jobs) + (0.5 × 270 

Basic Jobs) + 0.9 × HHs)                (9) 271 
• HBO Attraction in non-CBD zones = (9.0 × non-CBD Retail Jobs) + (1.7 × Service Jobs) + 272 

(0.5 × Basic Jobs) + (0.9 × HHs)             (10) 273 
• NHB Attraction in CBD zones = (1.4 × CBD Retail Jobs) + (1.2 × Service Jobs) + (0.5 × 274 

Basic Jobs) + (0.5 × HHs)                         (11) 275 
• NHB Attraction in non-CBD zones = (4.1 × non-CBD Retail Jobs) + (1.2 × Service Jobs) + 276 

(0.5 × Basic Jobs) + (0.5 × HHs)             (12) 277 
 278 
For commercial-truck trips, an average of trip rates provided by the Northwest Research Group 279 
for Southern California and for Seattle’s MPO (the Puget Sound Regional Council) was used 280 
here, based on NCHRP Report 716 (Cambridge Systematics 2012). Productions and attractions 281 



were calculated as functions of the total number of households and total number of jobs, as 282 
shown in the following equations: 283 
 284 
• Truck trip Productions = (0.014 × HHs) + (0.062 × Jobs)         (13) 285 
• Truck trip Attractions = (0.020 × HHs) + (0.065 × Jobs)          (14) 286 
 287 
Trip distribution for three trip purposes (HBW, HBO, and NHB) was done via a gravity model 288 
using friction factors generated from NCHRP Report 365’s gamma impedance function, the 289 
default parameters in TransCAD 6.0. Here, the gravity model is doubly constrained by 290 
productions and attractions in each zone, for each of the three trip purposes.  291 
While Loop 49 is Tyler’s current toll corridor, its distance from the region’s downtown and 292 
current traffic volumes (below 2000 AADT on at least two segments) make the route an 293 
unsuitable candidate for testing the sensitivities of the previously described criteria. For example, 294 
any percentage change in Loop 49’s low flows may easily overstate the sensitivity of such results 295 
to the alternative modeling approaches being tested here. For this reason, Loop 323, which is a 296 
19.7-mile four- to six-lane major arterial about 3 miles from the region’s primary downtown, was 297 
used as a (hypothetical) tolled corridor to test the alternative model specifications. Loop 323 is 298 
one of the most congested corridors in the region, due to its relative abundance of retail 299 
destinations and proximity to existing urban development.  300 
 301 
Texas’ current distance-based toll rates average between $0.12 to $0.23 per mile for passenger 302 
vehicles with toll tags (transponders or RFID chips). But minimum toll charges of $0.25 and 303 
$0.19 apply at each mainlane gantry and ramp gantry, respectively. This minimum-charge 304 
situation means that some tolls are as high as $0.40 per mile, for very short intra-city trip 305 
segments on the tolled facility (Hall 2014). Therefore, for purposes of this paper’s test scenarios, 306 
distance-based tolls of $0.20 per mile for autos and $0.55 per mile for trucks are assumed to 307 
apply. 308 



 309 

Figure 1:  Loop 49 and Loop 323 Locations in the Tyler, Texas Highway Network  310 

Scenario Results 311 
 312 
The various model improvements discussed previously were incorporated into test runs on the 313 
Tyler network using TransCAD 6.0. NCHRP Report 365’s daily trip generation and attraction 314 
values were increased 50 percent (by applying a 1.5 multiplier on all trip attraction rates) to 315 
better characterize a moderately congested network.  Those volumes were then increased another 316 
50 percent (or 125 percent versus Tyler’s 2002 trip-making levels) to help reflect a severely 317 
congested network, with all results shown in Table 4. As a reference, the trip counts on Loop 323 318 
on the moderately congested network are about 80 percent of the actual 2012 daily traffic 319 
volumes (Hall 2014) whereas traffic counts on Loop 323 in the severely congested network case 320 
are about 120 percent of the 2012 trip counts. 321 
 322 
As described earlier, the base model is a non-tolled 24-hour assignment setup with a single user 323 
class, no mode-choice step (private vehicle-trips only), a 0.001 network assignment convergence 324 
(gap) criterion1 (as currently used in the Texas DOT’s model framework and no outer feedback 325 

                                                 
1 Convergence gap is defined as 𝐺𝐺𝐺 = ∑ ∑ 𝑓𝑘𝑡𝑘𝑘∈𝐾𝑖∈𝐼 −∑ 𝑑𝑖𝑡𝑚𝑚𝑚,𝑖𝑖∈𝐼

∑ 𝑑𝑖𝑡𝑚𝑚𝑚,𝑖𝑖∈𝐼
, where I is the set of all OD pairs, Ki is the set of all 

paths used by trips traveling between OD pair I, fk is the number of trips taking path k, tk is the travel time on path k, 



loop. Experts (see, e.g., Boyce and Xie [2012], Slave et al. [2012], and Morgan and Mayberry 326 
[2010]) recommend convergence as defined by gaps of 10-4 or less, which is the network 327 
assignment gap defined in all scenarios other than the base model. Building on this Base model, 328 
two alternative base models (Base Alt 1 and Base Alt 2) that recognize two user classes 329 
(commercial trucks and LDVs) were also considered, the first without tolls and the second tolled. 330 
From these alternative base-case models, the model improvements were first tested individually 331 
and then in various combinations (of two or more enhancements/extensions), with full-network 332 
and Loop-323-only VMT, vehicle-hours traveled (VHT) values, and toll revenues compared to 333 
the Base model’s values (as shown in Tables 4 and 5). Results of 36 scenarios are shown in 334 
Tables 4 and 5 (18 for each of the two trip generation or general congestion levels). Additional 335 
scenarios with more congestion and overall lower and higher VOTTs were also run, and are 336 
discussed briefly below. Since Loop 323 is the only true ring road in Tyler with no true substitute 337 
route, to test the different models’ performances in a network with substitute routes, additional 338 
scenarios were also examined where Loop 323 was changed to a tolled four-lane freeway facility 339 
with the existing arterial links converted to parallel frontage roads. It is important to note that 340 
currently the land use along arterial Loop 323 is heavily commercial with abundant driveway 341 
access, and such land use may not be realistic if Loop 323 is converted to an access-controlled 342 
freeway (such as the case in the substitute route scenarios). The results of these runs are included 343 
in Appendix A, and the relevant results are also discussed below. 344 

345 

                                                                                                                                                             
di is the departing demand, and tmin,i is the travel time on the shortest (or minimum-cost) path between OD pair I 
(Morgan and Mayberry 2010). 
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Table 4. Network and Tolled Route Metrics with Moderate Congestion across All Scenarios 346 
  347 
              Network Results Loop 323 Results 

SCENARIO Toll 

# 
Times 
of Day 

User 
Classe

s 
Mode 

Choice 
NA 

Converg. 
Fdbk. 
Loop VHT 

% 
Change VMT 

% 
Change VHT 

% 
Change VMT % Change 

Toll 
Revenue 

Base N 1 1 - 0.001 N 159,266 - 4.662M - 10,793 - 436,920 - $91,753 
Base Alt 1 N 1 2 - 0.0001 N 162,953 2.32% 4.736M 1.57% 11,028 2.18% 445,900 2.06% $93,639 
Base Alt 2 Y 1 2 - 0.0001 N 161,065 1.13% 4.683M 0.46% 10,785 -0.07% 436,501 -0.10% $91,665 

Time-of-day 
1 Y 2 2 - 0.0001 N 164,000 2.97% 4.736M 1.57% 11,059 2.47% 446,193 2.12% $93,700 

Time-of-day 
2 Y 4 2 - 0.0001 N 179,308 12.58% 4.742M 1.71% 11,040 2.29% 444,739 1.79% $93,395 

User Class 1 Y 1 4 - 0.0001 N 159,918 0.41% 4.689M 0.58% 10,917 1.15% 441,683 1.09% $92,753 

User Class 2 Y 1 7 - 0.0001 N 159,443 0.11% 4.757M 2.02% 10,818 0.23% 437,917 0.23% $91,963 

User Class 3 Y 1 8 - 0.0001 N 151,341 -4.98% 4.496M -3.56% 10,376 -3.86% 420,498 -3.76% $88,305 
Mode Choice 

1 Y 1 2 
Fixed-
share 0.0001 N 153,261 -3.77% 4.606M -1.22% 10,730 -0.58% 434,653 -0.52% $91,277 

Mode Choice 
2 Y 1 2 MNL 0.0001 N 159,966 0.44% 4.464M -4.24% 10,473 -2.96% 421,688 -3.49% $93,216 

High Transit Y 1 2 MNL 0.0001 N 139,623 
-

12.33% 4.434M -4.89% 10,251 -5.02% 416,094 -4.77% $87.380 
Feedback 

Loop Y 1 2 - 0.0001 Y 151,445 -4.91% 4.464M -4.24% 10,473 -2.96% 421,688 -3.49% $88,554 

Comb. 1 Y 4 2 - 0.0001 N 179,308 12.58% 4.742M 1.71% 11,040 2.29% 444,739 1.79% $93,395 

Comb. 2 Y 4 4 - 0.0001 N 178,057 11.80% 4.596M -1.43% 10,516 -2.57% 438,946 0.46% $92,179 

Comb. 3 Y 4 7 - 0.0001 N 169,104 6.18% 4.550M -2.41% 10,437 -3.30% 414,405 -5.15% $87,025 

Comb. 4 Y 4 7 
Fixed-
share 0.0001 N 168,186 5.60% 4.322M -7.30% 10,412 -3.53% 410,872 -5.96% $86,283 

Comb. 5 Y 4 7 MNL 0.0001 N 166,120 4.30% 4.512M -3.22% 10,503 -2.69% 399,549 -8.55% $83,905 

Comb. 6 Y 4 7 MNL 0.0001 Y 158,515 -0.47% 4.406M -5.50% 9,779 -9.39% 380,283 -12.96% $79,859 
 348 

 349 
 350 
 351 
 352 
 353 
 354 
 355 
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Table 5. Network and Tolled Route Metrics with Severe Congestion across All Scenarios 356 

       
Network Results Loop 323 Results 

SCENAR
IO Toll 

# Times 
of Day 

User 
Classes 

Mode 
Choice 

NA 
Converg. 

Fdbk. 
Loop VHT 

% 
Change VMT 

% 
Change VHT 

% 
Change VMT 

% 
Change 

Toll 
Revenue 

Base N 1 1 - 0.001 N 458,246 - 7.068M - 16,497 - 636,701 - $133,707 
Base Alt 1 N 1 2 - 0.0001 N 473,362 3.30% 7.178M 1.55% 16,871 2.27% 648,374 1.83% $136,159 
Base Alt 2 Y 1 2 - 0.0001 N 471,066 2.80% 7.170M 1.43% 16,768 1.64% 643,386 1.05% $135,111 
Time-of-

day 1 Y 2 2 - 0.0001 N 479,311 4.60% 7.187M 1.68% 17,122 3.79% 652,769 2.52% $137,081 
Time-of-

day 2 Y 4 2 - 0.0001 N 589,349 28.61% 6.467M -8.51% 17,212 4.33% 651,264 2.29% $136,765 
User 

Class 1 Y 1 4 - 0.0001 N 458,012 -0.05% 7.105M 0.52% 16,695 1.20% 642,965 0.98% $135,023 
User 

Class 2 Y 1 7 - 0.0001 N 457,218 -0.22% 7.081M 0.18% 16,539 0.26% 638,037 0.21% $133,988 
User 

Class 3 Y 1 8 - 0.0001 N 428,706 -6.44% 6.832M -3.34% 15,895 -3.65% 615,310 -3.36% $129,215 
Mode 

Choice 1 Y 1 2 
Fixed-
share 0.0001 N 408,950 -10.76% 6.866M -2.86% 15,978 -3.14% 620,322 -2.57% $130,268 

Mode 
Choice 2 Y 1 2 MNL 0.0001 N 456,687 -0.34% 7.137M 0.97% 16,667 1.03% 645,199 1.33% $135,492 

High 
Transit Y 1 2 MNL 0.0001 N 351,149 -23.37% 6.710M -5.07% 15,499 -6.05% 603,100 -5.28% $126,651 

Feedback 
Loop Y 1 2 - 0.0001 Y 446,640 -2.53% 6.905M -2.31% 16,284 -1.29% 634,394 -0.36% $133,223 

Comb. 1 Y 4 2 - 0.0001 N 589,349 28.61% 6.467M -8.51% 17,212 4.33% 651,264 2.29% $136,765 

Comb. 2 Y 4 4 - 0.0001 N 548,934 19.79% 6.088M -13.87% 16,485 -0.07% 622,974 -2.16% $130,825 

Comb. 3 Y 4 7 - 0.0001 N 575,722 25.64% 6.192M -12.40% 16,838 2.07% 638,324 0.25% $134,048 

Comb. 4 Y 4 7 
Fixed-
share 0.0001 N 558,760 21.93% 6.195M -12.36% 15,749 -4.53% 604,288 -5.09% $126,900 

Comb. 5 Y 4 7 MNL 0.0001 N 568,192 23.99% 6.090M -13.84% 16,710 1.29% 644,111 1.16% $135,263 

Comb. 6 Y 4 7 MNL 0.0001 Y 541,834 18.24% 5.789M -18.10% 15,978 -3.15% 600,330 -5.71% $126,069 
 358 

 359 
 360 
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Impact of Incorporating Time-of-Day Disaggregation 361 

Allowance for different travel times and network loads across distinct times of day resulted in 362 
the largest VMT and VHT changes (network-wide and on Loop 323), versus the Base model, as 363 
compared to the other model enhancements’ impacts. Moreover, differences in other model 364 
outputs between the two- and four-time-of-day segmentations were noticeable, with the added 365 
periods resulting in greater changes in network and Loop 323 metrics (i.e., flows and Loop 323 366 
toll revenues), particularly under the most congested scenario (Table 4’s Time of Day 2 367 
Scenario). Incorporating such temporal disaggregation in the TDM also allows modelers, 368 
planners, and policymakers to directly model the impacts of variable tolling policies - like those 369 
whose rates and high-occupancy-vehicle (HOV) policies vary by time of day and/or with 370 
congestion, as is the case with most managed lanes (Perez et al. 2012b). 371 

Impact of Incorporating a Mode-Choice Step  372 

The addition of a mode-choice step was next in line, in terms of magnitude of impact on model 373 
results, versus the Base specification. With auto travel dominating mode choices (capturing 374 
approximately 95 percent of person-trips in the test network), the MNL mode-choice model did 375 
not provide significantly better estimates than the fixed-mode-shares [as a function of trip 376 
distance] model. However, in a network with greater shares of transit and non-motorized travel 377 
(as evident in Table 3’s and 4’s High Transit scenario, which predicted 25% transit and non-378 
motorized trips), the differences as compared to the Base scenario are quite significant, 379 
particularly when the network is more congested. The more behaviorally defensible MNL mode-380 
choice model is also generally preferred in current TDM practice (URS 2011). 381 

Impact of Incorporating Multi-class Assignment 382 

When a road tolls distinguish vehicle types, as they almost always do (e.g., LDVs pay much less 383 
than HDVs), simply distinguishing between these vehicle types (using at least two user classes) 384 
is quite important for tolling traffic and revenue (T&R) estimation, as observed when comparing 385 
the Base and Base Alt 1 scenarios. However, differences in model results were not estimated to 386 
be significant when the specifications incorporated multiple (user) classes within the LDV 387 
category when analyzed in a single 24-hour period. Differences in VMT and VHT were less than 388 
2% when the LDV trips were classified by household income versus by household income and 389 
trip purpose (work versus non-work), relative to the Base specification, even when the network 390 
was congested. However, combined with incorporation of time-of-day disaggregation (Scenarios 391 
Combination 2 and Combination 3) in the severely congested case, the models’ metrics are 392 
comparable to those in the most sophisticated scenario modeled here (Combination 6), and 393 
differed up to 29% from the Base Scenario’s network VHT. This is even more evident in 394 
scenarios with good substitute routes (on a network with toll freeway lanes and non-tolled 395 
frontage lanes on Loop 323 as seen in Appendix A).  396 
 397 
Interestingly, the introduction of two HDT user classes (segmented as for-hire versus private 398 
carriers) produced more significant model-output differences. The high income LDV user class 399 
had double the VOTT of the low income LDV user class, whereas the high VOTT HDV user 400 
class had triple the VOTT of the low VOTT HDV user class.  These results suggest that multi-401 
class assignment in a model recognizing user classes with relatively high VOTTs (as as the case 402 
of for-hire carriers, modeled here at $60/hour – versus $20/hour for the privately held HDVs and 403 
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$18/hour and under for all LDV trips), output differences are more significant, up to 6% in the 404 
severely congested condition. However, additional scenarios in which all LDV and HDV VOTTs 405 
were assumed to be extremely high (double the VOTTs originally assumed) or extremely low 406 
(half the VOTT originally assumed) did not yield significant differences in model outputs. Thus, 407 
these results appear to highlight the importance of relative differences in competing user classes’ 408 
VOTTs for TDM outputs: absolute VOTT increases or decreases across user classes are less 409 
important that big relative differences within a single model run, at least in this situation with no 410 
true competing route. In addition, and as expected, a more congested setting meant that 411 
incorporation of such multi-class assignment (and reliance on more user classes) had a greater 412 
effect on the tolled corridor’s VHT and VMT values.  413 

Impact of Incorporating Full Feedback Loop 414 

In both the moderately and severely congested network cases, incorporating a full feedback loop 415 
provided moderate model improvements, as proxied by changes in network and Loop 323 VHT 416 
and VMT values. Under congested conditions, an outer feedback loop helps ensure that models 417 
do not prematurely stop at an intermediate solution before reaching true convergence (as 418 
measured by the %RMSE differences across generalized travel costs for all OD pairs for a select 419 
time period: peak auto travel time for two time-of-day specifications and AM peak auto travel 420 
time for four time-of-day specifications). Other benefits of this outer feedback loop are 421 
behavioral defensibility and no added model assumptions (Slavin 2012). Full congestion 422 
feedback is not currently automated in TransCAD but can be achieved by creating individual 423 
model components (e.g., each of the steps outlined in Figure 3) with batch macros, and then 424 
creating GISDK loop structures to tie the steps together. For a feedback procedure, a “while” 425 
loop that feeds back updated link travel times and tests whether the convergence criterion is met 426 
is used, along with a variable that stores the current feedback iteration. 427 

CONCLUSIONS, CAVEATS, AND RECOMMENDATIONS 428 
 429 
As demonstrated on the Tyler network, a wide variety of behaviorally disaggregate model 430 
improvements can enhance the basic TDM specifications that are common in many small- to 431 
medium-sized cities and regions, and some larger regions, in the U.S. and/or abroad. Under the 432 
scenarios tested here, model improvements that resulted in the greatest VHT and VMT changes 433 
on the tolled corridor and entire network are as follows (in order of impact, with the most 434 
important enhancements shown first): 435 
 436 
• Recognizing multiple time periods in a day (to reflect variable travel times and to add 437 

flexibility for modeling time-variable tolls). 438 
• Adding a mode-choice step (particularly in regions with higher transit and non-motorized trip 439 

shares). 440 
• Disaggregating traveler classes by values of time (particularly when there are significant 441 

differences in VOTTs across user classes). 442 
• Incorporating a full feedback loop to reflect congestion levels and ensure consistency in 443 

travel cost assumptions. 444 
 445 
With respect to the different Combination scenarios (which rely on a set of model enhancements 446 
at once), adding both multi-class assignment and time-of-day disaggregation to a standard TDM 447 
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(as done in the Combination 2 and 3 scenarios) seems to be very effective in mimicking results 448 
of the most sophisticated, behaviorally disaggregate model tested here (the Combination 6 449 
scenario, which incorporates tolling, four times of day, seven user classes, a MNL mode-choice 450 
specification, a 0.0001 network convergence criterion, and an outer feedback loop [designed to 451 
meet a 1-percent RMSE]). When good substitute routes exist and under severely congested 452 
traffic conditions, model outputs from the combination of multi-class assignment and time-of-453 
day disaggregation (Combination 2 and 3) are especially competitive with the most behaviorally 454 
disaggregate model (see Appendix A). Given that most if not all commercially available TDM 455 
packages can readily accommodate such model specifications, it seems wise for most if not all 456 
regions to enable such modeling improvements in their TDM setups. When transit mode shares 457 
are significant in a community, the incorporation of a mode choice step, along with multi-class 458 
assignment and time-of-day-disaggregation (as modeled in Combination 4 and 5), brings the 459 
network and tolled route metrics to within 5% of the most sophisticated model (Combination 6).  460 

However, these test model results come with various caveats. For example, the trip distribution 461 
step follows a traditional gravity model calibrated to highly aggregated metrics (in this case, trip-462 
length-based frequency distributions). In practice, singly-constrained destination choice models 463 
based on MNL specifications are generally considered more behaviorally defensible for almost 464 
all trip purposes and can be applied in a disaggregate manner, relative to gravity models 465 
(Cambridge Systematics 2010). There are also limitations to modeling toll demand within a 466 
traditional trip-based model. Microsimulation may be key for capturing individuals’ valuations 467 
of time and trip-making heterogeneity (PB et al. 2013), and tour-based and activity-based models 468 
can better account for the dependence of related trip-making. Lastly, current TDMs are built 469 
upon household travel survey data, describing past trip patterns and travel alternatives, so they 470 
can miss the rise of carsharing, bike-sharing, and other emerging options (Lawton 2014). The 471 
relative performance of these competing model improvements also depends on the TDM’s 472 
specific, intended application(s). For example, in applications focused on emissions estimation, 473 
rather than toll demand estimation, time-of-day disaggregation becomes more important, along 474 
with the presence of multiple user classes (for trucks versus auto travel), since emissions rates 475 
and route preferences can vary quite a lot with speeds – unless there truly is no real congestion 476 
(or speed variation) expected in these networks, 20 years forward. Finally, increased complexity 477 
of a region’s transportation system, via introduction of various congestion pricing schemes (e.g., 478 
static and dynamic tolling scenarios) and alternative modes of transit and para-transit (e.g., bus 479 
rapid transit, car and bike sharing), highlight a need for transportation planners in all regions to 480 
appreciate the type of flexibility and result variations that each of these TDM enhancements (to 481 
better reflect human behavior and heterogeneity) enables when evaluating various system 482 
changes, over time and space.  In a 2004 survey of MPOs, 70 percent mentioned needed 483 
improvements to their modeling processes to better model road pricing, time-specific 484 
transportation policies, nonmotorized travel, etc. (Wachs et al. 2007). This work illuminates 485 
many of the options and their effects on a mid-size network. 486 
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APPENDIX A 584 

Table 6: Network and Tolled Route (with Substitute Route for Loop 323) Metrics with Moderate Congestion across Select 585 
Scenarios 586 

              Network Results Loop 323 Results 

SCENARIO Toll 
# Times 
of Day  

User 
Classes 

Mode 
Choice 

NA 
Converg. 

Fdbk. 
Loop VHT 

% 
Change VMT 

% 
Chang

e VHT 
% 

Change VMT 
% 

Change 

Base N 1 1 - 0.001 N 158,346 - 
   
4.732M  - 

       
8,569  - 

   
468,283  - 

Base Alt 1 N 1 2 - 0.0001 N 158,348 0.00% 
   
4.732M 0.00% 

       
8,570  0.01% 

   
468,352  0.01% 

Base Alt 2 Y 1 2 - 0.0001 N 159,758 0.89% 
   
4.732M  0.01% 

       
8,581  0.14% 

   
468,053  -0.05% 

Time of Day 
1 Y 2 2 - 0.0001 N 161,214 1.81% 

   
4.732M  0.01% 

       
8,578  0.11% 

   
466,229  -0.44% 

Time of Day 
2 Y 4 2 - 0.0001 N 159,936 1.00% 

   
4.731M  -0.03% 

       
8,540  -0.34% 

   
466,363  -0.41% 

User Class 1 Y 1 4 - 0.0001 N 156,683 -1.05% 
   
4.686M  -0.97% 

       
8,486  -0.97% 

   
463,281  -1.07% 

User Class 2 Y 1 7 - 0.0001 N 159,757 0.89% 
   
4.741M 0.19% 

       
8,598  0.34% 

   
468,900  0.13% 

Mode 
Choice 1 Y 1 2 

Fixed 
Share 0.0001 N 150,071 -5.23% 

   
4.601M -2.78% 

       
8,360  -2.44% 

   
457,120  -2.38% 

Mode 
Choice 2 Y 1 2 MNL 0.0001 N 156,893 -0.92% 

   
4.706M  -0.54% 

       
8,551  -0.21% 

   
466,618  -0.36% 

Feedback 
Loop Y 1 2 - 0.0001 Y 160,454 1.33% 

   
4.664M -1.43% 

       
8,558  -0.13% 

   
466,681  -0.34% 

Comb. 1 Y 4 2 - 0.0001 N 159,936 1.00% 
   
4.731M  -0.03% 

       
8,540  -0.34% 

   
466,363  -0.41% 

Comb. 2 Y 4 4 - 0.0001 N 138,223 -12.71% 
   
4.296M -9.21% 

       
7,834  -8.58% 

   
429,510  -8.28% 

Comb. 3 Y 4 7 - 0.0001 N 148,282 -6.36% 
   
4.560M  -3.64% 

       
8,200  -4.30% 

   
449,544  -4.00% 

Comb. 4 Y 4 7 
Fixed 
Share 0.0001 N 139,861 -11.67% 

   
4.418M  -6.64% 

       
7,964  -7.06% 

   
442,247  -5.56% 

Comb. 5 Y 4 7 MNL 0.0001 N 136,433 -13.84% 
   
4.350M  -8.07% 

       
7,950  -7.22% 

   
437,614  -6.55% 

Comb 6.  Y 4 7 MNL 0.00001 Y 136,816 -13.60% 
   
4.259M  

-
10.00% 

       
7,970  -6.99% 

   
436,316  -6.83% 
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 587 

Table 7: Network and Tolled Route (with Substitute Route for Loop 323) Metrics with Severe Congestion across Select 588 
Scenarios 589 

              Network Results Loop 323 Results 

SCENARIO Toll 

# 
Times 
of Day  

User 
Classes 

Mode 
Choice 

NA 
Converg. 

Fdbk. 
Loop VHT 

% 
Change VMT 

% 
Change VHT 

% 
Change VMT 

% 
Change 

Base N 1 1 - 0.001 N 
         
456,335  - 

   
7.160M - 

         
13,209  - 

   
675,490  - 

Base Alt 1 N 1 2 - 0.0001 N 
         
456,350  0.00% 

   
7.159M 0.00% 

         
13,204  -0.04% 

   
675,305  -0.03% 

Base Alt 2 Y 1 2 - 0.0001 N 
         
466,142  2.15% 

   
7.162M 0.03% 

         
13,240  0.23% 

   
673,122  -0.35% 

Time of Day 1 Y 2 2 - 0.0001 N 
         
474,918  4.07% 

   
7.169M 0.13% 

         
13,346  1.04% 

   
671,723  -0.56% 

Time of Day 2 Y 4 2 - 0.0001 N 
         
465,279  1.96% 

   
7.170M 0.15% 

         
13,258  0.37% 

   
679,604  0.61% 

User Class 1 Y 1 4 - 0.0001 N 
         
450,941  -1.18% 

   
7.089M -0.98% 

         
13,084  -0.95% 

   
667,211  -1.23% 

User Class 2 Y 1 7 - 0.0001 N 
         
465,081  1.92% 

   
7.174M 0.20% 

         
13,270  0.46% 

   
674,427  -0.16% 

Mode Choice 
1 Y 1 2 

Fixed 
Share 0.0001 N 

         
415,702  -8.90% 

   
6.958M  -2.82% 

         
12,851  -2.71% 

   
658,948  -2.45% 

Mode Choice 
2 Y 1 2 MNL 0.0001 N 

         
449,575  -1.48% 

   
7.121M  -0.54% 

         
13,177  -0.24% 

   
670,948  -0.67% 

Feedback 
Loop Y 1 2 - 0.0001 Y 

         
464,640  1.82% 7.172M 0.17% 

         
13,330  0.92% 

   
673,221  -0.34% 

Comb. 1 Y 4 2 - 0.0001 N 
         
465,279  1.96% 7.170M 0.15% 

         
13,258  0.37% 

   
679,604  0.61% 

Comb. 2 Y 4 4 - 0.0001 N 
         
372,005  

-
18.48% 

   
6.507M -9.11% 

         
12,078  -8.56% 

   
627,214  -7.15% 

Comb. 3 Y 4 7 - 0.0001 N 
         
405,812  

-
11.07% 

   
6.906M -3.55% 

         
12,657  -4.18% 

   
656,390  -2.83% 

Comb. 4 Y 4 7 
Fixed 
Share 0.0001 N 

         
359,383  

-
21.25% 

   
6.743M -5.82% 

         
12,264  -7.15% 

   
639,935  -5.26% 

Comb. 5 Y 4 7 MNL 0.0001 N 
         
346,724  

-
24.02% 

   
6.730M  -6.00% 

         
12,179  -7.80% 

   
638,441  -5.48% 

Comb. 6 Y 4 7 MNL 0.00001 Y 
         
344,934  

-
24.41% 

   
6.760M -5.58% 

         
12,249  -7.27% 

   
643,367  -4.76% 

 590 



21 
 

LIST OF TABLES  591 
TABLE 1 Fixed-Share Mode Splits 592 
TABLE 2 MNL Mode Choice Splits 593 
TABLE 3 VOTTs per Vehicle by Traveler Income and Trip Purpose Segmentation 594 
TABLE 4 Network and Tolled Route Metrics with Moderate Congestion across All Scenarios 595 
TABLE 5 Network and Tolled Route Metrics with Severe Congestion across All Scenarios 596 
TABLE 6 Network and Tolled Route (with Substitute Route for Loop 323) Metrics with Moderate Congestion across Select Scenarios 597 
TABLE 7 Network and Tolled Route (with Substitute Route for Loop 323) Metrics with Severe Congestion across Select Scenarios 598 
 599 
LIST OF FIGURES 600 
FIGURE 1 Loop 49 and Loop 323 Locations in the Tyler, Texas Highway Network 601 

 602 


	T. Donna Chen
	6.9E Cockrell Jr. Hall
	Austin, TX 78712-1076
	donna.chen@utexas.edu
	Kara M. Kockelman
	Time-of-Day Considerations
	Mode Choice
	User Class and Values of Time
	Congestion Feedback Loop for Behavioral Convergence
	Modeling Scenarios
	Tyler Network and Trip Generation
	Figure 1:  Loop 49 and Loop 323 Locations in the Tyler, Texas Highway Network

	Scenario Results
	Impact of Incorporating Time-of-Day Disaggregation
	Impact of Incorporating a Mode-Choice Step
	Impact of Incorporating Multi-class Assignment
	Impact of Incorporating Full Feedback Loop


	Conclusions, caveats, and recommendations


