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Abstract27

Shared autonomous vehicles (SAVs) could provide low-cost service to travelers and possibly28

replace the need for personal vehicles. Previous studies found that each SAV could service29

multiple travelers, thereby eliminating several personal vehicle trips. However, a major30

limitation of previous studies is the reliance on custom software packages with unrealistic31

congestion models, network structures, or travel demand. For effective comparisons with32

personal vehicle scenarios, a common traffic flow simulator is necessary.33

This paper presents an event-based framework for implementing SAV behavior in existing34

traffic simulation models. We demonstrate this framework in a cell transmission model-based35

dynamic network loading simulator. We also study a heuristic approach for dynamic ride-36

sharing. We compared personal vehicles and SAV scenarios on the downtown Austin city37

network. Without dynamic ride-sharing, the additional empty repositioning trips made by38

SAVs increased congestion and travel times. However, dynamic ride-sharing resulted in39
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travel times comparable to those of personal vehicles because ride-sharing reduced vehicular40

demand. Overall, the results show that realistic traffic flow models should be used for41

studying SAVs, but with well-chosen SAV fleets and routing algorithms, SAVs could provide42

acceptable service to travelers.43

1 Introduction44

Autonomous vehicles could revolutionize transportation. Adaptive cruise control could in-45

crease road capacity [16, 26] and reservation-based intersection control [7, 8] could do the46

same for intersections [13, 22]. The focus of this paper is on integrating models of these47

traffic flow improvements with shared autonomous vehicle (SAV) behavior. SAVs are a fleet48

of autonomous SAVs that provide low-cost service to travelers, possibly replacing the need49

for personal vehicles. Previous studies [1, 10] assuming that all travelers used SAVs found50

that each SAV could service multiple travelers, reducing the number of vehicles needed in51

the SAV fleet. Although 100% SAV use is unlikely to occur in the near future, previous52

results suggest great potential benefits when 100% SAVs becomes viable. Strategies such53

as preemptive relocation of SAVs for expected demand [10] or dynamic ride-sharing [11] are54

additional options for improving service.55

However, a major limitation of previous studies is that many relied on custom software56

packages with unspecified or unrealistic congestion models [1,10,11,27] and/or grid networks57

[10,11]. Although these were important studies for technology demonstration purposes, they58

lacked realistic flow models. Many studies even assumed that link travel times were constant.59

This limitation prevents prevent accurate predictions of the benefits of SAVs.60

It is clear from a review of previous work that a method of integrating SAVs with real-61

istic congestion models is a common issue without an obvious solution. Moreover, because62

researchers and practitioners use a variety of traffic models, it is desirable for SAVs to be63

able to be integrated within their preferred flow model. We address this problem by de-64

veloping an event-based framework for adding SAVs to a general class of existing traffic65

simulators. To further justify this framework, we also present results from a calibrated city66

network demonstrating that not using realistic congestion models can greatly exaggerate the67

potential benefits of SAVs.68

This framework admits a dynamic network loading model of SAVs using the well-established69

cell transmission model (CTM) [5,6]. We compare SAVs using heuristics for vehicle routing70

and dynamic ride-sharing based on previous work [10,11] against personal vehicle scenarios.71

(Heuristics are used because the vehicle-routing problem is NP-hard [28].) The framework72

allows us to study SAV behaviors using a more realistic congestion model.73

The contributions of this paper are as follows:74

1. We propose an event-based framework for implementing SAVs in existing traffic models.75

This can be adapted for macro-, meso-, or micro-scopic flow models. Our results show76

that SAVs can cause significant congestion, so using realistic traffic flow models is77

necessary for accurate estimations of SAV level of service. Therefore, future work on78
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SAVs should consider using this framework or others to incorporate realistic network79

models.80

2. We demonstrate this framework by studying congestion when SAVs are used to service81

all travelers, using CTM to propagate flow. We also describe and study a heuristic82

for dynamic ride-sharing on the downtown Austin city network and compare it with83

personal vehicle results from dynamic traffic assignment (DTA).84

3. We compare SAV scenarios (including dynamic ride-sharing), with personal vehicle85

scenarios on the calibrated downtown Austin city network. Overall, results show that86

a smaller SAV fleet can service all travel demand in the AM peak. However, some87

SAV scenarios also increased congestion because of the additional trips made to reach88

travelers’ origins. Therefore, it is important to model congestion when studying SAVs89

to attain realistic estimates of quality of service. Furthermore, SAVs may be less90

effective than previously predicted for peak hour scenarios. Nevertheless, SAVs with91

dynamic ride-sharing provided service comparable to personal vehicles.92

The remainder of this paper is organized as follows: Section 2 discusses recent develop-93

ments in AV traffic flow and SAV modeling. Section 3 describes a general framework for94

SAVs. In Section 4, we describe specific behaviors used in our case study. We present exper-95

imental results for SAVs and compare with personal vehicle scenarios in Section 5. Section96

6 presents our conclusions.97

2 Literature review98

SAVs differ from personal vehicles as follows:99

• With personal vehicles, each traveler drives a vehicle from the origin to the destination,100

then is assumed to park at the destination. Travelers choose routes to minimize their101

own travel time, resulting in a dynamic user equilibrium (DUE) in which no vehicle102

can improve travel cost by changing routes.103

• With SAVs, all travelers are serviced by SAVs, and no personal vehicles are used.104

When travel demand is ready to depart, an SAV drives to the origin, takes the traveler105

to the destination, and then becomes available to service other demand. This may106

result in some empty repositioning trips to reach travel demand, but the total number107

of vehicles on the road may be reduced.108

Naturally, SAV behavior raises cost and security issues. SAVs are essentially a fleet of109

driverless taxis, and replacing personal vehicles with taxis is not cost-effective for most110

travelers. However, because SAVs are driverless, the cost of travel is much less and is more111

similar to the costs of vehicle ownership [12]. SAVs may also raise security concerns due to112

their vulnerability to hacking. However, security issues with SAV implementation are outside113

the scope of this paper. Complete replacement of personal vehicles by SAVs has been studied114
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Figure 1: Flow-density relationship as a function of AV proportion for a free flow speed of
60 mph [19]

by previous work [11, 12], and the purpose of this paper is to improve the accuracy of such115

models.116

This paper builds on previous work on AV traffic flow and intersection control models117

(Section 2.1) and SAVs (Section 2.2) to model SAV behavior.118

2.1 Traffic models of autonomous vehicles119

After years of development culminating in AV testing on public roads, the literature has120

begun to focus on modeling new traffic behaviors available to AVs. Adaptive cruise control121

could increase capacity [16,26] and traffic flow stability [21,25]. However, Levin & Boyles [17]122

showed that increased road capacity may be offset by greater travel demand, particularly123

for empty repositioning trips. Therefore, the flow-density relationship is likely to change in124

space and time with the proportion of AVs. Levin & Boyles [19], developed a multiclass125

hydrodynamic theory with varying flow-density relationship, and solved it using a multiclass126

extension of the cell transmission model [5, 6]. Furthermore, they proposed a first-order127

car-following model to predict the flow-density relationship as a function of the proportion128

of AVs, with an example shown in Figure 1.129

Dresner & Stone [7, 8] developed reservation-based intersection control : vehicles com-130

municate wirelessly with an intersection manager to reserve a space-time path through the131

intersection. The intersection manager simulates the path on a grid of tiles and accepts the132

request only if it does not conflict with the reservations of other vehicles. Reservations make133

greater use of intersection capacity, allowing reductions in delays beyond optimized traffic134

signals in some scenarios [13, 22]. However, due to the computational complexity of the135
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Figure 2: Conflict region model

reservation protocol, many previous studies have been limited to small networks [15] or used136

simplified intersection models that reduced the traffic efficiency [2, 3]. Levin & Boyles [18]137

developed the conflict region model of reservations, which is tractable for large-scale DTA,138

and is therefore used in the simulations in this paper. Instead of simulating vehicle paths139

along a fine grid of tiles, the conflict region model aggregates tiles into larger conflict regions.140

The conflict regions for a four-way intersection are illustrated in Figure 2. Vehicle turning141

movements are limited by the capacity of all conflict regions the vehicle must pass through.142

Different turning movements pass through different sets of conflict regions; for example,143

left-turning traffic passes through more conflict regions than right-turning traffic.144

2.2 Shared autonomous vehicles145

Multiple studies have investigated the possibility of using a fleet of SAVs to reduce reliance146

on personal vehicles and improve mobility and safety [9]. Fagnant & Kockelman [10] es-147

timated that one SAV could provide service to around eleven travelers on a grid network148

approximation of Austin, Texas with most travelers waiting at most 5 minutes for pick-up,149

although vehicle travel time increased. Fagnant & Kockelman [11] incorporated dynamic150

ride-sharing, and found that it could offset the additional vehicle travel time. However, only151

10% of personal trips of Austin were included. Further studies on different cities have sup-152

ported indications that a smaller fleet of SAVs could provide service to all travelers. Burns153

et al. [1] studied a centrally dispatched SAV system in three different urban and suburban154

environments. Their findings indicated that a much smaller fleet of SAVs could provide ser-155

vice to all residents with acceptable waiting times. Also, a slightly reduced fleet of taxicabs156

could improve on wait times and vehicle utilization in Manhattan, New York. Spieser et157

al. [27] found that a SAV fleet one-third the size of the personal vehicle fleet was sufficient158

for providing service to Singapore travelers.159
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Although the results of previous studies are encouraging, they relied on unrealistic traffic160

congestion models, such as using fixed link travel times [10, 12, 27]. In addition, several161

studies used grid-based network approximations of cities [10]. SAVs could actually increase162

the number of trips, as well as vehicle miles traveled, by making repositioning trips to reach163

new travelers. These increases in demand could result in significantly higher congestion in164

saturated urban cities. Unfortunately, due to the lack of realistic congestion modeling, the165

traffic congestion and traveler service benefits of SAVs reported by previous studies may be166

greatly exaggerated. The lack of realistic congestion models across most previous studies167

indicates that the problem of integrating SAVs with established traffic flow models does not168

have an obvious solution. Therefore, this paper presents an event-based framework to build169

an SAV simulation on top of a general class of existing traffic simulators. We hope this will170

encourage future studies on SAVs to use more realistic congestion models to obtain more171

accurate predictions.172

3 Shared autonomous vehicle framework173

This section presents a general framework for dynamic simulation of SAVs to admit the174

latest developments in traffic flow modeling and SAV behavior. The framework is built on175

two events that can be integrated into most existing simulation-based traffic models. The176

purpose of this framework is to encourage future studies on SAVs to make use of existing177

traffic models for effective comparisons with current traffic conditions. As the case study will178

demonstrate, replacing personal vehicles with SAVs for the same number of travelers could179

increase congestion. To determine whether SAVs are beneficial, it is therefore necessary to180

compare SAV and personal vehicle scenarios in the same traffic model.181

This section discusses the key events defining this framework and the types of responses182

they warrant. However, the specific responses depend on the dispatcher logic, and for gener-183

ality this framework does not require specific dispatcher behaviors. Section 4 discusses the184

dispatcher logic used in our case study, including dynamic ride-sharing.185

This framework is based on a traffic simulator operating on a network G = (N,A,Z, V,D),186

where N is the set of nodes, A is the set of links, and Z ⊂ N is the set of centroids. The187

network has a set of SAVs V that provide service to the demand D. Note that D is in terms188

of person trips, not vehicle trips, since travelers will be serviced by SAVs. The integration of189

the framework with the traffic simulator is illustrated through the simulator logic in Figure190

3, with simulator time t and time step ∆t. Events and responses are indicated with double191

lines; the remainder is the standard traffic simulator. The simulation steps are grouped into192

three modules: 1) demand; 2) SAV dispatcher; and 3) traffic flow simulator. The remainder193

of this section discusses these modules in greater detail.194

3.1 Demand195

The demand module introduces demand into the simulation. At each time t, the demand196

module outputs the set of travelers that request a SAV at t. (This does not include waiting197
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Simulate 𝑣 ∈ 𝑉

for next Δ𝑡

Start: 𝑡 ≔ 0

New demand at 𝑡?

A traveler calls a SAV

Update SAV assignments

yes

no

𝑣 arrived at 

a centroid?

SAV arrived at centroid

Update SAV assignments

no

Another SAV 

to simulate?

yes

Set 𝑡 ≔ 𝑡 + Δ𝑡

no

Simulation

is finished?

no

yes

End 

simulation

yes

3. Traffic flow simulator
Input: SAV trips

Output: SAVs arriving at centroids

2. SAV dispatcher
Input: Event details

Output: SAV assignments

1. Demand
Output: Departing 

travelers

Figure 3: Event-based framework integrated into traffic simulator
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travelers.) The demand module of existing traffic simulators may be adapted for this purpose,198

with the caveat that the demand is in the form of travelers, not personal vehicles. If new199

demand appears at t, this triggers the corresponding event: a traveler calls a SAV.200

Because SAV actions are triggered by a traveler calling a SAV, this framework admits201

a very general class of demand models. The major requirement is that demand must be202

separated into packets that spawn at a specific time with a specific origin and destination.203

Although this paper primarily refers to demand as individual travelers, these packets could204

also represent a group of people traveling together. Demand cannot be continuous over205

time because that would trigger a very large number of events. However, in our case study206

demand and traffic flow are simulated at a timestep of 6 seconds, which is demonstrated to207

be computationally tractable for city networks.208

As a result, this framework can handle both real-time and pre-simulation demand gener-209

ation. Real-time demand may be randomly generated every simulation step, triggering the210

event of a traveler calling a SAV when the demand is created. For models with dynamic211

demand tables, each packet of demand spawns at its departure time and calls a SAV then.212

In addition, if demand is assumed to be known prior to its departure time, SAVs may choose213

to preemptively relocate before the traveler appears. However, this requires that travelers214

plan ahead to schedule a SAV before they depart. A less restrictive assumption is that215

the productions at each zone are known, and SAVs may preemptively relocate in response216

to expected travelers. This requires less specific information about the traveler, and trip217

productions are usually predicted by metropolitan planning organizations.218

3.2 SAV dispatcher219

This framework assumes the existence of a central SAV dispatcher that knows the status220

of all SAVs and can make route and passenger assignments. With the range of wireless221

communication available today, the existence a central dispatcher is a reasonable assumption222

for SAVs. However, if desired the dispatcher logic could also be chosen to simulate SAVs223

making individual decisions on their limited information.224

The SAV dispatcher module determines SAV behavior, including trip and route choice,225

parking, and passenger service assignments. The dispatcher operates as an event handler226

responding to the events of a traveler calling a SAV or a SAV arriving at a centroid, and227

takes as input the event details. The dispatcher is responsible for ensuring that all active228

travelers are provided with SAV service.229

The output of the dispatcher are the SAV behaviors in response to the event. These230

include SAV vehicle trips (which are passed to the traffic flow simulator), passenger pick-up231

and drop-off, and parking SAVs that are not needed. At any given time, each SAV is either232

parked at a centroid or traveling. If a SAV is parked, its exact location must be known.233

This framework is event-based, meaning that SAV actions are assigned when one of the234

following events occurs:235

1. A traveler calls a SAV.236

2. A SAV arrives at a centroid.237
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The first event is triggered in response to demand departing (or requesting to depart), and238

the second is in response to a SAV completing its assigned trip. These can be implemented239

in most simulation-based frameworks. Instead of a traveler departing by creating a personal240

vehicle, the traveler calls a SAV. When a SAV completes travel on a path (which should end241

in a centroid), this also triggers an event so the simulator can check for arriving or departing242

passengers at that centroid and assign the SAV on its next trip.243

3.2.1 A traveler calls a SAV244

When a traveler d ∈ D calls a SAV, the dispatcher should ensure that the demand will be245

satisfied by a SAV. This could occur in several ways:246

1. If an empty SAV v ∈ V is parked at d’s origin, the dispatcher might assign v to247

immediately pick up d.248

2. If an empty SAV v ∈ V is parked elsewhere, the dispatcher may assign v to travel to249

d’s origin. In this case, the dispatcher might choose to wait to optimize the movement250

of SAVs. For instance, Fagnant & Kockelman [10] use a heuristic to move SAVs to a251

closer waiting traveler rather than the first waiting traveler. The dispatcher might also252

change the path of a traveling SAV to handle the demand.253

3. If a SAV v ∈ V is inbound to d’s location, the dispatcher might assign v to service d if254

possible. However, the dispatcher should consider v’s estimated time of arrival (ETA).255

If v’s ETA results in unacceptable waiting time for d, the dispatcher may also send an256

empty SAV to d to reduce waiting time.257

Regardless of the conditions chosen for each action, the dispatcher must ensure that the258

demand will be handled.259

3.2.2 A SAV arrives at a centroid260

When a SAV v ∈ V arrives at a centroid i ∈ Z, it has finished its assigned trip. This should261

result in two types of actions. First, if v is carrying any travelers destined for i, they should262

exit v. Second, the dispatcher should assign v to park at i or depart on another trip. There263

are several possibilities for this assignment:264

1. If v still has passengers, it should continue to the next destination. If ride sharing is265

allowed and the capacity of v permits it, other passengers at i may wish to take v to266

reduce their waiting time.267

2. If v is empty, and a traveler d ∈ D is waiting at i for a SAV, it is reasonable to assign v268

to accept d. v may then proceed directly to d’s destination or, if dynamic ride-sharing269

is allowed, to another centroid to pick up another passenger.270

3. If no travelers are waiting at i and v is empty, the dispatcher might assign v to pick271

up a traveler at a different centroid.272
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4. The dispatcher could also assign v to wait at i until needed for future demand, contin-273

gent on parking availability.274

5. Finally, the dispatcher might assign v to preemptively relocate to handle predicted275

demand.276

The conditions given above are reasonable but may not be necessary. Optimizing the as-277

signment of actions for the existing and predicted demand could use the possible actions278

in different ways. For example, v might be assigned to park at i to wait for the expected279

demand even if v is already carrying passengers. This optimization problem is similar to the280

class of vehicle routing problems, which are NP-hard. Therefore, solving this optimization281

is outside the scope of this paper, but later sections will present a heuristic.282

3.3 Traffic flow simulator283

The traffic flow simulator takes as input SAV trips and their departure times and determines284

the arrival times of SAVs at centroids. The primary output of the simulator is to trigger the285

event that an SAV arrived at a centroid at the appropriate time.286

Because the SAV framework is built on the events of a traveler calling a SAV, and a SAV287

arriving at a centroid, the framework admits many flow propagation models. The major288

requirement is that the model be integrated into simulation. After departing, a SAV travels289

along its assigned path until reaching the destination centroid, at which point it triggers the290

arrival event. Therefore, the framework must track the SAV travel times to determine arrival291

times, but its travel time may be evaluated by a variety of flow models. For instance, the292

travel time could be set as a constant or through link performance functions. SAV movement293

may also be modeled through micro- or meso-simulation. Any stochasticity in the traffic flow294

model is compatible with this framework because the SAV triggers the event only after it295

arrives at its destination. Note that this framework is compatible with other vehicles on296

the road affecting congestion through link performance functions or simulation-based flow297

propagation.298

Therefore, this SAV framework can be implemented with existing traffic models by mod-299

ifying them to trigger demand and centroid arrival events. To demonstrate this flexibility,300

the case study implements this framework on the simulation-based DTA model of Levin &301

Boyles [19].302

4 Case study: framework implementation303

This section describes the implementation of the SAV framework on a cell transmission304

model-based traffic simulator. Although Section 3 discussed how to implement SAVs in305

existing traffic simulators, the responses of the dispatcher to events were not specified for306

generality. The purpose of this section is to describe the specific traffic flow simulator and307

dispatcher logic used in our case study, including the heuristics for dynamic ride-sharing.308

Results using this implementation are presented in Section 5.309
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This case study assumes that all vehicles are SAVs: travelers do not have personal vehicles310

available. This was chosen to study the feasibility of switching to an entirely SAV-based travel311

model. Furthermore, a mix of SAVs and personal vehicles would complicate the route choice.312

Finding routes for personal vehicles would require solving DTA, and the many simulations313

needed to solve DTA would add computation time and complexity to the theoretical model.314

4.1 Demand315

This case study used personal vehicle trip tables from the morning peak to determine SAV316

traveler demand. Each vehicle trip was converted into a single traveler trip with the same317

origin, destination, and departure time. Although some of these vehicle trips may encompass318

multiple person trips, that information was not available. Furthermore, multiple persons us-319

ing the same vehicle would likely use the same SAV. Therefore, it would only affect situations320

in which SAV capacity was a limitation, such as dynamic ride-sharing.321

For each trip, the demand module creates a traveler at the appropriate time. Although322

the demand is fixed, the SAV dispatcher is not programmed to take advantage of demand323

information. The dispatcher only responds to demand when a traveler was created.324

In reality, travelers have more choices available. They could request a SAV in advance,325

specify time windows for departure or arrival, or change their departure time in response to326

expected travel times.327

4.2 Traffic flow simulator328

The traffic flow simulator uses the cell transmission model (CTM) [5,6], which is a Godunov329

approximation [14] to the hydrodynamic theory of traffic flow [23,24]. CTM discretizes links330

into cells of length uf∆t, where uf is the free flow speed and ∆t is the simulation time step.331

Thus, vehicles can traverse at most one cell per time step. Congestion waves from bottlenecks332

or intersections travel backwards through the cells and reduce vehicle speeds. Since AVs333

increase capacity [16,26], this simulator use the CTM and flow-density relationship developed334

by Levin & Boyles [19]. Because all vehicles are SAVs, intersections were controlled using the335

reservation-based protocol of Dresner & Stone [7,8] for AVs. For computational tractability,336

the simulator used the conflict region node model of reservation-based intersection control337

proposed by Levin & Boyles [18].338

CTM has been used in, and allows direct comparisons with, large-scale mesoscopic DTA339

simulators [29]. DTA models [4] typically assume that route choice is based on driver experi-340

ence. Each vehicle individually seeks its shortest route, resulting in a DUE. DTA algorithms341

typically consist of three steps, performed iteratively, to find a DUE assignment [20]. First,342

shortest paths are found for all origin-destination pairs. Then, a fraction of demand is343

assigned to the new shortest paths. Finally, travel times under the new assignment are344

evaluated through a mesoscopic flow model such as CTM.345

Although DUE is based on the analytical static traffic assignment models, it requires346

further study to be formulated for SAV behavior due to stochasticity in the SAV trip table.347

We assume that the SAV dispatcher does not know travel demand or SAV travel times348
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perfectly. Therefore, the list of free SAVs at any given time is stochastic, which results in349

uncertainty in which SAV will be used to service new demand.350

Therefore, we use a dynamic network loading (DNL) -based route assignment. Let πrs351

be the path stored by the dispatcher for travel from r to s. When a SAV departs to travel352

from r to s, it is assigned to the stored path πrs. During simulation, when t ≡ 0 mod ∆T ,353

where ∆T is the update interval, πrs is updated to be the shortest path from r to s based354

on average link travel times over the interval [t − ∆T , t). Our experiments use ∆T = 1355

minute. Note that the path update interval (∆T = 1 minute) is different from the traffic356

flow simulation time step (∆t = 6 seconds).357

4.3 SAV dispatcher358

This section describes the specific logic used to assign SAVs in our case study. Although this359

is only a heuristic for the vehicle routing problem of servicing all travelers, vehicle routing360

problems in general are NP-hard and solving them in real time is unrealistic. Instead, we361

describe reasonable behaviors that SAVs could choose.362

4.3.1 A traveler calls a SAV363

When a traveler d ∈ D calls a SAV at centroid i ∈ Z, the dispatcher first checks whether364

there are any SAVs already enroute to i. If a SAV enroute to i is free, or will drop off its365

last passenger at i, and its ETA at i is less than 10 minutes away, that SAV is assigned366

to service d. This is to reduce congestion resulting from sending more SAVs. (As Section367

5 will demonstrate, moving SAVs more frequently can result in a net travel time increase368

while decreasing waiting times due to congestion.) If there are multiple travelers waiting at369

i, travelers are serviced in a first-come-first-serve (FCFS) order — with some exceptions for370

dynamic ride-sharing. Therefore, we look at the ETA of the SAV that would be assigned to371

d, if one exists.372

Otherwise, we search for the parked SAV that is closest (in travel time) to i. If it could373

arrive sooner than the ETA of the appropriate enroute SAV, it is assigned to travel to i374

to provide service to d. This is a FCFS policy: the traveler that requests a SAV first will375

be the first to get picked up, even if the SAV could sooner reach a traveler departing later.376

Although Fagnant & Kockelman [10] initially restricted SAV assignments to those within377

5 minutes of travel to improve the system efficiency, FCFS is also a reasonable policy for378

dispatching SAVs. If all SAVs are busy, then d is added to the list of waiting travelers W .379

4.3.2 A SAV arrives at a centroid380

If a SAV v ∈ V is free after reaching centroid i ∈ Z (either because v is empty, or because v381

drops off all passengers at i), and there are waiting travelers at i, then it is assigned to carry382

the longest waiting traveler. Note that v may not be the same SAV that was dispatched383

to that traveler. Due to stochasticity in the flow propagation model, it is possible that the384

order of arrival of SAVs may differ. However, there is no significant difference between two385
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free SAVs in terms of carrying a single traveler. Therefore, we assign them to travelers in386

FCFS order.387

If v still has passengers after reaching i (which is possible when dynamic ride-sharing388

is permitted), then v is assigned to travel to the next passenger’s destination. However,389

travelers waiting at i have the option of entering v if it makes sense for their destination.390

This is discussed further in Section 4.4.391

If v is free after reaching i and no demand is waiting at i, then v is dispatched to the392

longest-waiting traveler inW . If multiple SAVs become free at the same time, the one closest393

to the longest-waiting traveler in W will be sent. If W is empty, then v will park at i until394

needed. We assume for this study that centroids have infinite parking space, as there are no395

personal vehicles in this network. However, it would be possible to model limited parking396

by assigning v to travel somewhere else if parking was not available at i.397

4.4 Dynamic ride-sharing398

We also consider the possibility of dynamic ride-sharing. Following the principle of FCFS, we399

give precedence to the longest-waiting traveler. However, we allow other passengers to enter400

the SAV if they are traveling to the same, or a close destination. Specifically, suppose that401

the SAV v ∈ V is initially empty, and the longest-waiting traveler at i ∈ Z is d0, traveling402

from i to j ∈ Z. If there is another traveler d1 also traveling from i to j, then d1 may take403

the same SAV. If there is a traveler d2 traveling from i to k ∈ Z, and there is room in the404

SAV, d2 may also take the same SAV if the additional travel time is sufficiently low. Let tij405

be the expected travel time from i to j. Then d2 will take the SAV if tij + tjk ≤ (1 + ε)tik.406

Otherwise, d2 will wait at i. If d2 decides to take the SAV, then any other waiting travelers407

at i also traveling from i to k may enter the SAV. Although this violates FCFS, this is408

permitted because it does not impose any additional travel time on the SAV.409

This offer is extended, in FCFS order, for all travelers waiting at i until v is full. For410

instance, suppose a passenger d3 departing after d2 is traveling from i to l ∈ Z. Because of411

FCFS, v must service d2 first, but if tij + tjk + tkl ≤ (1 + ε)til, then d3 will still take SAV v412

from i.413

The logic is slightly different when v arrives at i already carrying a passenger. In that414

case, precedence is given to all passengers already in v because they have been traveling.415

However, travelers in i may enter v — at the back of the queue — if the additional travel416

time is less than ε of the direct travel time.417

The problem of dynamic ride-sharing is a vehicle routing problem with all SAVs. In418

general, vehicle routing problems can admit solutions in which a SAV picks up several pas-419

sengers before dropping any off. The heuristic in this case study does not do that due to420

complexity, although that behavior could certainly be implemented within this framework.421

In practice, due to the necessity of tractability when solving vehicle routing problems in422

real-time in response to demand, similar simple heuristics are likely to be used. Even with423

this restricted form of dynamic ride-sharing, the benefits over non-ride-sharing SAVs are424

significant, as shown in Section 5.425
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5 Case study: experimental results426

We performed several sets of experiments to study how SAVs (Sections 5.2 through 5.3) per-427

form relative to personal vehicles (Section 5.1), and how the dynamic ride-sharing heuristic428

affects performance. Our experiments were performed on the downtown Austin network,429

shown in Figure 4. It consists of a downtown grid with freeway and arterial corridors. It430

has 171 zones, 546 intersections, 1,247 links, and 62,836 trips over 2 hours in the AM peak.431

The centroids are significantly disaggregated for this downtown region, so we did not include432

intra-zonal trips in the trip table. The network was calibrated by the Network Modeling433

Center to match traffic data from the Capital Area Metropolitan Planning Organization.434

This is only a subnetwork of the larger Austin region, which has 1.2 million trips. This435

subnetwork was used because computation times were around 30–40 seconds per scenario436

on an Intel Xeon running at 3.33 GHz (implemented in Java), allowing many scenarios437

to be studied. However, many trips bound for the downtown grid originate from outside438

the subnetwork region. We approximated them as arriving from one of the subnetwork439

boundaries. The 62,836 trips within the downtown subnetwork is sufficient for a large-scale,440

realistic study of SAVs.441

Initially, SAVs were distributed proportionally to productions: centroid i ∈ Z started442

with |V | Pi∑
i′∈Z

Pi′
parked SAVs, which corresponds to ∆Vi = 0. We assumed that all SAVs could443

be relocated overnight to fulfill these proportions at the start of the AM peak. (Preemptive444

relocation is a strategy for relocating SAVs during the AM peak — while travelers are445

requesting SAVs.)446

Fagnant & Kockelman [10] used a seeding run to determine the minimum number of447

SAVs necessary to service all travelers. However, a seeding run may have biased the number448

of SAVs to be lower. Instead of a seeding run, we performed sensitivity analyses to study449

how increasing numbers of SAVs affected level of service. In some scenarios (such as dy-450

namic ride-sharing) we observed that fewer numbers of SAVs performed better due to lower451

congestion. In other scenarios, greater numbers of SAVs improved service. The following452

charts contain experiments using between 1000 and 60,000 SAVs, with increments of 500.453

For some scenarios, the range was reduced to numbers of SAVs that could provide service to454

all travelers within 6 hours because service was limited by having too few SAVs or too much455

congestion.456

5.1 Personal vehicles457

For comparison, we also considered two personal vehicle scenarios on the downtown Austin458

network:459

1. All travelers drive personal non-autonomous vehicles. This represents current traffic460

conditions, and shows461

2. All travelers use personal AVs, and use AV capacity and intersection improvements.462

This is an alternative to SAVs in which travelers own the AVs.463
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Figure 4: Downtown Austin network

Table 1: Results from personal vehicle scenarios
Scenario Avg. travel time Vehicle miles traveled

Personal conventional vehicles 15.24 min 146096 mi
Personal autonomous vehicles 4.12 min 142455 mi

For the private vehicle scenarios, we assumed that travelers chose routes to minimize their464

own travel time, resulting in a DUE. Therefore, we used DTA to find route choice for personal465

vehicle scenarios.466

One potential issue with comparing these personal vehicle scenarios with SAVs is the467

different methods used for route choice. For personal vehicles, we assumed DUE behavior,468

and for SAVs, we assumed DNL behavior determined by the SAV dispatcher. DUE is widely469

accepted for modeling personal vehicle behavior [4]. DNL was used for SAVs because the470

SAV dispatcher is modeled to react to travel demand as it appears. Therefore, to handle471

stochastic demand, the SAV dispatcher should rely on current rather than historical traffic472

conditions in its route assignments. (Furthermore, a traffic assignment problem has not been473

formulated for SAVs, and consequently it is not known how to solve DTA for SAVs.)474

Results from personal vehicle scenarios are shown in Table 1. Overall, when using per-475

sonal vehicles with traffic signals, travelers experienced an average travel time of 15.24 min-476

utes. When signals were replaced with reservation controls, average travel times were reduced477

to 4.12 minutes. Since the adoption of reservation controls may be difficult or inefficient if478

a significant proportion of personal vehicles are not autonomous, both personal vehicle sce-479

narios may be reasonable for comparison against SAVs. We assume that if SAVs were to480

replace all personal vehicles, reservation controls would be used.481

15



5.2 Shared autonomous vehicles482

The initial SAV scenario did not include dynamic ride-sharing. Figure 5 shows travel time483

results with 17,500 to 60,000 total SAVs available. Fewer numbers of SAVs were found to be484

insufficient to service the 2 hours of travel demand after 6 hours. Greater numbers of SAVs485

reduced both waiting time and in-vehicle travel time. With more SAVs, more vehicles were486

available near traveler origins, and fewer empty repositioning trips reduced congestion.487

As the number of SAVs increased, waiting time decreased consistently, although with488

diminishing returns. With 39,500 or more SAVs, average waiting times were below 1 minute.489

Waiting times approached 0 because SAVs were assumed to be initially distributed according490

to trip productions. Therefore, with 62,836 or more SAVs, waiting times would be 0. Of491

course, one of the goals of SAVs is to reduce the total number of vehicles in [10].492

Because the demand is from the AM peak, much of the waiting time results from SAVs493

carrying travelers to the downtown region then making an empty repositioning trip to the494

next traveler’s origin. However, waiting times were only 10.3 minutes with 17,500 SAVs.495

With 25,500 or more SAVs, average waiting times were less than 5 minutes. These average496

waiting times could be acceptable to travelers.497

The average in-vehicle travel time (IVTT) was higher than the personal vehicle scenarios498

at low numbers of SAVs. This shows that a small SAV fleet requires many empty reposi-499

tioning trips to service travelers. The empty repositioning trips result in greater demand500

and therefore congestion. This is particularly relevant for peak hour scenarios, which result501

in the greatest number of empty repositioning trips because most trips are to or from the502

central business district. SAV models that do not include realistic travel time predictions503

would not be able to predict the congestion caused by a small SAV fleet.504

This AM peak hour scenario required far more SAVs than 1 per 9.3 travelers [12]. 1 SAV505

could replace at most 3.6 personal vehicles, and total travel time was significantly higher506

there. SAV fleet size is likely to be determined by peak hour demand because peak hour507

travel patterns are the most difficult to serve with SAVs.508

However, with only 22,000 SAVs, the average IVTT was less than the personal non-AV509

scenario of 15.24 minutes (Table 1). The average IVTT never decreased below 9.8 minutes —510

higher than the 4.12 minutes of the personal AV scenario, but small enough to be feasible for511

travelers. This was probably due to the route choice heuristic used in this scenario. Personal512

AVs used DUE behavior, whereas SAVs did not. Better heuristics for SAV routing could513

therefore decrease the IVTT further for SAVs. Still, the average IVTT was not substantially514

higher than the personal AV scenario.515

Vehicle miles traveled (VMT) and empty VMT — miles traveled while not carrying any516

passengers — decreased at the same rate as the number of SAVs increased (Figure 5). This517

indicates that the difference was primarily due to less repositioning trips to pick up the next518

traveler, rather than changes in route choice. It is intuitive that as the number of SAVs519

increased, the average distance between a waiting traveler and the nearest (in travel time)520

available SAV would decrease. The average passenger miles traveled was consistently 2.27521

miles.522
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Figure 5: Travel time and VMT for the base SAV scenario

17



5.3 Dynamic ride-sharing523

Dynamic ride-sharing greatly affected level of service for travelers as shown in Figure 6.524

With dynamic ride-sharing, 1000 SAVs were actually sufficient to service all demand. Each525

SAV could carry up to 4 passengers, although they would travel with less if no travelers526

were waiting. However, because most trips were to the central business district, SAVs could527

easily combine trips because traveler destinations were relatively close. Surprisingly, optimal528

service was provided with just 2000 SAVs, or a ratio of 1 SAV to 31.4 travelers. This is529

significantly higher than the 1 SAV to 9.3 travelers [12] although of course here each SAV530

was probably carrying 3 to 4 passengers.531

The least average total travel time was 6.46 minutes with 2000 SAVs, comparable with532

the 4.12 minutes with the personal AV scenario (Table 1). 5.41 minutes was due to IVTT,533

with 1.04 minutes due to waiting time. These travel and waiting times might be further534

reduced with a better heuristic for dynamic ride-sharing. Therefore, with such a low travel535

time, SAVs with dynamic ride-sharing could be an effective replacement for personal AVs.536

Furthermore, the size of the SAV fleet used is so small relative to the number of travelers that537

full replacement might be feasible. The cost per traveler are also likely to be significantly538

reduced due to car-sharing and the lack of driver. Further study in different demand scenarios539

and on different networks is needed, but this result suggests that SAVs could be a cost-540

effective form of paratransit with a high level of service.541

Waiting times were consistently low with 2000 or more SAVs. This is probably be-542

cause most travelers had relatively close destinations, so ride-sharing was frequently used.543

Strangely, IVTT peaked at 17.54 minutes with 11,000 SAVs. This was likely because SAVs544

did not wait around for ride-sharing with later-departing travelers. Therefore, the 11,000545

SAVs made more trips, carrying fewer travelers per trip, and increased congestion. Figure546

7 shows that passenger miles traveled increased as the number of SAVs increased because547

ride-sharing was used less. With greater than 11,000 SAVs, travel times decreased because548

less empty repositioning trips were needed, decreasing vehicle demand. VMT, and empty549

repositioning miles traveled, was highest around 14,500 SAVs (Figure 6). With our heuristic,550

a fleet of between 5500 and 17,500 SAVs was less efficient than a smaller fleet. Therefore,551

future work on SAVs should study more effective heuristics for the dynamic ride-sharing552

problem.553

6 Conclusions554

This paper presented an event-based framework for implementing SAV behavior in exist-555

ing traffic simulation models. The framework relies on two events: travelers calling SAVs,556

and SAVs arriving at centroids, that are orthogonal to traffic flow models. This allows557

comparisons with personal vehicle scenarios through solving traffic assignment in the same558

simulator. We implemented this SAV framework on a cell transmission model-based dynamic559

traffic assignment simulator as well as a heuristic approach to dynamic ride-sharing. Then,560

we studied replacing personal vehicles with SAVs in the downtown Austin network with AM561
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peak demand. Most SAV scenarios resulted in greater congestion due to empty repositioning562

trips to reach travelers’ origins.563

Using SAVs without dynamic ride-sharing resulted in higher travel time than personal564

AVs. These levels of service appear to be lower than predicted by previous studies. Further-565

more, a much larger SAV fleet size was needed for the AM peak. Although this paper used566

heuristics to solve the vehicle routing problem, finding an optimal solution in real-time in567

response to demand is impractical because the vehicle routing problem is NP-hard. Further-568

more, previous studies also used similar heuristics. Therefore, these results demonstrate the569

importance of using realistic traffic flow models to study the additional congestion resulting570

from SAVs, and comparing SAVs with personal vehicles with a common traffic flow model.571

This paper also provides the framework to integrate SAV behavior into such models.572

However, dynamic ride-sharing was highly effective at reducing congestion by combining573

traveler trips. Interestingly, ride-sharing had the best travel times when the number of574

SAVs was small (2000 SAVs providing service to 62,836 travelers), and these travel times575

were comparable or improved over personal vehicle scenarios. This shows that with effective576

routing heuristics and the right fleet size, SAVs could replace personal vehicles as paratransit577

or individual taxis.578

Future studies should analyze how SAVs perform in a greater variety of scenarios, in-579

cluding varying demand and network topology. The experiments in this paper focused on a580

downtown grid network; a more suburban area with greater distance trips may be affected581

differently. This framework could also be used to study replacing traditional taxi service with582

SAVs. Taxis are typically constantly moving , which might increase congestion but decrease583

wait times. Additionally, better methods for vehicle routing and dynamic ride-sharing could584

improve SAV service, although any solution algorithms will have to be tractable for real-time585

20



execution in response to stochastic demand.586

In addition, models using this framework could be used for travel demand and mode587

choice analyses. Travelers’ trip choices typically depend on travel times, which could be588

greatly increased from congestion caused by SAVs. Many previous studies have assumed589

that all personal vehicle travel is replaced by SAVs [10–12]. In reality, SAVs add another590

mode option to personal vehicles and mass transit, and a fraction of travelers will choose591

each mode. The utility for each mode depends on travel times, for which congestion is a592

major factor. In particular, SAV congestion and routing affects both in-vehicle travel times593

as well as time spent waiting for pickup. With SAVs comprising a large fraction of vehicles594

on the road, SAVs will also affect the travel times of other modes as well. Of course, the595

number of travelers choosing the SAV mode will correspondingly affect the congestion caused596

by SAVs. To find mutually consistent travel demand, mode choice, and traffic congestion597

solutions, a SAV model with realistic congestion should be integrated into planning models598

to better predict the impacts of SAVs on city traffic patterns.599
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