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ABSTRACT 

This paper models the market potential of a fleet of shared, autonomous, electric vehicles (SAEVs) 

by employing a multinomial logit mode choice model in an agent-based framework and 

different fare settings. The mode share of SAEVs in the simulated mid-sized city (modeled 

roughly after Austin, Texas) is predicted to lie between 14 and 39%, when competing against 

privately-owned, manually-driven vehicles and city bus service. This assumes SAEVs are priced 

between $0.75 and $1.00 per mile, which delivers significant net revenues to the fleet 

owner-operator, under all modeled scenarios, assuming 80-mile-range electric vehicles and 

remote/cordless Level II charging infrastructure and up to $25,000 of per-vehicle 

automation costs. Various dynamic pricing schemes for SAEV fares show that specific fleet 

metrics can be improved with targeted strategies. For example, pricing strategies that attempt 

to balance available SAEV supply with anticipated trip demand can decrease average wait 

times by 19 to 23%. However, tradeoffs also exist within this price-setting: fare structures that 

favor higher revenue-to-cost ratios (by targeting high-value-of-travel-time [VOTT] travelers) 

reduce SAEV mode shares, while those that favor larger mode shares (by appealing to a wider 

VOTT range) produce lower payback. 
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INTRODUCTION 

Technology is quickly changing the landscape of urban transportation. With mobile computing 

enabling the fast rise of the shared-use economy, carsharing is emerging as an alternative mode 

that is more flexible than transit but less expensive than traditional (private-vehicle) ownership. 

Electric vehicle (EV) sales are on the rise with plug-in EVs’ market share growing from 0.14% 

in 2011 to 0.67% in 2014 (Plug in America 2015).Growing plug-in EV adoption should be 

helpful to most regions in achieving air quality standards for ozone and particulate matter, and 

ultimately greenhouse gases. Motivated by roadway safety and the growing burden of 

congested urban driving, automated driving technologies are emerging and private 

purchases of self-driving vehicles may be possible by 2020 (Bierstadt et al. 2014). 
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There are natural synergies between shared AV (SAV) fleets and EV technology. SAVs resolve 46 

the practical limitations of today’s non-autonomous EVs, including traveler range anxiety, access 47 
to charging infrastructure/special outlets, and charge-time management. A fleet of shared 48 
autonomous electric vehicles (SAEVs) relieves such concerns, by managing range and charging 49 

activities based on real-time trip demand and established charging-station locations, as 50 
demonstrated in Chen et al. (2016). However, when SAEVs make their debut in cities, these 51 
vehicles will not exist in a vacuum. SAEVs will be competing against existing modes (private 52 
owned vehicles, transit, and non-motorized modes) for trip share. In this paper, a mode choice 53 
model is added to Chen et al.’s (2016) agent-based framework in order to anticipate SAEV market 54 

shares in direct competition with other modes. A fleet of 80-mile-range SAEVs is paired with 55 
Level II charging infrastructure to deliver relatively fleet operations, and a variety of pricing 56 
strategies are employed while examining the shifting mode shares. 57 

PRIOR RESEARCH 58 

Recent research has examined the operations of self-driving vehicles in a shared setting, primarily 59 
focusing on metrics like empty-vehicle miles traveled (VMT), average wait times, and private 60 

vehicle replacement rates (Kornhauser et al. [2013], Fagnant and Kockelman [2014], Spieser et al. 61 
[2014], ITF [2015], Chen et al. [2016], etc.). Very few have yet simulated AV effects in 62 

competition with other modes of travel.  63 

Levin and Boyles (2015) recently simulated mode choice of privately-owned AVs (versus transit, 64 
private car travel, and walk/bike) with a fixed trip table for a small (downtown) section of Austin, 65 

Texas. Their model allows such AVs to strategically re-position themselves to avoid high parking 66 
fees (while incurring added fuel costs, but no traveler time costs), and uses dynamic traffic 67 

assignment over a 2-hour peak (morning) period. Their special test cases showed transit demand 68 
falling as more user classes (segmented by value of travel time [VOTT]) had access to AVs, with 69 
61% of low-VOTT travelers decreasing their transit use. They allowed link capacities to rise as a 70 

function of the proportion of AVs on each link, so congestion did not worsen as the number of 71 

vehicle trips rose sharply (due to empty-vehicle parking repositioning). Childress et al. (2015) used 72 
Seattle, Washington’s activity-based travel model (including short-term travel choices and long 73 
term work-location and auto-ownership choices) to anticipate AV technology impacts (from higher 74 

roadway capacities, lowered VOTTs, reduced parking costs, and increased car-sharing) on 75 
regional travel patterns. Their model estimated that higher income households are more likely to 76 

choose the AV mode, as expected (since the technology is costly and alternate use of in-vehicle 77 
time VOTT reductions for higher-VOTT travelers are likely to be more significant). With SAVs 78 

priced at $1.65 per mile (reflecting costs of current ride-sharing taxi services, like Lyft and Uber), 79 
drive-alone trips were predicted to fall by one-third and transit shares rose by 140%, as households 80 
released traditional vehicles and acquired AVs or turned to SAVs along with other travel options, 81 
since they were no longer “tied” to the fixed cost (and round-trip restrictions) of vehicle ownership 82 

and storage.   83 

The above two simulations are largely limited to private AV ownership (except for one scenario 84 
[out of four] in Childress et al. [2015]). Furthermore, their mode choice simulations assumed fixed 85 

prices/costs for AV (and SAV) use. Due to the variable nature of SAV availability and user wait 86 
times, as well as different costs associated with empty VMT for refueling SAVs and passenger 87 
pick-up, SAV pricing may best be “smart-priced” to improve fleet performance metrics. The agent-88 
based framework employed in this paper allows for mode choice in the context of each trip (based 89 



on a trip’s time-of-day [to allow for “surge pricing” during peak demand periods] and distance, 90 

and its traveler’s VOTT) and follows SAEV fleet utilizationthrough a series of simulated travel 91 
days to appreciate the effects of various dynamic pricing strategies on mode shares and SAV trip-92 
making behaviors.  93 

METHODOLOGY 94 

The model in this paper builds off of Chen et al.’s (2016) discrete-time agent-based model, 95 
which examines the operations of SAEVs and conventionally-fueled SAVs serving roughly 10% 96 
of all trips in a 100-mile by 100-mile region. The simulation is gridded to quarter-mile by 97 
quarter-mile trip generation and service cells, as shown in Figure 1. Similar to Chen et al. (2016), 98 

the trip generation process used here produces each trip based on an average daily rate for each 99 
cell (which depends on the local population density, and thus the Euclidean distance to the 100 
regional centerpoint in this idealized region), then assigns the destination cell based on trip 101 

distance (drawn from the U.S. 2009 National Household Travel Survey’s [NHTS’s] distribution). 102 
Average daily trip rates (as shown in Table 1) represent 100% of trips in the simulated region, with rates 103 
roughly following the population densities and trip generation rates of Austin, Texas’ travel demand 104 
model. Here, a multinomial logit (MNL) mode choice model is added to the agent-based model to 105 
allow all trips in the region to choose among private vehicle, transit, and SAEV modes. Trips less 106 

than 1 mile in distance (under the NHTS 2009 distribution) are not studied here, since such 107 
travelers may often prefer to walk. Since most walking trips in the U.S. are under 1 mile in 108 
length, and bike trips are few in the U.S.(Santos et al. 2011), non-motorized modes are not 109 

simulated here.  110 

 111 

Figure 1. Regional Zones System 112 

Table 1. Total (Motorized) Trip Generation Rates and Travel Speeds by Zone 113 



  

Population Density 

(persons/mi2) 

Avg Trip Gen. Rate 

(trips/cell/day) 

SAEV Travel Speed 

(mi/hr) 

Peak Off-Peak 

Downtown 7500-50,000 1287 15 15 

Urban 2000-7499 386 24 24 

Suburban 500-1999 105 30 33 

Exurban <499 7 33 36 

 114 
The amount of money travelers are willing to pay to save travel time and distance varies with each 115 
traveler, trip type, day of week, and even driver’s state of mind. To relate each trip to an individual 116 
traveler and his/her mode choice in this model, a VOTT is generated for each trip, based on trip 117 
purposes and wage rates (per hour). According to the 2009 NHTS, 18.7% of person-trips per 118 

household are for work and work-related business trips (Santos et al. 2011). The other 81.3% of 119 

trips (for shopping, family/personal errands, school, worship, social, and recreational activities) 120 

are combined here, as non-work. After randomly assigning a trip purpose, an income is assigned 121 
for the individual traveler based on US Census (2009) data on personal income of individuals 122 

residing inside metropolitan areas. SAVs presumably operate more efficiently in densely 123 
developed locations than sparsely populated areas (Burns et al. 2013, Fagnant and Kockelman 124 

2015), and individual incomes in metro areas tend to be higher than those in rural areas (with 125 
personal incomes averaging 33 percent higher, according to US Census [2009]). Hourly wages 126 
used in the model here are derived from 2009 Census data on personal income of this living inside 127 

metropolitan areas (an average of $48,738 per person per year), and converted to an hourly wage 128 
assuming 2000 work hours per year.(US Census 2009).Using USDOT (2011) guidelines, VOTT 129 

is assumed to be 50% of hourly wage for personal trips and 100% of hourly wage for business/work 130 
trips, yielding Figure 2’s VOTT distributions.  131 

 132 
 133 
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Figure 2a. Work Trips 135 

 136 

 137 

Figure 2b. Non-Work Trips 138 

Figure 2. VOTT Distributions for Work (2a) and Non-Work (2b) Trips 139 

In an MNL model, the probability of an individual choosing an alternative is assumed to 140 
monotonically increase with that alternative’s systematic utility (Koppelman and Bhat 2006), 141 

assuming all other modes’ attributes remain constant, and can be expressed as the following: 142 
 143 

Pr(𝑖) =
exp(𝑉𝑖)

exp(𝑉𝑃𝑉)+exp(𝑉𝑇𝑟𝑎𝑛𝑠𝑖𝑡)+exp(𝑉𝑆𝐴𝐸𝑉)
       (1) 144 

 145 

where 𝑖 denotes the alternative for which the probability is being computed; 𝑉𝑃𝑉, 𝑉𝑇𝑟𝑎𝑛𝑠𝑖𝑡, and 146 

𝑉𝑆𝐴𝐸𝑉 denote the systematic utilities of private vehicle, transit, and SAEV, respectively, for a 147 
specific origin-destination-traveler-time of day trip.  148 

Private Vehicle 149 

In this mode choice model, private vehicle utility is modeled as a function of VOTT, operating 150 

costs, and parking fees in the destination zone as seen in the equation below: 151 
 152 

𝑉𝑃𝑉 = −𝑉𝑂𝑇𝑇 (
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝

𝑆𝑝𝑒𝑒𝑑𝑃𝑉
) − $0.152(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝) − 𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝐷   (2) 153 

 154 

where 𝑉𝑂𝑇𝑇 is the individual monetary valuation of value of travel time drawn from distributions 155 

in Figure 2, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝 is the distance of the requested trip, 𝑆𝑝𝑒𝑒𝑑 is equivalent to SAEV 156 

average speeds shown in Table 1), $0.152 is the equivalent vehicle operating cost per cell based 157 
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on AAA’s (2014) estimate of $0.608 per mile, and 𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝐷 is the parking fee in the destination 158 
zone. In this model, parking cost is assumed to be $0 for all business trips, since 95% of commuters 159 
who drive to work park for free at the workplace (Shoup and Breinholt 1997) and other business 160 

transportation are often priced in a distorted market with expense accounts. For personal trips, 161 
parking for private vehicles is assumed to be $0 for trips that end in suburban or exurban cells, $2 162 
for trips that end in urban cells, and $4 for trips that end in downtown cells. 163 
 164 

Transit 165 

For simplification, the transit mode modeled here emulates local city bus service, the most 166 
common form of transit in US cities. Similar to private vehicles, the utility of the transit mode also 167 
depends on transit travel speeds and individual traveler’s VOTT. In addition, access time and fare 168 
are considered in the transit utility equation below: 169 
 170 

𝑉𝑡𝑟𝑎𝑛𝑠𝑖𝑡 = −(2) (
𝑉𝑂𝑇𝑇

60
) (𝐴𝑇𝑂 + 𝐴𝑇𝐷) − 𝑉𝑂𝑇𝑇 (

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝

𝑆𝑝𝑒𝑒𝑑𝑡𝑟𝑎𝑛𝑠𝑖𝑡
) − 𝐹𝑎𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑖𝑡  (3) 171 

 172 

Where 𝑆𝑝𝑒𝑒𝑑𝑡𝑟𝑎𝑛𝑠𝑖𝑡 is modeled at 25% slower than Table 1’s SAEV speeds during off-peak hours 173 

and 20% slower during peak hours due to stops (roughly based on Austin’s travel demand model’s 174 

travel time skims), $2 is the assumed one way 𝐹𝑎𝑟𝑒𝑡𝑟𝑎𝑛𝑠𝑖𝑡 based on the $2.04 per unlinked trip 175 

fare average from the 2013 National Transit Database Urbanized Data (APTA 2013), and 𝐴𝑇𝑂 and 176 

𝐴𝑇𝐷 are the access and wait times in minutes based on the trip’s origin and destination cell 177 
following Table 2. 178 

Table 2. Transit Access & Wait Time by Zone 179 

Zone Transit Access & 

Wait Time (min.) 

Downtown 3 

Urban 9 

Suburban 21 

Exurban 60 

 180 

Transit access and wait time for exurban cells are penalized (valued at 60 minutes) in the utility 181 
function  due to the fact that most transit trips to and from exurban areas require transfers (either 182 
from private car to transit, or one bus route to another bus route) in the majority of local bus service 183 
route designs. Furthermore, access time for transit is modeled at double the VOTT compared to 184 
in-vehicle travel time (IVTT). This penalty reflects the general discomfort of time spent walking, 185 

bicycling, and waiting outside of vehicles as compared to being inside a vehicle, as recommended 186 

in Wardman (2014). Though seated IVTT on transit modes is typically valuated as less onerous 187 

than IVTT in a private car (presuming that the traveler can perform more productive or leisure 188 
activities while seated on a bus as compared to driving a car), standing IVTT on transit modes is 189 
considered more onerous than driving a private vehicle (Wardman 2014). Thus, in this model, 190 
transit IVTT is simplified to be valued the same as private vehicle IVTT. 191 

SAEV 192 

The structure of the SAEV utility valuation (Equation 4) is similar to that of transit, except where 193 
transit utility is modeled with a simplified flat price, the SAEV mode incorporates several pricing 194 



schemes to examine the impact of pricing on SAEV mode share and fleet operations. The SAEV 195 

utility is expressed as: 196 
 197 

𝑉𝑆𝐴𝐸𝑉 = −(2) (
𝑉𝑂𝑇𝑇

60
) (2.5 + 5𝑛𝑤𝑙𝑖𝑠𝑡) − (0.35)𝑉𝑂𝑇𝑇 (

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝

𝑆𝑝𝑒𝑒𝑑𝑆𝐴𝐸𝑉
) − 𝐹𝑎𝑟𝑒𝑆𝐴𝐸𝑉   (4) 198 

  199 

Where 𝑛𝑤𝑙𝑖𝑠𝑡 is the number of time steps a trip has been on the SAEV waitlist and 𝐹𝑎𝑟𝑒 is the 200 
traveler out-of-pocket cost. The first term of this utility function models the onerousness of waiting 201 
for an SAEV, valuated at double the IVTT as is done in the transit utility equation. When a trip is 202 
generated, the traveler assumes the wait time is 2.5 minutes (half of a time step). If the trip is 203 
waitlisted, the traveler re-evaluates mode choice in each of the subsequent time steps the trip 204 
remains on the waitlist, and adds 5 minutes to the wait time for each time step the traveler has been 205 

on the waitlist. In other words, the longer a trip remains on the waitlist, the more the SAEV utility 206 
decreases, and the less likely the traveler will choose SAEV mode.  207 

The second term of this utility function models the cost of SAEV IVTT. Unlike transit, a traveler 208 
will not have to stand in a SAEV. Thus, a traveler can use the IVTT in a SAEV to work, read, 209 
listen to music, or pursue other productive or leisure activities. In the base case, this reduction in 210 
travel time cost is modeled at 35% of the IVTT in a non-autonomous private vehicle (where the 211 

traveler would be driving), equivalent to the valuation of seated riding time on transit (Concas and 212 
Kolpakov 2009). This value is varied in the sensitivity analysis section to examine the impact of 213 

IVTT valuation on SAEV mode share. SAEV speeds (shown in Table 1) are assumed to be the 214 
same as private vehicle speeds. 215 

The last term of the SAEV utility function is the fare. In this model, four pricing strategies are 216 

explored: simple distance-based, origin-based, destination-based, and combination pricing. Each 217 
pricing scheme is discussed in detail below. 218 

Distance-Based Pricing 219 

In simple distance-based pricing, the fare is determined proportional to the trip distance as seen in 220 

Eq. 5. This pricing scheme is similar to the usage-based (by mileage or time) pricing schemes of 221 
current non-autonomous carsharing services.  222 
 223 

𝐹𝑎𝑟𝑒𝑆𝐴𝐸𝑉 = $0.2125 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝       (5) 224 

  225 
Using overhead costs for similarly scaled transit services and assuming operating margins of 10%, 226 
Chen et al. (2016) estimate a fleet of SAEVs can be offered at $0.66 to $0.83 per occupied mile of 227 
travel, depending on type of fleet vehicles and charging infrastructure. To be conservative, $0.85 228 
per mile ($0.2125 per cell) is used as the base fare for simple distance pricing. This per-mile fare 229 

is also varied in the sensitivity analysis to examine the effects of higher and lower fares on SAEV 230 

market share. 231 

Origin-Based Pricing 232 

Vehicle relocation is one of the biggest challenges facing operators of non-autonomous carsharing 233 
services (see, e.g. Barth and Todd 1999, Correia and Antunes 2012). The origin-based pricing in 234 
Equation 6 builds off of Correia and Antunes’ (2012) suggestion that variable pricing policies  235 
which encourage trips to balance the demand and availability of vehicles at carsharing stations 236 
could contribute to more profitable operations. Here, origin-based pricing attempts to minimize 237 



empty vehicles miles traveled for relocation by incentivizing trips originating in a cell that has a 238 

surplus of vehicles and penalizing trips originating in a cell that has a deficit of vehicles. 239 

 240 

𝐹𝑎𝑟𝑒𝑆𝐴𝐸𝑉 = ($0.2125 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝)𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟     (6) 241 

 where  𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 0.5, when  (
𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝐵,𝑡

𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝑏,𝑡
) (

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑏,𝑡+1

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐵,𝑡+1
) < 0.1 242 

            𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 1, when 10 >  (
𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝐵,𝑡

𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝑏,𝑡
) (

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑏,𝑡+1

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐵,𝑡+1
) > 0.1 243 

              𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 2, when  (
𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝐵,𝑡

𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝑏,𝑡
) (

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑏,𝑡+1

𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐵,𝑡+1
) > 10 244 

 245 

In Eq. 6, 𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝐵,𝑡 is the total number of available SAEVs across all blocks B in the current 246 

time step, 𝑆𝐴𝐸𝑉𝑆𝑢𝑝𝑝𝑙𝑦𝑏,𝑡 is the number of vehicles available in the 2-mile by 2-mile block b 247 

around the origin cell in the current time step, 𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝑏,𝑡+1 is the number of trips (based on 248 

average generation rates shown in Table 1) anticipated to originate from the 2-mile by 2-mile block 249 

b surrounding the origin cell in the subsequent time step, and 𝑇𝑟𝑖𝑝𝐷𝑒𝑚𝑎𝑛𝑑𝐵,𝑡+1 is the total trip 250 

demand anticipated for the subsequent time step. Essentially, origin-based pricing compares the 251 
proportions of trip demand and available vehicle supply in a 2-mile by 2-mile block out of the 252 
entire region. Thus, trips that originate in a block with an excess of vehicles (defined by when the 253 

product of vehicle supply and trip demand ratios is less than 1) will be cheaper than trips that 254 
originate in a block with a deficit of vehicles (defined by when the product of vehicle supply and 255 

trip demand ratios is greater than 1). This ratio of ratios is then normalized by the 𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 256 
term, which halves the SAEV fare when supply is at least 10 times greater than demand and 257 

doubles the SAEV fare when demand is at least 10 times greater than supply. By incorporating the 258 

𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 term in place of using absolute ratios, extreme pricing scenarios are avoided. It is 259 
worth noting that this pricing strategy is rule-based and serves the purpose of illustrating the effect 260 

of demand-based pricing on SAEV mode share, but the pricing is not optimized for SAEV fleet 261 
performance or profit. 262 

Destination-Based Pricing 263 

As demonstrated in Chen et al. (2016), up to 5% of a SAEV fleet’s VMT can be attributed to 264 
unoccupied miles traveled for charging purposes. The destination-based pricing scheme in 265 
Equation 7 attempts to minimize these empty vehicle miles by incentivizing trips that end in a cell 266 

close to a charging station site and penalize trips that end in a cell far away from a charging station 267 
site.  268 
 269 

𝐹𝑎𝑟𝑒𝑆𝐴𝐸𝑉 = $0.2125(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐ℎ𝑎𝑟𝑔𝑒)     (7) 270 

 271 

In Equation 7, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐ℎ𝑎𝑟𝑔𝑒 represents the distance from the destination cell to the closest 272 

charging station site. Thus, the destination-based fare prices both occupied miles traveled during 273 

the trip and the unoccupied miles traveled to a charging station after a trip is complete. 274 

Combination Pricing 275 

The last fare structure tested here (Equation 8) is simply a combination of origin- and destination-276 
based pricing presented in Equations 6 and 7. 277 
 278 



 𝐹𝑎𝑟𝑒𝑆𝐴𝐸𝑉 = $0.2125(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑟𝑖𝑝 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐ℎ𝑎𝑟𝑔𝑒)𝑆𝐷𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  (8) 279 

RESULTS 280 

In order to understand the impact of introducing a new SAEV mode on existing private vehicle 281 

and transit modes, it crucial to examine mode choice in the context of only having the latter two 282 
modes. In other words, before introducing SAEVs, what mode would the travelers have chosen 283 
for their trips? And what mode will they choose once SAEVs are available?  284 

Two-Mode Model 285 

Mode choice results from the two-mode model are shown in Table 3. Using the private vehicle 286 

and transit utility functions described previously, the model yielded 85.2% private vehicle trips 287 
and 14.8% transit trips. For comparison, according to the 2009 American Community Survey, 288 
76.4% of US workers who live and work inside the same metropolitan area commute by drive 289 

alone mode and 7.8% commute by public transit (McKenzie and Rapino 2011). While trips with 290 
low VOTT are served by both private vehicle and transit modes (both with minimum VOTTs of 291 
$0), trips valuated at over $21.20 per hour are only served by private vehicles. The long right tail 292 

of the VOTT distribution for private vehicle trips (with maximum VOTT at $90.80 per hour) is 293 
evident when looking at averages: mean VOTT for a private vehicle trip is 4.5 times the mean 294 
VOTT for a transit trip. In a similar manner, short trips are served by both private vehicles and 295 

transit, but transit is consistently the preferred mode for longer trips (over 119 miles).  296 

In the simplified transit pricing modeled here, longer trips will incur higher operating costs for 297 

private vehicles while fare remains flat at $2 for transit, hence the preference for transit mode as 298 
trip lengths grow longer. Model results also show that where there are significant parking costs, 299 
transit is preferred over private vehicle mode. Hypothetically, trips served by transit would have 300 

averaged $1.15 in parking fees per trip had the trips been served by private vehicle. Trips that 301 

actually chose private vehicle mode averaged just $0.32 in parking fees per trip. Likewise, when 302 
transit access times are significant, private vehicle mode is preferred. Trips that chose transit mode 303 
had an average total origin and destination access time of 44 minutes, while trips that chose private 304 

vehicle mode would have hypothetically averaged 74 minutes for origin and destination access 305 
had transit mode been chosen. 306 

Table 3. Attributes of Private-Vehicle and Transit Trips in Two-Mode Model 307 

  
Private-Vehicle 

Trips 

Transit 

Trips 

Mode Share 85.19% 14.81% 

VOTT  

($/hr) 

Mean $16.16 $3.56 

Median $11.40 $2.75 

Std Dev $15.04 $3.29 

Max $90.80 $21.20 

Min $0.00 $0.00 

Trip Distance (mi) 

Mean 8.83 17.21 

Median 5.00 10.13 

Std Dev 10.83 19.47 



Max 118.50 146.50 

Min 1.00 1.00 

Avg Private Vehicle Parking Cost $0.32 $1.15 

Avg Transit Access & Wait Time (min.) 73.70 44.47 

Note: Transit trips do not carry parking costs, and PV trips do not involve transit access and wait times. Table values 308 
reflect the attributes of the competing (and the chosen) modes. 309 

Three-Mode Model 310 

Simple Distance-Based Pricing 311 

Once SAEVs are introduced into the dynamic mode choice model, there is a significant shift away 312 
from private vehicle use. In the results shown in Table 4, SAEVs fares are structured with simple 313 
distance-based pricing at $0.85 per trip mile. The model predicts this pricing scheme will attract 314 

27.1% of all trips generated to the SAEV mode while reducing private vehicle and transit mode 315 
shares to 60.8% and 12.1%, respectively. Comparing these mode shares to the two-mode results 316 

in Table 3, it is clear that SAEVs are drawing the majority (89.9%) of its market share from trips 317 
formerly made in private vehicles. The remaining10.1% of SAEV trips come from former transit 318 

trips.  319 

Mean VOTT for SAEV trips are higher than that for the other two modes, averaging $19.62 per 320 
hour compared to $17.97 for private vehicle trips and $3.62 for transit trips. The average trip 321 

distance of SAEV trips (10.7 miles) is in between that of private vehicle trips (7.8 miles) and transit 322 
trips (19.4 miles). This model result suggests that SAEVs are attracting higher-income (as reflected 323 

by higher VOTT) travelers who take advantage of the leisure or productive time during longer 324 
trips in a SAEV that would have otherwise been spent driving a private vehicle, echoing results 325 
from Childress et al. (2015). For shorter trips, this in-vehicle leisure time advantage is 326 

overshadowed by the cost of the SAEV wait time. Note that due to the 80-mile range limitation of 327 

SAEVs modeled here, the maximum distance of a SAEV trip is 77 miles, much shorter than the 328 
maximum trip distances of private vehicle and transit modes.  329 

Model results also suggest that SAEVs are replacing some former short transit trips: the average 330 

transit trip length increases from 17.2 miles (Table 3) to 19.4 miles (Table 4) once SAEVs are 331 
introduced. This is likely due to the fact that for shorter trips traveling between zones served 332 
sparingly by transit (such as suburban and exurban zones), the long transit access and wait times 333 

inflict disproportionately high travel costs (as compared to the cost of IVTT and fare), thus 334 
significantly reducing the utility of the mode. In such cases, a SAEV offers relatively short wait 335 
times and, for trips less than 3 miles, a competitive fare to the $2 flat transit price. A look at the 336 
average transit wait times for each mode’s trips confirms this explanation. SAEV trips would have 337 
averaged 68 minutes of access and wait time per trip had they hypothetically selected transit, 338 

whereas transit trips average 45 minutes of total access and wait times. Results also confirm that 339 
trips which incur no or low parking fees prefer private vehicle mode while trips that incur higher 340 

parking fees tend to select transit or SAEV mode, enforcing Catalano et al.’s (2008) finding that 341 
carsharing activity can increase with a rise parking fees. 342 

Table 4. Attributes of Private-Vehicle, Transit, and SAEV Trips in Three-Mode Model 343 



  
Private Vehicle 

Trips 

Transit 

Trips SAEV 

Mode Share 60.82% 12.08% 27.10% 

VOTT  

($/hr) 

Average $17.97 $3.62 $19.62 

Median $12.50 $2.80 $13.30 

Std Dev $16.54 $3.15 $19.13 

Max $92.50 $24.20 $92.50 

Min $0.00 $0.00 $0.00 

Trip Distance (mi) 

Average 7.78 19.42 10.74 

Median 5.00 12.00 5.25 

Std Dev 8.05 21.37 12.51 

Max 100.00 150.25 77.00 

Min 1.00 1.00 1.00 

Avg Private Vehicle Parking Cost $0.27 $0.88 $0.56 

Avg Transit Access & Wait Time (min.) 65.82 45.17 68.04 

Note: Transit trips do not carry parking costs, and PV trips do not involve transit access and wait times. Table values 344 
reflect the attributes of the competing (and the chosen) models. 345 

To test how model results vary with parameter changes to the SAEV utility function, sensitivity 346 

testing was conducted by looking at higher and lower SAEV fares and valuation of SAEV IVTT 347 
(using simple distance-based pricing). In the base three-mode model, SAEV IVTT was valued at 348 
35% of the cost of private vehicle IVTT, based on evaluation of seated IVTT on transit modes. 349 

However, travelers are likely to prefer the privacy and comfort of SAEVs over the often shared 350 
and not-always guaranteed seated space on buses and trains. To reflect this preference, a lower 351 

VOTT value (25% of private vehicle VOTT) was assigned in one sensitivity analysis scenario. 352 
Alternatively, while being free of driving obligations is a distinct advantage for SAEVs, the type 353 

of productive or leisure activity that can be pursued while traveling in a vehicle is still limited. 354 
Cyganski et al. (2015) conducted a stated preference survey on AV use and found that only 13% 355 

of respondents reported the ability to work as a primary advantage of AVs over manually-driven 356 
vehicles. To ensure that the ability to pursue alternative activities while in a SAEV is not 357 

overvalued, the sensitivity analysis here also includes a scenario where SAEV VOTT is valued at 358 
50% of private vehicle VOTT. Mode choice model results (shown in Figure 3a) reveal that the 359 
SAEV VOTT seems to have little impact on transit mode share. As the value of SAEV VOTT 360 
approaches that of private vehicle VOTT, SAEV loses market share (almost directly) to private 361 
vehicles, with relatively few SAEV trips switching to transit mode. These findings suggest that the 362 

relative utility of SAEVs is highly dependent on the individual traveler’s choice of in-vehicle 363 
activity and valuation of that activity as compared to driving. Cyganski et al. (2015) found that 364 

higher income travelers are more likely to work in AVs than lower income travelers, further 365 
implicating SAEVs’ attractiveness for high-VOTT travelers on longer, and thus more work-366 
productive, trips. 367 
 368 



 369 

Figure 3a. Mode Share Sensitivity to SAEV VOTT Effects 370 

 371 

 372 

Figure 3b. Mode Share Sensitivity to SAEV Fares  373 

57.90%

60.82%

67.66%

11.46%

12.08%

12.84%

30.64%

27.10%

19.51%

0.25

0.35

0.50

Private Vehicle Transit SAEV
S

A
E

V
 V

O
T

T
/P

ri
v
at

e 
V

eh
ic

le
 V

O
T

T

71.42%

60.82%

50.31%

14.22%

12.08%

10.64%

14.36%

27.10%

39.05%

$1.00

$0.85

$0.75

Private Vehicle Transit SAEV

S
A

E
V

 P
ri

ce
 

($
/m

il
e)



In the base three-mode model, SAEV fare is set at $0.85 per mile. With varying operator missions 374 

(whether it be private operators wishing to maximize profit or public agencies focusing on 375 
reduction of congestion and mobile emissions), the price of SAEV service can differ drastically. 376 
This sensitivity analysis examines the impact of a higher SAEV fare ($1.00 per mile) and a lower 377 

SAEV fare ($0.75 per mile) on mode shares. Mode choice model results (shown in Figure 3b) 378 
show that a higher SAEV fare causes SAEV service to lose market share to mostly private vehicles 379 
(with some trips switching from SAEVs to transit), further confirming SAEV’s substitutability for 380 
private vehicles for high-income travelers. Elasticities show that private vehicle mode is slightly 381 
more sensitive to SAEV VOTT valuation than transit mode: For a 1% increase in SAEV VOTT, 382 

private vehicle mode share is predicted to increase 0.58% and transit mode share by 0.56%. On 383 
the other hand, variation in SAEV pricing demonstrates that transit mode share is more sensitive 384 
than private vehicle mode share to SAEV fare. For a 1% increase in SAEV fare, private vehicle 385 
mode share is expected to increase by 0.94% and transit mode share by 1.00%. 386 

As SAEV VOTT and fare parameter changes increase and decrease projected SAEV mode share, 387 
the number (and concentration) of SAEV trips in the gridded region also changes. The agent-based 388 

model results (Table 5) show the effects of this change in SAEV trip demand on service metrics 389 
such as SAEV fleet size, average user wait times, and induced empty VMT (for relocation and 390 

charging). When SAEV mode share increases with Low SAEV VOTT and Low Price scenarios, 391 
the denser SAEV trip demand lead to decreased user wait times (by 4.8 and 12.2% compared to 392 
the base case) and increased vehicle utilization (as measured by the average daily miles per vehicle, 393 

which are 7.4 to 19.1% higher than the base case). Increase in SAEV trips also allows vehicles to 394 
travel fewer miles for traveler pickup, decreasing total induced empty VMT in the Low SAEV 395 

VOTT and Low Price scenarios by 16.1 and 26.5%, respectively, compared to the base case. 396 
Because trip characteristics (such as distance and traveler VOTT) are drawn from the same 397 
distributions for all region cells, there are only small decreases in empty VMT for relocation and 398 

charging purposes as a result of increased SAEV trip concentration. In other words, because there 399 

are no zonal variations in sociodemographic characteristics in this model, the geographic spread 400 
of SAEV trip demand is relatively consistent regardless of demand intensity.  401 

Table 5. SAEV Fleet Metrics across Sensitivity Analysis Scenarios 402 

 Base 

Low 

SAEV 

VOTT 

High 

SAEV 

VOTT 

Low 

Price 

High 

Price 

SAEV VOTT 

(as % of Private Vehicle VOTT) 35% 25% 50% 35% 35% 

Fare ($/mile) $0.85 $0.85 $0.85 $0.75 $1.00 

Fleet Size 84,945 106,686 54,787 137,323 45,496 

Total Trips Served per Day 3.90M 4.03M 3.75M 4.26M 3.62M 

Avg Daily Miles per Veh  142.7 153.3 125.0 169.9 105.0 

Avg Daily Trips per Veh  45.9 37.7 68.4 31.0 79.6 

Avg Trip Distance (mi) 10.6 11.4 8.50 11.9 8.54 

Avg Wait Time Per Trip (min) 3.11 2.96 3.36 2.73 3.62 

% Total “Empty Vehicle” Miles Traveled  7.70% 7.19% 9.06% 6.76% 9.43% 

% of Empty VMT for Relocation 2.79% 2.76% 2.87% 2.69% 2.70% 



% of Empty VMT for Charging 1.81% 1.83% 1.77% 1.79% 1.82% 

% of Empty VMT for Traveler Pickup 3.10% 2.60% 4.43% 2.28% 4.90% 

Max % of Concurrent In-Use Vehicles 38.6% 41.5% 34.7% 48.1% 29.1% 

Max % of Concurrent Charging Vehicles 53.5% 54.1% 47.99% 58.0% 40.7% 

Operational Cost per Equivalent Occupied 

Mile Traveled $0.389 $0.383 $0.400 $0.378 $0.409 

Daily Revenue $9.41M $12.8M $5.24M $16.2M $4.29M 

Revenue-to-Cost Ratio 2.00 2.04 1.92 1.85 2.19 

 403 

Interestingly, the average trip distance of scenarios with high SAEV trip demand (Low SAEV 404 
VOTT and Low Price) are longer than those of scenarios with low SAEV trip demand (High SAEV 405 
VOTT and High Price). So while the vehicles in high-demand scenarios are utilized for more miles 406 
each day, they actually serve fewer trips per day. However, the households who take these longer 407 

trips as SAEV VOTT and fare decrease are different, as reflected by the revenue to cost ratios. 408 
Both the Low SAEV VOTT and Low Price scenarios demand a bigger fleet (to serve increased 409 

SAEV demand) compared to the base case, but the Low SAEV VOTT scenario registers a bigger 410 
profit margin than the base case while the Low Price scenario does the opposite. As discussed 411 
previously, travelers who can do productive work while traveling in a SAEV will view their time 412 

in a SAEV as less costly, especially as trip distances increase. In the Low SAEV VOTT scenario, 413 
more high income travelers’ longer trips are captured by SAEV mode. On the other hand, the Low 414 

Price scenario captures longer trips from lower income travelers, as the advantage of SAEVs’ 415 
shorter wait times outweigh the fare advantage of transit in trips that travel between suburban and 416 
exurban zones. 417 

Overall, the largest absolute daily revenue is generated by the Low Price scenario, simply due to 418 
the significantly increased trip demand. However, when revenue is compared to costs, the High 419 

Price scenario yields the most favorable ratio.  420 

Origin, Destination, and Combination Pricing 421 

Sensitivity testing results revealed that different assumptions in SAEV VOTT and fare results in a 422 
wide range (14-39%) of SAEV mode shares. These different trip demands require different 423 

infrastructure investments and location placements to accommodate increasing and decreasing trip 424 
densities. They also heavily impact revenue and profit margins, as shown in Table 5.  425 

Next, this study analyzes how various pricing strategies can affect fleet operations (with the same 426 
vehicle fleet size, charging infrastructure, and trip demand). Table 6’s results employ the charging 427 

strategies described in the Mode Choice Methodology section, all assuming SAEV VOTT to be 428 
35% of private vehicle VOTT and a base distance pricing of $0.85 per mile. 429 
 430 

Pricing Scheme 

Distance-

Based 

Origin-

Based  

Destination-

Based  Combo  

Private Vehicle Mode Share 60.8% 63.9% 67.2% 68.6% 

Avg Private Vehicle VOTT ($/hr) $17.97 $17.57 $17.01 $17.57 

Avg Private Vehicle Trip Distance (mi) 7.78 8.31 7.67 8.16 

Transit Mode Share 12.1% 11.7% 12.0% 13.1% 

Avg Transit VOTT ($/hr) $3.62 $3.58 $3.31 $3.57 

Avg Transit Trip Distance (mi) 19.4 19.1 18.2 18.7 



SAEV Mode Share 27.1% 24.4% 20.8% 18.3% 

Avg SAEV VOTT ($/hr) $19.62 $18.78 $21.92 $23.17 

Avg SAEV Trip Distance (mi) 10.6 10.1 12.6 12.2 

Total Trips Served per Day 3.90M 3.85M 3.72M 3.68M 

Avg Daily Miles per Veh  142.7 122.6 117.1 101.2 

Avg Daily Trips per Veh  45.9 45.3 43.9 43.3 

Avg Wait Time Per Trip (min) 3.11 2.51 3.03 2.40 

% Total “Empty Vehicle” Miles Traveled 7.70% 8.11% 7.37% 7.83% 

% of Empty VMT for Relocation 2.79% 3.72% 3.11% 4.24% 

% of Empty VMT for Charging 1.81% 1.98% 1.80% 2.02% 

% of Empty VMT for Traveler Pickup 3.10% 2.41% 2.46% 1.57% 

Operational Cost per Equivalent 

Occupied Mile Traveled $0.389 $0.398 $0.395 $0.405 

Daily Revenue $9.41M $8.16M $8.35M $7.27M 

Revenue to Cost Ratio 2.00 1.97 2.12 2.08 

Table 6: SAEV Fleet Metrics across Distinctive Pricing Strategies 431 

Compared to distance-based pricing, the origin-based pricing scheme seems effective in reaching 432 

a more balanced vehicle supply and demand. This is reflected by the 22.3% reduction in 433 
unoccupied VMT for traveler pickup (compared to distance-based pricing), which then 434 
corresponds to a 19.3% reduction in average SAEV wait times. However, this efficiency 435 

improvement comes with a 10% reduction in SAEV demand (mode share drops from 27.1% in 436 
distance-based pricing to 24.4% in origin-based pricing) and 13.3% decrease in daily revenue. The 437 

disproportionate revenue reduction is a result of discounted SAEV trips being more accessible to 438 
lower-VOTT households, as witnessed in the 4.3% reduction in average SAEV VOTT between 439 

distance- and origin-based pricing. 440 

Destination-based pricing, compared to distance-based pricing, exhibits a negligible (less than 1%) 441 

reduction in empty VMT for charging purposes. Due to the coverage-maximizing nature of the 442 
charging station site generation methodology used here (discussed in detail in Chen et al. [2016]), 443 
the distance between the destination cell and the nearest charging station varies little. However, 444 
this pricing scheme did have the effect of discouraging shorter trips from choosing SAEV mode, 445 

as the charging surcharge of the SAEV fare becomes a larger portion of the overall fare as trip 446 
distances decrease. As discussed previously, high-VOTT travelers favor long SAEV trips. Thus, 447 
the decrease in short SAEV trips is accompanied by an 11.7% increase in average SAEV VOTT. 448 

The combination pricing scheme results shows some characteristics of both the origin- and 449 

destination-based pricing schemes: Average SAEV wait times are reduced by 22.8% and average 450 
SAEV VOTT increases 18.1%. The performance metrics of the combination pricing scheme seems 451 
to have two aspects which appeal to time-sensitive/high-VOTT travelers: minimized wait times 452 

and pricing which favors longer-distance trips. This pricing scheme also resulted in the highest 453 
transit mode share and lowest SAEV mode share. 454 

SUMMARY AND CONCLUSIONS 455 

This study explores the impact of pricing strategies on SAEV market share in a discrete-timed 456 
agent-based model of a simulated region with private vehicle, transit, and SAEVs serving as the 457 



mode choice alternatives. The model specification delivers roughly an 85%/15% split between 458 

private vehicles and transit trips before the introduction of SAEVs. When the SAEV mode is 459 
offered at $0.85 per mile (and users are assumed to value SAEV IVTT at 35% the cost of private 460 
vehicle IVTT), the model estimates that 27% of all person-trips in the region (of at least 1 mile in 461 

distance) will select SAEVs (with 90% of these trips previously choosing private vehicle travel, 462 
before introduction of SAEVs).  463 

Sensitivity analysis suggests that SAEV market share can range from 14% to 39% under plausible 464 
variations in SAEV VOTT and fare assumptions. Under all scenarios, SAEVs prove to be 465 
substitutable for private vehicle travel, assuming that single-occupant shared vehicle trips offer 466 

equal utility as single-occupant private vehicle trips for all trip types While private vehicle mode 467 
share is most sensitive to persons’ VOTT during SAEV travel, transit mode share is most sensitive 468 
to SAEV fare assumptions. These results suggest that once EV and AV technologies gain market 469 
maturity and become less costly, low-VOTT trip makers will start to choose SAEVs over transit, 470 

particularly in areas with poor transit service (as reflected by longer transit-access and wait times), 471 
echoing findings from Levin and Boyles’ (2015) center-city, peak-period simulation. Model results 472 

also suggest that SAEVs will attract longer trips away from private vehicles, particularly among 473 
high-VOTT travelers who find SAEV travel much less burdensome than driving. Vehicle features 474 

that encourage and enhance work productivity (such as reliable WiFi, ergonomic work surfaces 475 
and seating, and reduced road noise) will likely attract longer trips from high-VOTT travelers 476 
willing to pay higher fares (Mokhtarian et al. 2013). Like airlines, public SAEV operators may 477 

find the best balance of profitability and service completeness by offering a refined, work-478 
enhancing vehicle environment at higher fares to serve high-VOTT travelers (similar to the first- 479 

and business-class airplane cabins) and a discounted, sufficiently basic service to serve low-VOTT 480 
travelers (similar to economy-class airplane cabins).  481 

Model outputs from various SAEV pricing schemes show that specific fleet metrics can be 482 

improved via targeted strategies. For example, fares that seek to balance available SAEV supply 483 

with anticipated trip demand (over space and time) can decrease average wait times by 19 to 23%, 484 
demonstrating the effectiveness of congestion pricing in a vehicle-balancing framework. However, 485 
trade-offs are evident in these pricing schemes: fare structures that favor higher revenue-to-cost 486 

ratios (by targeting higher-VOTT travelers) inevitably reduce SAEV mode shares, while those that 487 
favor greater market share (by appealing to a wider range of travelers and VOTTs) inevitably 488 

produce lower revenue-to-cost ratios. These pricing outputs emphasize the role of the SAEV 489 
operators’ goals when selecting a fare structure. For private SAEV operators, whose goal typically 490 

is to maximize profits, a combination pricing scheme that minimizes user wait times while 491 
discouraging shorter trips (which tend to incur a higher level of empty VMT-to-occupied VMT) 492 
are most suitable. For a public SAEV operator, whose goal presumably is to maximize equitable 493 
access to SAEVs while still reducing wait times, a supply-and-demand (origin-based) pricing 494 
scheme may be most suitable.  495 

 496 
The model outputs also reinforce the importance of efficient parking prices, since SAEVs will be 497 

more competitive against private vehicles in areas which prices parking marginally according to 498 
usage rather than subsidies through development policies (e.g. requiring developers to provide 499 
specific numbers of parking spaces per retail square footage) or employer-provided 500 
benefits.Under-priced and inefficiently-priced parking spaces in most U.S. and non-U.S. cities 501 
play a direct role in increasing traffic congestion, housing inaffordability, sprawl, and mobile-502 
source emissions (Litman 2011). Inefficient parking prices also cause undervaluation of one of 503 



SAEVs’ key benefits: reduced parking demand (and out-of-pocket parking costs), decreasing their 504 

competitive advantage relative to private vehicles.  505 

The pricing strategies and sensitivity analysis explored here offer insights on the many factors that 506 
influence SAEV mode shares and fleet performance. However, this agent-base model and 507 

application is limited in various ways. For example, more than three modes are possible, including 508 
privately-held AVs, which may become very popular, so a vehicle-ownership model (upstream) is 509 
needed, along with non-motorized modes and trip distances below 1 mile. Furthermore, a shared-510 
vehicle trip may not offer the same utility as a privately-owned-vehicle trip for all trip types. For 511 
example, the transport of children and the elderly frequently require special equipment (carseats 512 

and wheel-chair accessible features) that may not be available in fleet vehicles. Nevertheless, while 513 
autonomous driving technology is in its infancy (and expensive), SAEVs offer users access to AV 514 
technology without significant up-front investment. Additionally, as mentioned in the results 515 
discussion, the lack of more individual trip-maker and trip-type attributes over space and time (by 516 

time-of-day and day-of-year) oversimplifies the mode (and destination) choice process. In reality, 517 
urban geography is highly heterogeneous in terms of trip generation and attraction rates, by time 518 

of day and across demographic characteristics. Moreover, trips are segments of complex tours with 519 
a variety of constraints on them. More clustered origins and destinations, and routing opportunities 520 

may make the systems more efficient, but variations over the days of week and months of year 521 
may make fixed fleets less able to serve all comers. Fortunately, pricing can be made flexible, and 522 
vehicles can hold more than one traveler, so operators have a variety of price-setting strategies to 523 

explore. The future is uncertain, but interesting and full of opportunity for those who make use of 524 
these new technologies in socially meaningful ways.  525 
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