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ABSTRACT    

Technological advances are bringing connected and autonomous vehicles (CAVs) to the ever-

evolving transportation system.  Anticipating the public acceptance and adoption of these 

technologies is important. A recent internet-based survey was conducted polling 347 Austinites 

to understand their opinions on smart-car technologies and strategies. Ordered-probit and other 

model results indicate that respondents perceive fewer crashes to be the primary benefit of 

autonomous vehicles (AVs), with equipment failure being their top concern. Their average 

willingness to pay (WTP) for adding full (Level 4) automation ($7,253) appears to be much 

higher than that for adding partial (Level 3) automation ($3,300) to their current vehicles.       

This study estimates the impact of demographics, built-environment variables, and travel 

characteristics on Austinites’ WTP for adding such automations and connectivity to their current 

and coming vehicles. It also estimates adoption rates of shared autonomous vehicles (SAVs) 

under different pricing scenarios ($1, $2, and $3 per mile), choice dependence on friends’ and 

neighbors’ adoption rates, and home-location decisions after AVs and SAVs become a common 

mode of transport. Higher-income, technology-savvy males, living in urban areas, and those 

who have experienced more crashes have a greater interest in and higher WTP for the new 

technologies, with less dependence on others’ adoption rates. Such behavioral models are useful 

to simulate long-term adoption of CAV technologies under different vehicle pricing and 

demographic scenarios. These results can be used to develop smarter transportation systems for 

more efficient and sustainable travel. 
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 5 
1. INTRODUCTION AND MOTIVATION 6 
 7 
Car travel is relatively unsafe, costly, and burdensome. Roughly 2.2 million Americans are 8 
injured in crashes each year, resulting in over 30,000 fatalities (NHTSA 2014b). The economic 9 

cost of these crashes is roughly $300 billion, which is approximately three times the U.S.’s 10 
annual congestion costs (Cambridge Systematics 2011). Connected-autonomous vehicles 11 
(CAVs) provide a solution to the burden of car travel, and have the potential to reduce a high 12 
proportion of the 90% of crashes that result from driver error (NHTSA 2008). CAVs are the 13 

biggest technological advances in personal transport that the world has seen in over a century, 14 
with a promising future of safer and more convenient transportation.  15 

 16 
CAVs are no longer a fantasy, and may soon become a daily mode of transport for hundreds of 17 

millions of people. Several mainstream companies such as Google, Toyota, Nissan, and Audi are 18 

developing and testing their own prototypes (Smiechowski 2014). With rapid advances in vehicle 19 

automation and connectivity, the U.S. National Highway Traffic Safety Administration (NHTSA 20 
2013 & 2014a) has recognized key policy needs for CAVs. California, Nevada, Florida, and 21 
Michigan states have legislation to allow AV testing on public roads (Schoettle and Sivak 2014a). 22 

Navigant Research (2014) estimated that 75% of all light-duty-vehicle sales around the globe 23 
(almost 100 million annually) will be autonomous-capable by 2035. In accordance with this 24 

timeline, Litman (2014) expects that AVs’ beneficial impacts on safety and congestion are likely 25 

to appear between 2040 and 2060. If AVs prove to be very beneficial, Litman (2014) suggests that 26 

human driving may be restricted after the 2060.  27 
 28 

Successful implementation of CAV technologies will require public acceptance and adoption of 29 
these technologies over time, via CAV purchase, rental, and use (Heide and Henning 2006).  30 
In the past three years, many researchers (Kyriakidis et al. 2014, Schoettle and Sivak 2014a & 31 
2014b, Underwood 2014) and consulting firms (J.D. Power. 2012, KPMG 2013, and Continental 32 

2015) have conducted surveys and focus groups to understand the public perception about 33 

CAV’s benefits and limitations. These studies provide descriptive statistics regarding public 34 

awareness, concerns, and expected benefits of smart-vehicle technologies, but they do not 35 

indicate how an individual’s attributes (e.g., age, income, and education) and built-environment 36 
factors (e.g., employment density, population density, and area type) affect their opinions and 37 
willingness to pay (WTP) for such technologies.  38 

 39 
This study designed and disseminated a survey for adult residents of Austin, Texas and received 40 
358 completed responses. Those data facilitate a variety of perception and attitude analyses, 41 
using various econometric models. Response variables include respondents’ WTP for Level 3 42 

AVs, Level 4 AVs, and CVs; adoption rates of shared AVs under different pricing scenarios; 43 
adoption timing of CAV technologies; and home location decisions after AVs become a common 44 
travel mode. Motivations for each behavioral model are provided below.    45 

 46 



Estimating an individual’s or households’ WTP for Level 3 AVs, Level 4 AVs, and CVs is 1 

useful in identifying the demographic characteristics and land use settings of early, as well as 2 
late, adopters. Such information helps policymakers and planners predict near-term to long-term 3 
adoption of CAV technologies and devise policies to promote optimal adoption rates. 4 

 5 
While AVs are set to emerge on the public market, they may quickly offer another mode of 6 
transportation: shared autonomous vehicles (SAVs). SAVs offer short-term, on-demand rentals 7 
with self-driving capabilities, like a driverless taxi (Kornhauser et al. 2013, Fagnant et al. 2015). 8 
SAVs may overcome the limitations of current carsharing programs, such as vehicle availability, 9 

because travelers will have the flexibility to call a distant SAV Several studies (e.g., Burns et al. 10 
2013, and Fagnant and Kockelman 2014) have shown how SAVs may reduce average trip costs 11 
by 30% to 85%, depending on the cost of automation and expected returns on the fleet operator’s 12 
investment. Fagnant and Kockelman’s (2015) agent-based simulation concluded that dynamic 13 

ridesharing (DRS) has the potential to further reduce total service times (wait times plus in-14 
vehicle travel times) and travel costs for SAV users, even after incorporating extra passenger 15 

pick-ups, drop-offs, and non-direct routings. Chen et al. (2015) extended some of that work, and 16 
examined the performance (including profitability) of a fleet of shared electric AVs, across a 17 

100-mile by 100-mile region. Pivoting off those simulations, this study explores the factors 18 
affecting SAV adoption rates under three pricing scenarios: $1, $2, and $3 per occupied-mile 19 
traveled.     20 

 21 
After AV adoption by neighbors and friends, individuals may gain confidence in such vehicles 22 

and/or sense social pressures, prompting them to purchase such technologies.  Thus, this study 23 

estimates the adoption timing of AVs (e.g., will the respondent “never adopt” an AV, wait until 24 

50% of his/her friends adopt an AV, or just 10% of his/her friends adopt one, or try to obtain an 25 
AV as soon as such vehicles are available in the market). 26 

 27 
More efficient use of travel time (by allowing work or cell-phone conversations, for example) 28 
while riding in AVs may encourage individuals to shift their home locations to more remote 29 

locations, to enjoy lower land prices (and thereby bigger homes or parcels). Thus, AVs can 30 

exacerbate urban sprawl and increase a region’s vehicle-miles traveled (VMT). However, a high-31 

density of low-cost SAVs in downtown areas may counteract such trends. Given the major land 32 

use shifts that could occur, this study also explores the factors associated with residential shifts, 33 

as motivated by AV and SAV access. The following sections describe related studies, survey’s 34 

design, many summary statistics, choice model specifications, key findings, and study 35 

conclusions. 36 
 37 

2. LITERATURE REVIEW 38 
 39 
This section summarizes the key findings of recent public opinion surveys about adoption of 40 
CAVs. Kyriakidis et al. (2014) conducted a survey of 5,000 respondents across 109 countries by 41 
means of a crowd-sourcing internet survey. Results indicate that respondents with higher VMT 42 

and who use the automatic cruise control feature in their current vehicles are likely to pay more 43 
for fully-automated vehicles. Approximately 20% of respondents showed a WTP of more than 44 
$7,000 for Level 4 AVs, and approximately the same proportion of respondents did not want to 45 



pay more to add this technology to their vehicle. Most importantly, 69% of respondents expected 1 

that fully-automated vehicles are likely to gain 50% market share by 2050.  2 
 3 
Schoettle and Sivak (2014a) surveyed 1,533 respondents across the U.K., the U.S., and Australia 4 

to understand their perception about AVs. Results indicate that approximately two-thirds of 5 
respondents had previously heard about AVs. Interestingly, 25% respondents were willing to 6 
spend at least $2,000 to add full self-driving automation in the US, while same proportion of 7 
respondents in the UK and Australia were willing to spend $1,710 and $2,350, respectively. 8 
However, 54.5% respondents is the U.S., 55.2% in the U.K., and 55.2% in Australia did not want 9 

to pay more to add these technologies. When asked about their activities (e.g., work, read, and 10 
talk with friends) while riding in Level 4 AVs, highest proportion, 41%, of respondents said they 11 
would watch the road even though they would not be driving. Results of one-way analysis of 12 
variance indicated that females are more concerned about AV technologies than males.  13 

  14 
Underwood (2014) conducted a survey of 217 experts. Eighty percent of respondents had a 15 

master’s degree, 40% were AV experts, and 33% were CV experts. According to these experts, 16 
legal liability is the most difficult barrier to fielding Level 5 AVs (full automation without 17 

steering wheel), and consumer acceptance is the least. Approximately 72% of the experts 18 
suggested that AVs should be at least twice as safe as the conventional vehicles before they are 19 
authorized for public use. Fifty-five percent of the experts indicated that Level 3 AVs are not 20 

practical because drivers could become complacent with automated operations and may not take 21 
required actions.  22 

    23 
J.D. Power (2012) conducted a survey of 17,400 vehicle owners before and after revealing the 24 
market price of 23 CAV technologies. Prior to learning about the market price, 37% of 25 

respondents showed interest  in purchasing the AV technology in next vehicle purchase, but that 26 

number fell to 20% after learning that the this technology’s market price is $3000. 18 to 37 years 27 
old male respondents living in urban areas showed the highest interest in purchasing AV 28 
technology.   29 

 30 
A KPMG (2013) focus group study, using 32 participants, notes that respondents became more 31 

interested in AVs when they were provided incentives like a designated lane for AVs, and 32 
learned their commute time would be cut in half. In contrast to Schoettle and Sivak’s (2014a) 33 

findings, the focus group’s discussion and participants’ ratings for AV technology suggests that 34 
females are more interested in these technologies than males. Continental (2015) surveyed 1,800 35 
and 2,300 respondents in Germany and the United States, respectively. Approximately 60% of 36 
respondents expected to use AVs in stressful driving situations, 50% believed that AVs can 37 
prevent accidents, and roughly the same number indicated they would likely engage in other 38 

activities while riding in AVs.   39 
 40 

Recently, Schoettle and Sivak (2014b) surveyed 1,596 respondents across the U.K, the U.S., and 41 
Australia to understand their perception about CVs. Surprisingly, only 25% of respondents had 42 
heard about CVs. When asked about the expected benefits of CVs, the highest proportion, 43 
85.9%, of respondents expected fewer accidents and the lowest proportion, 61.2%, expected less 44 
distraction for the driver. Interestingly, 25% respondents were willing to spend at least $500, 45 
$455, and $394 in the U.S., the U.K, and Australia, respectively, to add CV technology. 46 



However, 45.5%, 44.8%, and 42.6% of respondents did not want to pay anything extra to add 1 

these technologies in the U.S., the U.K., and Australia, respectively. 2 
  3 
As mentioned above, these past studies reveal important information about individual 4 

perceptions of CAV technologies, but none has explored various related aspects, such as 5 
adoption rates of SAVs under various pricing scenarios, home-location choices when SAVs and 6 
AVs become common modes of transport, and peer-pressure effects on the adoption time of 7 
AVs.  Moreover, econometric analysis is missing in all of these studies, but is crucial for 8 
devising efficient policies to increase market penetration of emerging transportation 9 

technologies. This study explores statistical and practical significance of relationships between 10 
respondents’ demographics and built-environmental attributes, and their WTP for CAVs, 11 
adoption rates of SAVs, residence-shift decisions, and adoption timing of AVs using univariate 12 
and bivariate ordered probit (OP) models.  These behavioral models will be very useful in 13 

forecasting adoption of CAV technology and land use changes under different pricing scenarios. 14 

3. SURVEY DESIGN AND DATA PROCESSING 15 
 16 
The data were collected via a survey in Austin, Texas from October to December 2014 using 17 

“Qualtrics”, a web-based survey tool. Exploring respondents’ preferences for adoption of 18 
emerging vehicle and transport technologies, the survey asked 52 questions regarding 19 

respondents’ perceptions of AV technology upsides and downsides, ridesharing, and carsharing. 20 
Respondents were also asked about their WTP for CAVs, adoption rates of SAVs in different 21 
pricing scenarios, future home-location decisions, adoption timing of AVs, current travel 22 

patterns, and demographics.         23 
 24 

Austin neighborhood associations were first contacted via email and passed the survey requests 25 

to their respective residents. A total of 510 respondents initiated the survey; only 358 of them 26 

completed it. However, 11 of those were not Austinites and so were excluded from the sample, 27 
resulting in a total sample of 347 adults (over 18 years of age). The sample over-represented 28 

women, middle-aged persons (25-44 years old) and those with a bachelor’s degree or higher. 29 
Therefore, the survey sample proportions in each demographic class were scaled using the 2013 30 
American Community Survey’s Public Use Microdata Sample (PUMS 2013) for the Austin. The 31 

population weights were calculated by dividing the sample into 72 categories based on gender, 32 
age, education and household income. To understand the impact of built-environment factors 33 
(e.g., employment density, population density, and area type) on preferences, respondents’ home 34 

addresses were geocoded1 using Google Maps API and spatially joined with Austin’s traffic 35 
analysis zones (TAZs) using open source Quantum GIS.   36 
 37 

4. DATA SET STATISTICS 38 

 39 
Table 1 summarizes the demographic, built-environment, zone-level2, and technology-related 40 

variables after correction for biased-sample’s demographics. This study uses these variables as 41 

                                                           
1
 For respondents, who did not provide their street address or recorded incorrect addresses, their internet protocol (IP) 

locations were used as the proxies for their home locations.  
2
 The TAZ-level variables were obtained by spatial mapping of respondents’ home locations with a TAZ-level shape 

files, obtained from Austin’s Capital Area Metropolitan Planning Organization. 



the predictors in many model specifications. Prior to using these predictors, each respondent’s 1 

record was population-weighted to provide relatively unbiased model calibration.    2 
 3 

4.1 Current Technology Awareness 4 
To better understand the future adoption of smart transportation technologies and strategies, it is 5 
important to explore respondents’ current awareness about them. Table 1 indicates that in 6 
general, Austinites are tech-savvy; 92% of the population-weighted sample carry or own a 7 
smartphone, 80% have heard of Google’s self-driving car, and 60% consider anti-lock braking 8 
systems (ABS, required on all cars sold in the U.S. since September, 2011) to be a form of 9 

vehicle automation (which it is: Level 1 automation). Probably, due to popularity of carsharing 10 
(Car2Go and Zipcar) and ridesharing (UberX and Lyft) companies in Austin, 95% and 85% of 11 

respondents are familiar with both of them, respectively.  12 

Table 1: Population-weighted Summary Statistics of Explanatory Variables (Nobs=347) 13 

Type Explanatory Variables Description Mean SD Min. Max. 

D
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Drive alone for work trips  Indicator for drive alone 0.49 0.50 0 1 

Drive alone for social trips Indicator for drive alone 0.29 0.45 0 1 

Distance from workplace Miles 4.75 5.37 0.50 17.50 

Distance from downtown Miles 6.75 5.08 0.50 17.50 

Gender Indicator for Male 0.50 0.50 0 1 

U.S. driver license Indicator for having driving license 0.98 0.13 0 1 

Number of children  Per household 0.40 0.80 0 5 

Education level Indicator for bachelor’s degree 0.59 0.49 0 1 

Employment status Indicator for Full-time worker 0.59 0.49 0 1 

Age Years 36.58 15.72 21 70 

Annual VMT Miles 9,578 5,631 2500 22,500 

Annual household income $ per year  59,453 44,178 5,000 250,000 

Household size   2.57 1.41 1 7 

Number of past crash 

experiences 
 1.62 1.38 0 5 

Z
o

n
e-

le
v
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P
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d
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rs

 

Population density Persons per square miles 6,096 6,074 0 38,945 

Household density  Households per square miles 3,040 3,055 0 18,620 

Total employment density  Persons per square miles 7,435 17,472 0 110,596 

Basic employment density  Persons per square miles 231.92 747.66 0 7,658 

Retail employment density  Persons per square miles 827.03 1,501 0 11,219 

Service employment density  

density 
Persons per square miles  2,101 9,216 0 85,841 

Area type Indicator for Urban areas 0.87 0.33 0 1 

Median household income $ per year 49,289 37,717 0 248,203 

T
ec

h
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d
 

P
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d
ic
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rs

 Have heard about Google 

car  

Indicator for who have heard…   0.80 0.40 0 1 

ABS form of automation Indicator for who think… 0.59 0.49 0 1 

Carry smartphone Indicator for who carry… 0.92 0.27 0 1 

Familiar with carsharing Indicator for familiarity with… 0.95 0.21 0 1 

Familiar with UberX or Lyft Indicator for familiarity with… 0.88 0.32 0 1 

 14 
4.2 Key Response Variables  15 
Table 2 summarizes the key response variables estimated in this study. At cost of more than 16 
$5,000, 24% and 57% of respondents were willing to add Level 3 and Level 4, respectively, to 17 
their next vehicle purchase. As expected, the average WTP (of the population-corrected sample) 18 



for Level 4 automation ($7,253) is much higher than that for Level 3 automation ($3,300). 1 

Apparently, AVs may not impact residential land-use patterns much, since 74% of respondents 2 
expect to stay at their current location even after AVs and SAVs become common modes of 3 
transport3. 30% showed interest in using AVs as soon as they are available for mass market sales 4 

in the U.S. Interestingly, approximately half of the respondents would prefer their family, 5 
friends, or neighbors to use AVs prior to their adoption.  Only 15% and 3% of respondents 6 
expected to use SAVs once a week at a cost of $2 per mile and $3 per mile, respectively4. 7 
Reponses like these imply that most respondents are not willing to spend more for SAV use than 8 
what UberX & Lyft charge (about $1.50 per mile). However, with social acceptance of AVs and 9 

the reliability of SAVs for longer-distance trips, future SAVs costs may fall. At a cost of $1 per 10 
mile, 41% of respondents expected to use SAVs at least once a week. Only 26% of respondents 11 
rejected a proposal of adding connectivity5 to their vehicles at a cost of less than $100.  12 
  13 

Table 2: Population-weighted Results for Response Variables (Nobs=347) 14 
Response Variables Percentages Response Variables Percentages 

WTP for Adding Level 3 Automation  Residence-shift due to AVs  

<$2,000 48% Close to central Austin 14% 

$2,000-$5,000 28% Stay at the same location 74% 

>$5000 24% Farther from central Austin 12% 

WTP for Adding Level 4 Automation  Adoption Timing of AVs  

<$2000 34% Never 19% 

$2,000-$5,000 18% When 50% friends adopt 26% 

$5,000-$10,000 19% When 10% friends adopt 25% 

>$10,000 28% As soon as available 30% 

WTP for SAVs ($1/mile)  WTP for SAVs ($2/mile)  

Rely less than once a month 35% Rely less than once a month 57% 

Rely at least once a month 24% Rely at least once a month 28% 

Relay at least once a week 28% Relay at least once a week 12% 

Relay entirely on SAV fleet 13% Relay entirely on SAV fleet 3% 

WTP for SAVs ($3/mile)  WTP for Adding CV Technology  

Rely less than once a month 70% Not interested 26% 

Rely at least once a month 26% Neutral 19% 

Rely at least once a week 2.1% Interested 55% 

Rely entirely on SAV fleet 1.9%   

 15 

4.3 Other Opinions about AVs and CVs 16 

                                                           
3 Prior to asking a question about residence-shift decisions, respondents were informed that self-driving vehicles 

will make travel much easier for many people.  By being able to sleep on the road, some travelers may decide to live 

farther from the city center, their workplaces, their children’s schools, or other destinations (in order to access less 

expensive land for a larger home or parcel, for example). On the other hand, by living in more urban locations, one 

will be able to more quickly (and less expensively) access a shared fleet of self-driving vehicles (at a rate of say, 

$1.50 per mile of travel), allowing them to let go of cars they presently own, and turn to other transport options.   
4 Before asking about respondents’ adoption rates of SAVs in different pricing scenarios, they were informed that 

the taxis in Austin presently cost about $2.50 to $3.50 per mile of travel, UberX and Lyft currently charge about 

$1.50 per mile of travel, and Car2Go charges $0.80 to $1.25 per mile, within its operating geographic area (and $15 

per hour for parking outside geographical area).        
5 Before asking about WTP for CVs, respondents were advised that connectivity can be added to an existing 

vehicle, requiring one’s smartphone plus extra equipment (a DSRC chip and inertial sensor) costing less than $100.  



Table 3 summarizes the individuals’ perceptions about the benefits and concerns of CAVs. 19% 1 

of respondents were not at all interested in owning Level 4 AVs. Respondents indicated three 2 
main issues regarding AVs: 50% of respondents were concerned about equipment or system 3 
failure, while 48% and 38% were concerned about interactions with conventional vehicles and 4 
affordability, respectively. Only 7% of respondents were apprehensive about learning to use 5 
AVs. 31% of respondents believe that AVs cannot help with calming congestion, making this the 6 

“least likely” AV benefit (among plausible options tested). When asked about the other three 7 

benefits (fewer crashes, lower emission, and better fuel economy), respondents considered them 8 

almost equally likely, but a reduction in crashes received maximum (63%) support. 75% of 9 
respondents indicated wanting to talk or text with friends and look out of the window while 10 

riding in AVs – making these the two most appealing tasks for respondents while traveling in 11 

Level 4 AVs. More than 70% of respondents would like to ride in AVs on freeways, high-speed 12 
highways, and congested traffic, while only 46 % would let the vehicles drive themselves on city 13 

streets. Surprisingly, only 47% of respondents have heard about CVs. It is worth noting that only 14 
4.3% of respondents are currently surfing internet and 6.2% are emailing while driving 15 
(conventional vehicles), but 31.7% and 39% are interested in adding these technologies to their 16 

vehicles, respectively. 17 
 18 
Table 3: Population-weighted Results for Opinion-based Questions on AVs and CVs (Nobs=347) 19 

Type Opinion-based questions Not interested Slight interested Very interested 

 Interest in having Level 4 AVs 19% 40% 41% 

C
o

n
ce

rn
s 

w
it

h
 

L
ev

el
 4

 A
V

s 

 Very worried Slightly worried Not worried 

Equipment or system failure   50% 38% 12% 

Legal liability for drivers or owners 36% 42% 22% 

Hacking  the vehicle’s computer systems 30% 44% 26% 

Traveler’s privacy disclosure  31% 39% 30% 

Interactions with conventional vehicles   48% 33% 19% 

Learning  to use self-driving vehicles 6.9% 29.1% 64% 

Affordability  of a self-driving vehicle  38% 39% 23% 

B
en

ef
it

s 
o

f 

L
ev

el
 4

 A
V

s  Very likely Somewhat likely Unlikely 

Fewer crashes 63% 26% 11% 

Lesser traffic congestion 45% 24% 31% 

Lower vehicle emissions 48% 40% 12% 

Better Fuel Economy 58% 32.8% 9.2% 

T
as

k
s 

w
h

il
e 

R
id

in
g

 A
V

s 

 Yes No 

Text or Talk 74% 26% 

Sleep 52% 48% 

Work 54% 46% 

Watching movies or play games 46% 54% 

Look out the windows of the vehicle 77% 23% 

L
ik

e 
to

 

R
id

e 
A

V
s  Yes No 

Along freeways or highways 73% 27% 

Along city streets 46% 54% 

In congested traffic 70% 30% 

 Yes No 



O
p

in
io

n
 a

b
o

u
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C
V

 

T
ec

h
n

o
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g
y

 Have heard of CVs 53% 47% 

 Already using Interested Not interested 

Internet surfing via an in-built car screen 4.3% 31.7% 64% 

Reading and dictating email while driving 6.2% 39% 54.8% 

operating phone via steering wheel control  12% 48% 40% 

 1 
5. MODEL ESTIMATION 2 
 3 
This study estimated adoption rates of SAVs under three pricing scenarios ($1, $2, and $3 per 4 

mile), interest in having one’s existing vehicle become a CV (for under $100), adoption timing of 5 

AVs, and future home-location shifts (after AVs and SAVs become common modes of transport) 6 

using univariate OP specifications in Stata 12 software (Long and Freese 2006). The univariate 7 
OP model specifications are presented here in the context of interest in adding connectivity. The 8 

main equation for this specification is as follows (Greene 2012): 9 

𝑦𝑖
∗ = 𝛽′𝑥𝑖 + 𝜀𝑖  (1) 

 10 

where, subscript ‘𝑖’ denotes an individual observation, 𝑦𝑖
∗ represents the individual’s latent 11 

inclination to add connectivity at a cost of less than $100, 𝑥𝑖 represents a vector of covariates for 12 

each individual, 𝛽′ represents a vector of regression coefficient, which are to be estimated, and 𝜀𝑖 13 
represents a random error term assumed to follow a standard normal distribution.  14 
 15 

For this example, two thresholds (𝜇1 through 𝜇2) were estimated to distinguish the three 16 

categories; where 𝜇1 represents the threshold between “not interested” and “neutral” and 𝜇2 is 17 
the threshold between “neutral” and “interested in adding connectivity at a cost of less than 18 

$100”. Under this specification, the opinion probabilities are as follows:  19 
 20 

Pr(not interested) = Pr(𝑦𝑖
∗ ≤ 𝜇1)  (2) 

Pr(neutral) = Pr(𝜇1 ≤ 𝑦𝑖
∗ ≤ 𝜇2)  (3) 

Pr(interested) = Pr(𝑦𝑖
∗ ≥ 𝜇2)  (4) 

 21 

The WTP for AVs (Level 3 and Level 4) had two related response variables and so were jointly 22 
estimated using seemingly unrelated specifications6 of the bivariate OP model7 (as described in 23 

Sajaia [2008]).   24 
          25 
Initial model specifications included all Table 1’s explanatory variables. The models were re-26 
estimated using stepwise elimination by removing the covariate with the lowest statistical 27 
significance until all p-values were less than 0.32, which corresponds to a |Z-stat| of 1.0. 28 

Although most of the explanatory variables enjoy a p-value greater than .10 (|Z-stat| > 1.645), it 29 

                                                           
6
 In seemingly unrelated specifications, error terms are only correlated across choices of the individual, but are 

independent and homoscedastic across the individuals.       
7
 To estimate WTP for SAVs, complex trivariate OP model specifications could be used, but it would have only 

slightly improved statistical significance of predictors, without affecting the magnitude and sign of the coefficients 

much. Therefore, to control the complexity, three univariate OP models were estimated for each of the three cost 

scenarios ($1, $2, and $3 per mile).     



was not used as a statistical significance threshold here, due to the slightly limited sample size 1 

(n=347). If more sample observations were available (say n=1000), statistical significance could 2 
have improved for many explanatory variables. Explanatory variables with p-value less than .01 3 
(|Z-stat|>2.58) are considered highly statistically significant predictors.        4 

   5 
Practical significance is generally more meaningful than statistical significance. This study 6 
considers an explanatory variable to be practically significant if a one-standard-deviation 7 
increment in it leads to a significant shift in the response variable. In this paper, response 8 
variables are probabilities of ordered choice options, so an explanatory variable is considered to 9 

be practically significant if the predicted probabilities (i.e., the ΔPri shown in Tables 4 through 8) 10 
change by more than a factor of 1.3 or less than a factor of 0.7. In other words, there is at least 30 11 
percent shift in the predicted probability (which could be from 0.50 to 0.67 or to 0.35). If the 12 
shift in the model-predicted probability exceeds 50 percent (i.e., the ratio of the two is more than 13 

1.5 or less than 0.50), the explanatory variable is defined here as highly practically significant. 14 
McFadden’s R-Square8 and adjusted R-square are also provided, to characterize all models’ 15 

goodness of fit.     16 

5.1 Willingness to Pay for AVs 17 
 18 
Table 4 summarizes the bivariate OP model estimates of WTP for adding Level 4 automation (of 19 

less than $2,000, $2,000 to $5,000, $5,000 to $10,000, or more than $10,000) and WTP for Level 20 
3 automation (less than $2,000, $2,000 to $5,000, or more than $5,000). Results indicate that 21 
male respondents with a greater number of children, living in higher- income neighborhoods, and 22 

who drive alone for social trips, ceteris paribus, are willing to pay more to add Level 3 and Level 23 
4 automation to their next vehicle. In contrast, licensed drivers living in more jobs-sense 24 

neighborhoods, and who are familiar with carsharing and ridesharing companies are estimated to 25 

pay less to add Level 3 and Level 4 automation to their next vehicles, ceteris paribus9. Perhaps 26 

individuals who are familiar with carsharing and ridesharing would rather rely on low-cost SAVs 27 
instead of buying a new vehicle with added automation technology. Interestingly, individuals 28 

who travel more (exhibit higher annual VMT) and who live farther from their workplace exhibit 29 
higher WTP for adding Level 4 AVs, but lower WTP for Level 3 AVs. Perhaps the opposite 30 
signs, but practical significance of both attributes for the WTP of Level 3 and Level 4 AVs 31 

reflect the individuals’ perception that they would be able to use their travel time (for work, 32 

sleep, or other meaningful activities) in a Level 4 AVs, but not in Level 3 AVs.  33 

 34 
Table 4: Willingness to Pay for Autonomous Vehicles (Bivariate Ordered Probit Model Results) 35 

Covariates (WTP for Level 4) Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 ΔPr4 

Number of past crash experiences 0.309 2.36 -35.3% -12.4% 9.6% 46.8% 

Familiar with carsharing (1=yes) -1.149 -1.52 22.4% 1.7% -8.4% -21.6% 

Familiar with UberX or Lyft (1=yes) -1.400 -1.59 27.3% 1.3% -14.6% -23.7% 

                                                           

8
 McFadden’s R-Square = 1 −

𝑙𝑜𝑔(𝐿𝑓𝑢𝑙𝑙)

𝑙𝑜𝑔(𝐿𝑛𝑢𝑙𝑙)
  and McFadden’s adjusted R-Square = 1 −

(𝑙𝑜𝑔(𝐿𝑓𝑢𝑙𝑙))−𝑛

𝑙𝑜𝑔(𝐿𝑛𝑢𝑙𝑙)
, where n is the 

number of parameters in the fitted model, and  𝐿𝑓𝑢𝑙𝑙  and 𝐿𝑛𝑢𝑙𝑙  denote the likelihood values of the fitted model and 

only-intercept (with no explanatory variable) model, respectively.  
9 This study’s finding about the relationship between respondents’ gender and WTP for AVs are aligned with that of 

J.D. Power’s (2012), and Schoettle and Sivak’s (2014a) study. Similarly, Kyriakidis (2014) observed the positive 

correlation between income and WTP for AVs, which is quite intuitive.           



Drive alone for work trips (1=yes) 0.616 1.72 -28.8% -6.2% 7.5% 31.1% 

Drive alone for social trips (1=yes) 0.833 2.28 -25.6% -8.0% 8.6% 28.1% 

Log(Annual VMT) 0.329 1.39 -20.2% -15.7% 7.5% 32.7% 

Distance from workplace (miles) 0.087 2.96 -22.3% -13.9% 16.6% 27.3% 

Gender (1=male) 0.442 1.28 -18.2% -4.0% 5.7% 21.6% 

U.S. driver license (1=yes) -1.159 -1.36 18.3% 1.6% -6.8% -18.0% 

Number of children 0.341 1.66 -15.5% -16.4% 7.6% 21.7% 

Age -0.039 -4.02 53.5% -12.4% -21.5% -45.0% 

Total employment density (per mi2) -3.37E-04 -1.83 21.9% 3.7% -8.2% -21.2% 

Median household income ($ per year) 7.29E-06 1.95 -23.8% -15.8% 7.2% 34.2% 

Thresholds Coef. Std. Dev.      

<$2,000 vs. $2,000 to $5,000 -7.401 0.386 -- -- -- -- 

$2,000-$5,000 vs. $5,000-$10,000 -6.514 0.299 -- -- -- -- 

$5,000-$10,000 vs. >$10,000 -5.503 0.447 -- -- -- -- 

 

Covariates (WTP for Level 3) Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 

Number of past crash experiences 0.217 1.59 -24.1% 11.0% 32.4% 

Carry smartphone (1=yes) 0.708 1.18 -10.5% 5.3% 16.5% 

Familiar with carsharing (1=yes) -1.631 -1.37 20.1% -15.9% -20.1% 

Familiar with UberX or Lyft (1=yes) -1.203 -1.49 19.9% -10.8% -25.8% 

Drive alone for work trips (1=yes) 0.539 1.46 -31.4% 28.1% 26.3% 

Drive alone for social trips (1=yes) 1.102 3.08 -15.9% 18.4% 12.9% 

Log(Annual VMT)  -0.470 -1.75 25.6% -15.8% -33.1% 

Distance from workplace (miles) -0.085 -2.83 22.8% -14.5% -27.4% 

Gender (1=male) 0.507 1.48 -14.4% 5.8% 25.4% 

U.S. driver license (1=yes) -1.623 -1.77 16.3% -8.6% -24.8% 

Number of children 0.485 2.32 -20.3% 8.9% 27.4% 

Age -0.031 -2.53 35.6% -26.4% -37.3% 

Total employment density (per mi2) -2.30E-05 -2.11 16.2% -8.6% -24.7% 

Median household income  ($ per year) 8.26E-06 1.79 -18.9% 7.2% 32.2% 

Thresholds Coef. Std. Dev.     

<$2,000 vs. $2,000 to $5,000  -8.865 0.488 -- -- -- 

$2,000-$5,000 vs. >$5,000 -7.323 0.373 -- -- -- 

Correlation coefficient:  0.921           McFadden’s R-Square: 0.101 McFadden’s adjusted R-Square:  0.061 

Notes: Nobs=347. “Log (Annual VMT)” was used as an explanatory variable in the model, but corresponding ΔPr’s 1 
were calculated with respect to “Annual VMT”. All Z-stats with |Z-stat|>2.58 are in bold, and indicate highly 2 
statistically significant predictors. All ΔPr’s with |ΔPri| > 30% are in bold, and indicate practically significant 3 
predictors.    4 
  5 
In addition, everything else equal, older persons are predicted to have a significantly lower WTP 6 

for AVs (in a practically and statistically significant sense).  Perhaps they are concerned about 7 
learning to use AVs and do not trust these technologies. Practically significant and positive 8 
associations between the number of crashes experienced by an individual and their WTP for AVs 9 

indicates that such persons may be anticipating the safety benefits of AVs10. Respondents driving 10 
alone for work trips are estimated to have a (practically and statistically) significantly higher 11 
WTP for AVs, indicating the possibility of shifting commuters to SAV fleets in the future. A 12 

high correlation coefficient estimate across these two OP equations ( = +0.921) strongly 13 
supports the use of a seemingly unrelated bivariate OP specification here.  14 

                                                           
10 As discussed earlier, the highest population-weighted proportion (63%) of respondents rated fewer crashes as a 

“very likely” benefit of AVs.  



 1 

5.2 SAV Adoption Rates under Different Pricing Scenarios 2 
 3 
Table 5 shows the OP model estimates of SAVs’ adoption rates (i.e., relying on it less than once 4 

a month, at least once a month, at least once a week, or entirely on SAV fleet) in three pricing 5 
scenarios ($1 per mile [Model 1], $2 per mile [Model 2], and $3 per mile [Model 3]). Results 6 
indicate that full-time male workers living in urban areas, ceteris paribus, are likely to use SAVs 7 
more frequently, but consistent with the findings of the WTP for AVs’ model, licensed drivers 8 
are estimated to use SAVs less frequently under all three pricing scenarios (everything else 9 

constant). Perhaps many licensed drivers are concerned about losing the excitement of driving 10 
after AVs become a common mode of transport11. Or they may have a hard time envisioning life 11 
without a privately held vehicle, and becoming largely reliant on SAVs. The practically 12 
significant positive associations of indicator variables (whether an individual has heard about 13 

Google’s self-driving car and if an individual thinks that ABS is form of automation), in all three 14 
pricing-scenarios, suggests that tech-savvy individuals are likely to be frequent SAV users. 15 

Similarly, those living in denser neighborhoods expect higher SAV adoption rates (in all three 16 
models), perhaps due to less convenient parking facilities and lower vehicle ownership rates in 17 

these areas (Celsor and Millard-Ball 2007).  18 
 19 

A highly practically significant and positive relationship between the home-distance from one’s 20 

workplace and SAV adoption rates in Models 1 and 2 suggests that these workers are likely to 21 
use SAVs more often at current carsharing and ridesharing prices. Although this variable 22 

(respondents’ distances from their workplace) does not appear in Model 3’s final specification, 23 
another covariate, distance from downtown, may be capturing its effect12. The individuals living 24 

farther from downtown, all other attributes remaining constant, are expected to use SAVs less 25 
frequently at $3 per mile. Consistent with findings of the WTP for AVs’ model, older persons are 26 

predicted to use SAVs less frequently, but individuals who have experienced more crashes in the 27 
past, ceteris paribus, have a practically significant inclination to use SAVs more frequently, even 28 
at $2 and $3 per mile (more than what carsharing companies and UberX or Lyft charge). The 29 

practical significance and negative association of the familiarity-with-carsharing indicator with 30 

SAV adoption rates in Models 2 and 3 suggests that individuals who already know carsharing’s 31 

current price, may not be willing to pay more to use comparably convenient SAVs. A highly 32 

practically significant and negative relationship of an individual’s annual VMT with SAV 33 
adoption rate (found only in Model 3) is as expected because SAVs at $3 per mile may lead to a 34 
high annual travel cost for these individuals.  35 
        36 
Table 5: SAV Adoption Rates under Different Pricing Scenarios (Ordered Probit Model Results) 37 

Covariates (Model 1: $1 per mile) Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 ΔPr4 

Have heard about Google car (1=yes) 1.835 2.91 -32.6% -15.5% 26.1% 58.1% 

ABS form of automation (1=yes) 0.903 2.54 -37.9% -9.8% 39.9% 29.6% 

Distance from workplace (miles) 0.126 4.20 -49.6% -2.5% 36.6% 63.7% 

Gender (1=male) 0.325 1.12 -10.6% -3.0% 7.9% 18.2% 

U.S. driver license (1=yes) -1.267 -1.85 15.6% 2.7% -11.9% -20.9% 

Number of children -0.194 -1.25 12.4% 2.3% -9.5% -15.5% 

                                                           
11 Litman (2014) anticipates that if AVs are successful, human driving could be restricted after 2060.   
12

 The correlation coefficient of distance from work-place and distance from downtown is 0.53. 



Employment status (1=full-time worker) 0.403 1.10 -11.3% -3.2% 8.5% 20.5% 

Area type (1=urban) 0.493 1.15 -13.0% -3.8% 9.7% 15.6% 

Population density (per mi2) 2.59E-04 2.20 -44.4% -12.4% 32.3% 66.8% 

Households density (per mi2) -5.67E-04 -2.11 25.2% -11.9% -11.1% -24.2% 

Basic employment density (per mi2) -2.60E-04 -1.67 13.1% 6.4% -10.0% -26.6% 

Thresholds Coef. Std. Dev.     

Will rely less than once a month vs.  

Will rely at least once a month 
-0.043 0.577 -- -- -- -- 

Will rely at least once a month vs.  

Will rely at least once a week 
1.246 0.122 -- -- -- -- 

Will rely at least once a week vs.  

Will rely entirely on SAV fleet 
3.058 0.728 -- -- -- -- 

McFadden’s R-Square: 0.120 McFadden’s adjusted R-Square: 0.090 

 

Covariates (Model 2: $2 per mile) Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 ΔPr4 

Have heard about Google car (1=yes) 0.821 1.37 -15.3% 11.3% 37.9% 17.8% 

ABS form of automation (1=yes) 0.940 2.68 -22.1% 34.1% 24.7% 23.3% 

Number of past crash experiences 0.155 1.02 -9.5% 8.9% 28.6% 12.5% 

Familiar with carsharing (1=yes) -2.281 -1.25 22.8% -22.4% -42.1% -69.5% 

Distance from workplace (miles) 0.124 2.94 -40.5% 51.7% 21.7% 21.3% 

Household size 0.310 1.97 -16.3% 18.5% 27.6% 17.4% 

Gender (1=male) 0.690 2.00 -10.5% 13.0% 15.1% 18.2% 

U.S. driver license (1=yes) -1.432 -1.98 12.3% -11.1% -26.6% -24.4% 

Number of children -0.542 -1.97 13.1% -17.7% -24.5% -12.1% 

Age -0.014 -1.20 25.6% -39.2% -22.5% -18.4% 

Employment status (1=full-time worker) 0.839 2.28 -15.3% 19.7% 27.9% 16.3% 

Area type (1=urban) 0.694 1.36 -11.9% 10.9% 23.4% 12.7% 

Population density (per mi2) 2.64E-04 2.14 -28.4% 35.3% 45.1% 19.6% 

Households density (per mi2) -6.52E-04 -2.26 17.5% -25.3% -22.2% -18.8% 

Basic employment density (per mi2) -1.82E-04 -1.12 5.4% -5.7% -14.5% -15.9% 

Thresholds Coef. Std. Dev.     

Rely less than once a month vs.  

Rely at least once a month 
-1.275 0.625 -- -- -- -- 

Rely at least once a month vs.  

Rely at least once a week 
0.468 0.448 -- -- -- -- 

At least once a week vs.  

Rely entirely on SAV fleet 
2.425 0.819 -- -- -- -- 

McFadden’s R-Square: 0.129 McFadden’s adjusted R-Square: 0.079 

 

Covariates (Model 3: $3 per mile) Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 ΔPr4 

Have heard about Google car (1=yes) 1.473 2.21 -10.7% 25.1% 18.0% 36.4% 

ABS form of automation (1=yes) 1.431 3.28 -20.3% 51.7% 29.5% 17.2% 

Number of past crash experiences 0.183 1.23 -11.3% 29.2% 32.9% 23.6% 

Familiar with carsharing (1=yes) -1.948 -3.05 15.3% -39.4% -21.7% -34.7% 

Annual VMT -5.32E-05 -1.65 20.3% -52.3% -17.8% -10.8% 

Distance from downtown (miles) -0.064 -1.63 10.3% -22.7% -22.9% -26.1% 

Gender (1=male) 0.658 1.76 -8.1% 17.8% 14.3% 15.9% 

U.S. driver license (1=yes) -1.864 -2.56 12.1% -28.2% -12.1% -16.2% 

Age -0.029 -2.30 10.2% -21.8% -11.5% -12.5% 

Employment status (1=full-time worker) 1.022 2.49 -16.2% 41.5% 10.7% 26.6% 

Area type (1=urban) 0.762 1.13 -10.4% 26.4% 17.7% 15.5% 

Population density (per mi2) 9.52E-05 3.06 -13.1% 31.8% 35.1% 17.8% 

Retail employment density (per mi2) 1.70E-04 1.20 -11.4% 27.9% 12.8% 14.4% 



Service employment density (per mi2) -6.66E-05 -3.10 5.4% -15.7% -10.1% -12.1% 

Thresholds Coef. Std. Dev.     

Rely less than once a month vs.  

Rely at least once a month 
-1.177 0.621 -- -- -- -- 

Rely at least once a month vs.  

Rely at least once a week 
1.646 0.789 -- -- -- -- 

At least once a week vs.  

Rely entirely on SAV fleet 
3.068 0.462 -- -- -- -- 

McFadden’s R-Square: 0.171 McFadden’s adjusted R-Square: 0.105 

Notes: Nobs=347. All Z-stats with |Z-stat|>2.58 are in bold, and indicate highly statistically significant predictors. 1 
All ΔPr’s with |ΔPri| > 30% are in bold, and indicate practically significant predictors.     2 
 3 
5.3 Willingness to Pay for CVs 4 

 5 
Table 6 summarizes the OP model estimates of the WTP for CVs (i.e., not interested, neutral, or 6 

interested in adding connectivity to current vehicle at a cost of less than $100). These estimates 7 

indicate that respondents living farther from their workplace in higher household density urban 8 

neighborhoods, who carry a smart phone, and drive alone for work and social trips, ceteris 9 
paribus, are estimated to have greater interest in adding connectivity to their current vehicles. 10 
Perhaps the individuals who have higher annual VMT, have experienced more accidents, and 11 

have heard about Google’s self-driving car, all other predictors remaining constant, are able to 12 
evaluate and appreciate the safety benefits of low-cost connectivity. Therefore, the 13 

corresponding predictors enjoy positive and practically significant relationships with WTP for 14 
CVs.    15 

      16 
Table 6: Willingness to Pay for Connected Vehicles (Ordered Probit Model Results)  17 

Covariates  Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 

Have heard about Google car (1=yes) 1.196 2.15 -32.4% -17.3% 21.1% 

Number of past crash experiences  0.290 2.03 -34.3% -19.2% 23.2% 

Carry smartphone (1=yes) 1.026 1.88 -12.8% -11.0% 10.2% 

Drive alone for work trips (1=yes) 0.895 2.32 -13.1% -16.3% 12.1% 

Drive alone for social trips (1=yes) 0.627 1.44 -21.0% -11.7% 12.9% 

Annual VMT 5.77E-05 1.63 -22.7% -33.9% 22.1% 

Distance from workplace (miles) 0.057 1.71 -20.9% -17.6% 16.3% 

Area type (1=urban) 0.728 1.55 -20.3% -15.4% 14.1% 

Household density (per mi2)  1.96E-04 1.88 -28.2% -24.9% 21.5% 

Thresholds Coef. Std. Dev.    

Not interested vs. Neutral 1.042 0.403 -- -- -- 

Neutral vs. interested 2.082 0.462 -- -- -- 

McFadden’s R-Square: 0.127 McFadden’s adjusted R-Square: 0.083 

Notes: Nobs=347. All Z-stats with |Z-stat|>2.58 are in bold, and indicate highly statistically significant predictors. 18 
All ΔPr’s with |ΔPri| > 30% are in bold, and indicate practically significant predictors.         19 

 20 

5.4 Adoption Timing of AVs 21 
 22 
Table 7 summarizes the OP model estimates of the adoption timing of AVs (i.e., never adopt 23 
AVs, adopt AVs when 50% of friends adopt, when 10 % of friends adopt, or as soon as available 24 
in the market). AV adoption by older licensed drivers living farther from their workplace in high 25 
basic employment density neighborhoods, ceteris paribus, is more likely to depend on their 26 



friends’ adoption rates. However, males with higher household income, living in urban 1 

neighborhoods, and who travel more, all other attributes remaining constant, are estimated to 2 
have a practically significant inclination to adopt AVs, with less dependence on their friends’ 3 
adoption rates.  Number of accidents experienced by the individual and the indicator variables, 4 
whether an individual has heard about Google’s self-driving car and if an individual thinks that 5 
ABS is a form of automation, exhibit a positive and practically significant association with AV 6 

adoption timing. This relationship indicates that techy-savvy individuals, who perceive the safety 7 
benefits of AVs, are more likely to adopt them with less dependence on their friends’ adoption 8 
rates.  9 
 10 

Table 7: Adoption Timing of Autonomous Vehicles (Ordered Probit Model Results)  11 
Covariates  Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 ΔPr4 

Have heard about Google car (1=yes) 1.523 2.76 -34.5% -10.6% -9.1% 38.2% 

ABS form of automation (1=yes) 0.524 1.66 -24.1% -34.5% 22.4% 27.9% 

Number of past crash experiences  0.323 2.60 -33.8% -22.1% -15.8% 51.9% 

Log(Annual VMT) 0.408 1.64 -36.3% -24.1% 14.2% 35.1% 

Distance from workplace (miles) -0.043 -1.44 25.3% 19.4% -12.3% -21.6% 

Gender (1=male) 0.603 1.98 -37.1% -15.4% 19.1% 22.1% 

U.S. driver license (1=yes) -1.548 -1.57 20.7% 14.5% -13.2% -15.5% 

Age -0.013 -1.30 21.5% 29.8% -22.3% -21.7% 

Annual household income ($ per year) 3.89E-06 1.92 -27.8% -35.9% 31.1% 23.2% 

Area type (1=urban) 0.798 2.21 -29.0% -26.6% 11.1% 32.8% 

Basic employment density (per mi2)    -5.44E-04 -3.41 26.3% 19.0% -7.3% -25.4% 

Thresholds Coef. Std. Dev.     

Never vs. 50% friends adopt -5.765 0.794 -- -- -- -- 

50% friends adopt vs. 10% friends adopt -4.241 0.271 -- -- -- -- 

10% friends adopt vs. As soon as available -2.973 0.780 -- -- -- -- 

McFadden’s R-Square: 0.097 McFadden’s adjusted R-Square: 0.066 

Notes: Nobs=347. “Log (Annual VMT)” was used as an explanatory variable in the model, but corresponding ΔPr’s 12 
were calculated with respect to “Annual VMT”. All Z-stats with |Z-stat|>2.58 are in bold, and indicate highly 13 
statistically significant predictors. All ΔPr’s with |ΔPri| > 30% are in bold, and indicate practically significant 14 
predictors.      15 

 16 
5.5 Home Location Shifts due to AVs and SAVs 17 
 18 
Table 8 summarizes the OP model estimates of respondents’ home-location-shift decisions (i.e., 19 
shift closer to central Austin, stay at the same location, or move farther from central Austin) after 20 

AVs and SAVs become common modes of transport. Results indicate that respondents with a 21 
greater number of children, living farther from their workplace in high employment density 22 
neighborhoods, and who drive alone for work trips, ceteris paribus, are predicted to shift farther 23 
from central Austin. Perhaps these individuals are excited about lower land prices in suburbs and 24 

are comfortable using their longer commute times pursuing other activities (e.g., working, 25 
talking with friends, and reading). People with Bachelor’s degrees, living in high household 26 
density neighborhoods, all other attributes remaining the same, also exhibit a practically 27 

significant inclination to shift farther from central Austin. Perhaps these individuals are 28 
concerned about higher land prices in the highly populated neighborhoods, and are keen to the 29 
benefits of moving to suburban areas after AVs and SAVs become common modes of transport. 30 
In contrast, full-time working males, with higher household income and higher VMT, all other 31 
predictors remaining constant, are likely to shift closer to central Austin, perhaps to appreciate 32 



and adopt low-cost SAVs’ higher level of service. As expected, tech-savvy respondents (i.e., 1 

who carry a smartphone and are familiar with carsharing options), living in urban 2 
neighborhoods, ceteris paribus, are estimated to have a practically significant propensity to shift 3 
closer to central Austin.        4 

 5 
Table 8: Home Location Shifts due to AVs and SAVs (Ordered Probit Model Results)  6 

Covariates  Coef. Z-stat ΔPr1 ΔPr2 ΔPr3 

Carry smartphone (1=yes) -0.926 -1.24 45.8% -6.1% -11.6% 

Familiar with carsharing (1=yes) -3.295 -2.62 53.7% -8.5% -15.3% 

Drive alone for work trips (1=yes) 0.530 1.32 -27.7% 4.9% 8.7% 

Annual VMT   -8.95E-05 -2.61 29.1% -4.2% -11.2% 

Distance from workplace (miles) 0.044 1.14 -24.9% 2.9% 14.6% 

Gender (1=male) -0.882 -2.71 22.1% -2.6% -12.6% 

Number of children 1.086 3.27 -17.2% -1.3% 22.5% 

Education level (1=bachelor’s degree holder) 0.676 1.60 -40.9% 3.2% 34.6% 

Annual household income ($ per year) -3.40E-06 -1.49 19.2% -1.9% -14.1% 

Employment status (1=full-time worker) -0.636 -1.60 29.7% -3.6% -15.3% 

Area type (1=urban) -0.551 -1.08 43.8% -6.9% -10.2% 

Household density (per mi2)    3.43E-04 3.35 -31.2% -2.8% 48.9% 

Total employment density (per mi2)    1.70E-05 1.19 -29.2% 3.5% 12.2% 

Thresholds Coef. Std. Dev.    

Closer to central Austin vs. Stay at the same place -6.408 1.235 -- -- -- 

Stay at the same place vs. Farther from central Austin -1.034 2.345 -- -- -- 

McFadden’s R-Square: 0.237 McFadden’s adjusted R-Square: 0.156 

Notes: Nobs=347. All Z-stats with |Z-stat|>2.58 are in bold, and indicate highly statistically significant predictors. 7 
All ΔPr’s with |ΔPri| > 30% are in bold, and indicate practically significant predictors.      8 
  9 

6. CONCLUSIONS 10 
 11 
Survey results offer many meaningful insights regarding Austinites’ perceptions about CAV 12 

technology and related aspects. Average WTP for Level 4 AVs ($7,253) is much higher than that 13 
of Level 3 AVs ($3,300). More than 80% of respondents are interested in owning Level 4 AVs. 14 
For roughly 50% of the population, AV adoption rates appear to   depend on adoption rates of 15 

friends and neighbors. And more than 80% appear unwilling to pay more for a SAV service than 16 
current carsharing and ridesharing companies are charging. More than 75% of respondents 17 

indicate interest in adding connectivity to their current vehicles, if the cost is under $100.  18 
Equipment or system failure appears to be the key concern with AV use, while learning how to 19 

use the smart vehicle is the least concerning. Respondents believe fewer crashes to be AVs’ 20 

biggest or most likely benefit, and less congestion to be the least likely benefit. The top two 21 
activity picks, while riding in an AV, are looking out the window and talking with friends.  22 

 23 
This study also estimated how respondent demographics, built-environment factors, and travel 24 
characteristics, impact their opinions about the benefits and concerns for, and adoption of CAVs. 25 

For example, regression-model based WTP estimates, SAV adoption rates (under different 26 



pricing scenarios), and AV adoption timing collectively suggest that high-income tech-savvy13 1 

males, living in urban areas and having greater crash experience have more interest in and a 2 
higher WTP for these new technologies, with less dependence on friends’ adoption rates14. 3 
Perhaps such individuals are more able to appreciate and evaluate the safety benefits of smart 4 

technologies. Surveyed individuals also display a higher inclination to ultimately move closer to 5 
central Austin, possibly to enjoy the high-density of low-cost shared fleets (SAVs). In contrast, 6 
older licensed drivers expressed less interest in such technologies. They may concerned about 7 
having to learn how to use CAVs and SAVs, and licensed drivers may not be interested in losing 8 
the pleasure of driving entirely.  9 

 10 
Individuals that drive more were found to be more likely to adopt AVs, with less dependence 11 
upon the adoption rates of friends, and willing to spend more to add Level 4 automation and 12 
connectivity, but expressed less interest in adding Level 3 automation or using SAVs costing $3 13 

per mile. This result may be because those who travel longer distances by car can expect to 14 
benefit more from safer, more automated, and connected travel with Level 4 technology; and 15 

they can perform other activities en route (like work, reading, and talking with friends). This is 16 
not so feasible with Level 3 AVs, because drivers must be ready to take over the job of driving, 17 

rather quickly. Consistent with past carsharing studies (e.g., Celsor and Millard-Ball 2007), 18 
respondents living in denser neighborhoods were more interested in using SAVs under all three 19 
pricing scenarios offered here, perhaps due to inconvenient parking facilities and lower vehicle 20 

ownership rates in those locations.  21 

 22 

This work’s behavioral model parameter and results will be helpful to communities and nations 23 

in simulating long-term (e.g., year 2025 and 2040) adoption of CAV technologies, under 24 

different energy and vehicle pricing, demographic, and technology scenarios. These forecasted 25 
technology adoption rates can help urban planners to start organizing and zoning for 26 

development projects in housing, roadways, and complementary infrastructure. For example, if 27 
SAVs adoption is expected to take off in a couple of decades, there is a need to plan for parking 28 
lots, otherwise infrastructure may be locked-in and might raise future costs in accommodating 29 

SAVs. Such results will hopefully usher in smarter, safer, connected, and more sustainable 30 
ground transportation systems.  31 

 32 
As suggested by this work, individuals foresee substantial benefits of CAVs, but also perceive 33 
hurdles. If such hurdles, or potential barriers, are not understood and managed thoughtfully, they 34 

can slow AV adoption rates to socially sub-optimal levels. Armed with such information, public 35 
agencies can craft specific policies. For example, they may create opportunities for citizens to 36 
“observe” and then “try” CVs, AVs, and CAVs, in experience and better evaluate the “relative 37 
advantages” of such technologies. Such experiences are essential ingredients for widespread and 38 

rapid technology diffusion (Rogers 2003).Anticipating sizable profit implications, businesses 39 

                                                           
13 A technology-savvy individual is one who has at least one of these attributes: has heard of Google’s self-driving 

car, thinks that ABS is a form of automation, carries smart phone, or is familiar with local carsharing and 

ridesharing companies.      
14 Most of the related covariates are statistically significant and many of these are practically significant in the 

models for WTP for AVs, adoption rates of SAVs, WTP for CVs, and adoption timing of AVs. Some of them could 

not achieve threshold |Z-value| (1.0) for statistical significance, and therefore, are not included in the tables 

exhibiting the models’ results. 



also an interests in creating (and, in some cases, slowing) such opportunities. Key demographic 1 

factors and built-environment settings identified here can help businesses and public agencies to 2 
target groups with lower expected WTP values, for large-scale, real-world pilots and thoughtful 3 

design of more successful public-private partnerships. 4 

We live in a very early stage for public engagement with and understanding of CAVs and SAVs. 5 

As communities and individuals learn more about these emerging vehicle-based technologies, 6 
their perceptions and expected/stated behavioral responses are likely to change, in some cases 7 

rapidly. As such, more such work is required elsewhere in the U.S. and other countries, and over 8 

time. Our world is at dynamic stage, facing an important and impending transition in 9 
transportation. Knowledge of underlying factors across geographies and over time will be 10 

important in helping all relevant stakeholders – public, businesses, regulators, and policymakers 11 

– coordinate to enable an effective and efficient transformation of the transportation system.  12 

 13 
 14 
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